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Abstract

Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals,
plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A
variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the
fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as
well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary
genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that
IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses
arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor
family. Two subfamilies of IRs are distinguished: conserved ‘‘antennal IRs,’’ which likely define the first olfactory receptor
family of insects, and species-specific ‘‘divergent IRs,’’ which are expressed in peripheral and internal gustatory neurons,
implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that
have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic
distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this
multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological
and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours
of agricultural pests and disease vectors.
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Introduction

Ionotropic glutamate receptors (iGluRs) are a conserved family

of ligand-gated ion channels present in both eukaryotes and

prokaryotes. By regulating cation flow across the plasma

membrane in response to binding of extracellular glutamate and

related ligands, iGluRs represent an important signalling mech-

anism by which cells modify their internal physiology in response

to external chemical signals.

iGluRs have originated by combination of protein domains

originally encoded by distinct genes (Figure 1A) [1–2]. An

extracellular amino-terminal domain (ATD) is involved in

assembly of iGluR subunits into heteromeric complexes [3]. This

precedes the ligand-binding domain (LBD), whose two half-

domains (S1 and S2) form a ‘‘Venus flytrap’’ structure that closes

around glutamate and related agonists [4]. Separating S1 and S2

in the primary structure is the ion channel pore, formed by two

transmembrane segments and a re-entrant pore loop [5]. S2 is

followed by a third transmembrane domain of unknown function

and a cytosolic carboxy-terminal tail.

Animal iGluRs have been best characterised for their essential

roles in synaptic transmission as receptors for the excitatory

neurotransmitter glutamate [1,6]. Three pharmacologically and

molecularly distinct subfamilies exist, named after their main

agonist: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA), kainate and N-methyl-D-aspartate (NMDA). AMPA

receptors mediate the vast majority of fast excitatory synaptic

transmission in the vertebrate brain, while Kainate receptors have

a subtler modulatory role in this process. NMDA receptors require

two agonists for activation, glutamate and glycine, and function in

synaptic and neuronal plasticity. Representatives of these iGluR

subfamilies have been identified across vertebrates [7], as well as
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invertebrates, such as the fruit fly Drosophila melanogaster, the

nematode worm Caenorhabditis elegans and the sea slug Aplysia

californica [8–10].

While most iGluRs have exquisitely tuned synaptic functions,

identification of iGluR-related genes in prokaryotic and plant

genomes provided initial indication of more diverse roles for this

class of ion channel. A bacterial glutamate receptor, GluR0, was

first characterised in the cyanobacterium, Synechocystis PCC6803

[11]. GluR0 conducts ions in response to binding of glutamate and

other amino acids in vitro, suggesting a potential function in

extracellular amino acid sensing in vivo. The flowering plant

Arabidopsis thaliana has 20 iGluR-related genes, named GLRs [12–

13]. Genetic analysis of one receptor, GLR3.3, has implicated it in

mediating external amino acid-stimulated calcium increases in

roots [14].

We recently described a family of iGluR-related proteins in D.

melanogaster, named the Ionotropic Receptors (IRs) [15]. Several

lines of evidence demonstrated that the IRs define a new family of

olfactory receptors. First, the IR LBDs are highly divergent and

lack one or more residues that directly contact the glutamate

ligand in iGluRs. Second, several IRs are expressed in sensory

neurons in the principal D. melanogaster olfactory organ, the

antenna, that do not express members of the other D. melanogaster

chemosensory receptor families, the Odorant Receptors (ORs)

and Gustatory Receptors (GRs) [16]. Third, IR proteins localise

to the ciliated endings of these sensory neurons and not to

synapses [15]. Finally, mis-expression of an IR in an ectopic

neuron is sufficient to confer novel odour-evoked neuronal

responses, providing direct genetic evidence for a role in odour

sensing [15].

The identification of the IRs as a novel family of olfactory

receptors in D. melanogaster provides a potential link between the

well-characterised signalling activity of iGluRs in glutamate

neurotransmitter-evoked neuronal depolarisation and a potentially

more ancient function of this family in environmental chemosen-

sation. In this work, we have combined comparative genomics,

molecular evolutionary analysis and expression studies to examine

the evolution of the IRs. Four principal issues are addressed: first,

when did olfactory IRs first appear? Are they a recent acquisition

as environmental chemosensors in D. melanogaster, or do they have

earlier origins in insect or deeper animal lineages? Second, what is

the most recent common ancestor of IR genes? Do they derive

from AMPA, Kainate or NMDA receptors, or do they represent a

distinct subfamily that evolved from the ancestral animal iGluR?

Third, what mechanisms underlie the expansion and diversifica-

tion of this multigene family? Finally, do IRs function only as

olfactory receptors or are they also involved in other sensory

modalities? Through answers to these questions, we sought insights

into IR evolution in the context of the origins of iGluRs, the

appearance and evolution of other chemosensory receptor

repertoires and the changing selective pressures during animal

diversification and exploitation of new ecological niches.

Results

A broad phylogenetic survey of iGluR and IR genes
iGluRs and IRs are characterised by the presence of a

conserved ligand-gated ion channel domain (the combined Pfam

domains PF10613 and PF00060 [17]) (Figure 1A). All iGluRs

additionally contain an ATD (Pfam domain PF01094), which is

discernible, but more divergent, in only two D. melanogaster IRs,

IR8a and IR25a. Most IRs have only relatively short N-terminal

regions preceding the LBD S1 domain (Figure 1A). To identify

novel iGluR/IR-related genes, we therefore constructed a Hidden

Markov Model (HMM) from an alignment of the conserved

iGluR/IR C-terminal region, which is specific to this protein

family. In combination with exhaustive BLAST searches, we used

this HMM to screen raw genomic sequences and available

annotated protein databases of 32 diverse eukaryotic species and

971 prokaryotic genomes (see Materials and Methods and Table

S2 in Supporting Information). These screens identified all

previously described eukaryotic iGluRs and all D. melanogaster

IRs, as well as 23 prokaryotic iGluRs. Novel sequences were

manually reannotated and classified by sequence similarity,

phylogenetic analysis and domain structure as either non-NMDA

(i.e. AMPA and Kainate) or NMDA subfamily iGluRs, or IRs

(Figure 1B, Table S3, and Datasets S1 and S2). Like D. melanogaster

IRs, newly annotated IRs have divergent LBDs that lack some or

all known glutamate-interacting residues, supporting their distinct

classification from iGluRs.

iGluRs are widespread in eukaryotes, present in all analysed

Metazoa (except the sponge, Amphimedon queenslandica [18]) and

Plantae, but absent in unicellular eukaryotes (Figure 1B, Table S3,

and Datasets S1 and S2). Analysis of iGluR subfamilies on the

eukaryotic phylogeny suggests that NMDA receptors may have

appeared after non-NMDA receptors, as we identified them in

Eumetazoa but not in the placozoan Trichoplax adhaerens. Further

support for this conclusion will require additional genome

sequences. One member of the Eumetazoa, the sea urchin

Strongylocentrotus purpuratus, may have secondarily lost NMDA

receptors. Different species contain distinct numbers of each

iGluR subfamily: vertebrates, for example, have more NMDA

receptor subunits than invertebrates.

Notably, IRs were identified throughout Protostomia, encom-

passing both Ecdysozoa (e.g. nematodes and arthropods) and

Lophotrochozoa (e.g. molluscs and annelids) (Figure 1B, Table S3,

and Datasets S1 and S2). There is substantial variation in the size

of the IR repertoire, from three in C. elegans to eighty-five in the

crustacean Daphnia pulex. Amongst insects, Diptera (i.e. flies and

mosquitoes) generally had a larger number of IRs than other

species. We did not identify IRs in Deuterostomia, Cnidaria or

Placozoa.

Author Summary

Ionotropic glutamate receptors (iGluRs) are a family of cell
surface proteins best known for their role in allowing
neurons to communicate with each other in the brain. We
recently discovered a variant class of iGluRs in the fruit fly
(Drosophila melanogaster), named Ionotropic Receptors
(IRs), which function as olfactory receptors in its ‘‘nose,’’
prompting us to ask whether iGluR/IRs might have a more
general function in detection of environmental chemicals.
Here, we have identified families of IRs in olfactory and
taste sensory organs throughout protostomes, one of the
principal branches of animal life that includes snails,
worms, crustaceans, and insects. Our findings suggest that
this receptor family has an evolutionary ancient function in
detecting odors and tastants in the external world. By
comparing the repertoires of these chemosensory IRs
among both closely- and distantly-related species, we have
observed dynamic patterns of expansion and divergence
of these receptor families in organisms occupying very
different ecological niches. Notably, many of the receptors
we have identified are in insects that are of significant
harm to human health, such as the malaria mosquito.
These proteins represent attractive targets for novel types
of insect repellents to control the host-seeking behaviors
of such pest species.

Chemosensory Ionotropic Receptor Evolution
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Evolutionary conservation and expression of antennal IRs
To explore the evolutionary origin of the IRs, we examined

phylogenetic relationships of the identified protostome IRs.

Reciprocal best-hit analysis using D. melanogaster sequences as

queries revealed that a subset of this species’ IRs was conserved in

several distant lineages, allowing us to define putative orthologous

groups. These include one group containing representatives of all

protostome species (IR25a), one represented by all arthropods

(IR93a), nine by most or all insects, and three by dipteran insects

(Figure 2A and 2B). For most orthologous groups, a single gene for

each species was identified. In a few cases, for example the IR75

group, certain species were represented by several closely related

in-paralogues, some of which appeared to be pseudogenes

(Figure 2A and 2B, Table S3, and Datasets S1 and S2).

Consistent with its conservation in Protostomia, IR25a is the IR

with the most similar primary sequence to iGluRs, suggesting that

it is the IR gene most similar to the ancestral IR. Analysis of the

phylogenetic relationship of IR25a and eukaryotic iGluRs locates

it clearly together with the animal iGluR family, in the non-

NMDA receptor clade (Figure 2C). To substantiate this conclu-

Figure 1. A broad phylogenetic survey of iGluR and IR genes. (A) Top: Histogram showing the mean conservation index (number of
conserved physico-chemical properties) [74,91] for 50 amino acid column-blocks of aligned D. melanogaster iGluRs and IRs, illustrating the higher
conservation of the C-terminal region. The protein domain organisation of iGluRs/IRs is shown in cartoon form above the histogram and in linear
form below it. Bottom: illustration of the three Pfam domains present in iGluRs and IRs. IR8a and IR25a contain the Pfam domain corresponding to the
iGluR ATD. IR21a, IR40a, IR64a and IR93a also contain long N-termini (,400 amino acids) but these have extremely low primary structural similarity to
the ATD. All other IRs have much shorter N-terminal regions (,200 amino acids) that lack homology to the ATD or other protein domains. (B)
Histogram of the number of non-NMDA (red), NMDA (yellow) and IR (blue) sequences identified in the indicated eukaryotic species. An unscaled tree
showing the phylogenetic relationships between these species is illustrated on the left.
doi:10.1371/journal.pgen.1001064.g001
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sion, we asked whether the IR25a gene structure resembles more

closely that of NMDA or non-NMDA receptors. Intron positions

and numbers are extremely variable across IR25a orthologues,

with multiple cases of intron loss, gain and putative intron sliding

events by a few nucleotides (Figure 2D). Nevertheless, we

identified eight intron positions that are conserved between at

least subsets of IR25a orthologues and D. melanogaster non-NMDA

receptor genes, some of which may represent intron positions
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are paralogous genes) in D. melanogaster and A. mellifera tissues. Control RT-PCR products for comparative analysis of gene expression correspond to
the ribosomal genes RPS7 (D. melanogaster) and RPS8 (A. mellifera). All RT-PCR products were sequenced to confirm their identity.
doi:10.1371/journal.pgen.1001064.g002
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present in a common ancestral gene. By contrast, only a single

intron that was conserved in position (but not in phase) was

identified between DmelIR25a (but not other IR25a orthologues)

and DmelNMDAR1 (Figure 2D). A phylogram of intron positions in

IR25a, non-NMDA and NMDA sequences reveals greater

similarity of IR25a intron positions to those of non-NMDA

receptors than NMDA receptors (Figure 2D). Together, these

observations support a model in which IR25a evolved from a

bilaterian non-NMDA receptor gene.

The conserved D. melanogaster IRs encompass the entire subset of

its IR repertoire that is expressed in the antenna [15]. Moreover,

evidence for antennal expression of the three additional genes,

DmelIR41a, DmelIR60a and DmelIR68a, has been obtained by

reverse transcription (RT)-PCR analysis, although we have not yet

been able to corroborate this by RNA in situ hybridisation (data

not shown). These combined phylogenetic and expression

properties led us to designate this subfamily of receptors the

‘‘antennal IRs’’.

We examined whether antennal expression of this subfamily

of IRs is conserved outside D. melanogaster by performing a series

of RT-PCR experiments on the honey bee, Apis mellifera, for all

six putative antennal IR orthologues: IR8a, IR25a, IR68a, IR75u,

IR76b and IR93a (see Materials and Methods for the

nomenclature of newly-identified IRs). As in D. melanogaster, we

could reproducibly amplify all of these bee genes from antennal

RNA preparations but not in control brain RNA, except for

AmelIR68a and AmelIR75u, which are also detected in the brain

(Figure 2E). Thus, antennal expression of this subgroup of IRs is

conserved across the 350 million years separating dipteran and

hymenopteran insect orders [19], and therefore potentially in all

insects.

Conserved IR chemosensory expression in Protostomia
To investigate whether IRs are likely to have an olfactory

function beyond insects, we examined expression of the IR

repertoire from a representative of a distantly related protostome

lineage, Aplysia molluscs, whose last common ancestor with D.

melanogaster probably existed 550–850 million years ago [20]. We

first used RT-PCR to analyse the expression of the ten Aplysia IR

genes in a variety of sensory, nervous and reproductive tissues

(Figure 3A). Notably, the Aplysia IR25a orthologue is predomi-

nantly expressed in the olfactory organs, the rhinophore and oral

tentacle [21]. Two other Aplysia-specific IR genes, IR214 and

IR217, are expressed in the rhinophore and oral tentacle,

respectively, and not detected in other tissues, except for the large

hermaphroditic duct (IR214) and skin (IR217). Five additional IRs

are also expressed in the oral tentacle, but displayed broader tissue

expression in skin and the central nervous system; both of these

tissues are likely to contain other types of chemosensory cells [22–

23]. Expression of two IR genes, IR209 and IR213, was not

detected in this analysis (data not shown).

To further characterise Aplysia IR25a, we analysed its spatial

expression in the mature A. dactylomela rhinophore by RNA in situ

hybridisation. An antisense probe for AdacIR25a labels a small

number of cells in rhinophore cryosections. Their size and

morphology is typical of neurons, although we lack an unambig-

uous neuronal marker to confirm this identification (Figure 3B–

3D). These cells are found either singly or in small clusters

adjacent or close to the sensory epithelial surface in the rhinophore

groove, in a similar position to cells expressing other types of

chemosensory receptors [21]. A control sense riboprobe showed

no specific staining (Figure 3E). Together, these results are

consistent with at least some of these molluscan IRs having a

chemosensory function.

The expression of putative IR25a orthologues has previously

been reported in two other Protostomia. An IR25a-related gene

from the American lobster, Homarus americanus, named OET-07, is

specifically expressed in mature olfactory sensory neurons [24–25].

In C. elegans, a promoter reporter of the IR25a orthologue, GLR-7,

revealed expression in a number of pharyngeal neurons [9], which

might have a role in food sensing [26]. While both crustacean and

nematode genes were classified in these studies as iGluRs, there is

no evidence that they act as canonical glutamate receptors, and we

suggest that they fulfil instead a chemosensory function.

Species-specificity of divergent IRs
The antennal IR subfamily accounts for only a small fraction of

the IR repertoire in most analysed insects and only 1–2 genes in

other Protostomia. The remaining majority of IR sequences are -

amongst the genomes currently available - largely species-specific,

with low amino acid sequence identity (as little as 8.5%) with other

IR genes in either the same or different species. We refer to this

group of genes here as the ‘‘divergent IRs’’. Dipteran insects have

particularly large expansions of divergent IRs (Figure 1B).

Phylogenetic analysis revealed no obvious orthologous relation-

ships of these genes either between D. melanogaster and mosquitoes

or amongst the three mosquito species (Aedes aegypti, Culex

quinquefasciatus and Anopheles gambiae) (Figure 4). Instead, this

subfamily of IRs displays a number of species-specific clades,

perhaps reflective of the distinct ecological niches of these insects.

Divergent IRs as candidate gustatory receptors in adult
and larval D. melanogaster

By contrast to antennal IRs, divergent IR expression has not

been detected in D. melanogaster olfactory organs [15], leading us to

test whether these genes are expressed in other types of

chemosensory tissue. As endogenous transcripts of non-olfactory

chemosensory genes, such as GRs, are difficult to detect [27–28],

we employed a sensitive transgenic approach to investigate

divergent IR expression. We transformed flies with constructs

containing putative promoter regions for these genes upstream of

the yeast transcription factor GAL4 and used these ‘‘driver’’

transgenes to induce expression of a GAL4-responsive UAS-

mCD8:GFP fluorescent reporter [29]. We sampled divergent IRs

from several distinct clades, including IR7a, IR11a, IR52b, IR56a

and IR100a (Figure 4). All IR promoter-GAL4 constructs were

inserted in the same genomic location using the phiC31 integrase

system [30], eliminating transgene-specific position effects on

expression resulting from their site of integration.

Expression of three of these divergent IR reporters was observed

in highly selective populations of neurons in distinct gustatory

organs (Figure 5A). In the adult, IR7a is expressed in at least eleven

neurons in the labellum, a sense organ involved in peripheral taste

detection (Figure 5B) [31]. Two reporters labelled neurons in

internal sense organs in the pharynx: IR11a is expressed in one

neuron in the ventral cibarial sense organ and IR100a is expressed

in two neurons in the dorsal cibarial sense organ (Figure 5C and

5D). These internal pharyngeal neurons are thought to play a role

in assessment of ingested food prior to entry into the main

digestive system [16]. Expression was not detected in any other

neurons or other cell types in the adult head (data not shown),

although we cannot exclude expression in other regions of the

body. IR52b and IR56a reporters were not detected in these

experiments.

We also examined expression of these reporters at an earlier

stage in the D. melanogaster life cycle, third instar larvae, which

display robust gustatory responses [16]. The same three IR

reporters were exclusively detected in unique bilaterally-symmetric

Chemosensory Ionotropic Receptor Evolution
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larval gustatory organs: IR7a was expressed in two neurons in the

terminal organ at the periphery, IR11a in a single neuron in the

ventral pharyngeal sense organ and IR100a in two neurons in the

posterior pharyngeal sense organ (Figure 5E–5H). Notably, all of

these neurons in both adult and larval tissues (except for a single

IR7a-expressing cell in the terminal organ) co-express IR25a, as

revealed by a specific antibody against this receptor (Figure 5)

[15]. IR25a is also expressed in several other cells in each of the

gustatory organs, which may express other divergent IRs not

examined here. Together these results support a role for divergent

IRs as taste receptors in distinct taste organs and stages of the D.

melanogaster life cycle.

IR evolution on the Drosophila phylogeny
To obtain more detailed insights into the processes underlying

the expansion and diversification of IR repertoires, we investigated

their evolution over a shorter timescale by comparative analysis of

D. melanogaster with 11 additional sequenced drosophilid species

[32–33]. The last common ancestor of these drosophilids is

estimated to have existed 40 million years ago [34], by contrast to

the ,250 million years since the last common ancestor of D.

melanogaster and the mosquito A. gambiae [35]. Certain species may

have diverged much more recently, such as D. simulans and D.

sechellia, whose last common ancestor may have existed only

250,000 years ago [36].

We used D. melanogaster sequences as queries in exhaustive

BLAST searches of the drosophilid genomes. Retrieved sequences

were manually reannotated to unify gene structure predictions

across species and, in some cases, genes were partially resequenced

to close sequence gaps or verify them as pseudogenes (see

Materials and Methods, Table S3, and Datasets S1 and S2).

Although predicted full-length gene sequences could be annotated

for most genes, 28 sequences remain incomplete - but assumed in

further analysis to be functional - because of a lack of sequence

data or difficulty in precise annotation of exons in divergent

regions of these genes. Of the 926 drosophilid sequences identified

(including those of D. melanogaster), 49 genes were classified as

pseudogenes because they consisted of only short gene fragments

or contained frameshift mutations and/or premature stop codons.

We clustered all genes into orthologous groups by examining their

sequence similarity, phylogenetic relationships and, in the case of

IR47a, IR47b, IR47c, IR56e and IR60f, their micro-syntenic

relationships (Table S1 and Figure 6). For drosophilid species

that are most distant from D. melanogaster, definition of precise

orthologous relationships was not always possible, particularly for

groups of closely related IR genes (e.g. IR52a–f, IR60b–f) (Table

S1). Orthologous groups were named after their D. melanogaster

representatives or a logical variant in groups where no D.

melanogaster gene was identified (see Materials and Methods).

This analysis identified 14 iGluR and 58–69 IR genes in each of

the twelve drosophilid species (Figure 6A and Table S1). iGluRs

are highly conserved, with a mean amino acid sequence identity of

8961% s.e.m., and a single representative for each species in every

orthologous group. Antennal IRs are also well conserved (mean

sequence identity = 7662%) and amongst these genes we

identified only a single pseudogenisation event, in D. sechellia

IR75a, and a single gene duplication event, of D. mojavensis IR75d.

By contrast, divergent IRs, though also largely classifiable into

monophyletic groups, display a more dynamic pattern of evolution

(mean sequence identity = 6162%), with multiple cases of gene

loss, pseudogenisation or duplication (Figure 6 and Table S1).

Species-specific rates of IR gene loss and gain
We reconciled the gene phylogeny with the drosophilid species

phylogeny to estimate the number of IR gene gain and loss events.

While this analysis is necessarily constrained by our ability to

accurately define gene orthology, we estimated across the entire

phylogeny there to be sixteen gene gain events (gene birth rate,

B = 0.0006/gene/million years) and 76 gene loss events (gene

death rate, D = 0.0030/gene/million years) (Figure 7A, see

Materials and Methods). Most (46/76) gene losses are pseudogen-

isation events, which indicates that many of these events must have

occurred relatively recently, as drosophilid species appear to

eliminate pseudogenes rapidly from their genomes [37–38].

Notably, 13 gene loss events – 12 of which reflect the presence

of just one or a small number of premature stop codons or

frameshift mutations – occur on the branch leading to the

specialist D. sechellia. Consequently, the gene loss rate on this

branch is remarkably high compared with its generalist sister

species D. simulans (Figure 7A and 7B).

Selective forces acting on drosophilid IR genes
We studied the selective forces acting on drosophilid iGluRs and

IRs by calculating the ratio of nonsynonymous to synonymous

nucleotide substitution rates (dN/dS, v1) in these genes from all 12

species. All tested iGluR, antennal IR and divergent IR genes are

evolving under strong purifying selection (v1,,1) (Figure 7C, left

and Table S4), suggesting that they all encode functional

receptors. iGluRs have the lowest estimated dN/dS ratio (median

v1 = 0.060), consistent with a conserved role in synaptic

communication. Antennal IRs have an intermediate dN/dS ratio

(median v1 = 0.107) and divergent IRs the highest (median

v1 = 0.149), suggesting that divergent IRs have evolved under

weaker purifying selection and/or contain more sites that have

been shaped by positive selection. Amongst the IRs, IR25a has the

lowest dN/dS ratio (v1 = 0.028), consistent with its high sequence

conservation in and beyond drosophilids (Figure 2).

To compare these properties with those of other insect

chemosensory receptor families (ORs and GRs) [39], we also

calculated dN/dS ratios for IR genes from only the five sequenced

species of the melanogaster subgroup (D. melanogaster, D. sechellia, D.

simulans, D. erecta and D. yakuba). For this subset of sequences, the

relative differences between median dN/dS ratios (v2) for the iGluR

and IR gene subfamilies observed with all twelve species was

Figure 3. Olfactory expression of IRs in Aplysia molluscs. (A) Top: Schematic representation of Aplysia, illustrating the location of selected
sensory, neuronal and reproductive tissues used for RNA isolation and RT-PCR (adapted from [21]). The central nervous system samples comprised
pooled cerebral, pleural, buccal, pedal and abdominal ganglia. The skin samples were taken from the side of the head. Bottom: RT-PCR analysis of
Aplysia IR gene expression from the indicated species and tissues. Only rhinophores from A. californica (Acal) were tested due to limited availability of
animals, while rhinophore and other tissues were examined for the closely related species A. dactylomela (Adac) [92]. Nucleotide sequence identity of
IR orthologues between these species is .85%. Control RT-PCR corresponds to b-actin. (B) Schematic of Aplysia rhinophore showing the approximate
location of the field of views of the rhinophore groove olfactory tissue in (C–E). (C,D) RNA in situ hybridisation on A. dactylomela rhinophore sections
using a digoxigenin-labelled antisense RNA probe for AdacIR25a. Micrographs reveal IR25a expression (blue) in small clusters of cells of a
characteristic neuronal morphology close to the sensory epithelial surface. Higher magnifications of specific cellular staining (arrowhead) are shown
in the insets. The scale bars represent 100 mm. (E) Control RNA in situ hybridisation on an A. dactylomela rhinophore section with a digoxigenin-
labelled sense riboprobe for AdacIR25a. No signal is apparent. The scale bar represents 100 mm.
doi:10.1371/journal.pgen.1001064.g003
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reproduced (Figure 7C, right). The GR gene family has previously

been noted to evolve under weaker purifying selection than ORs

[39]. Notably, we found that the median dN/dS ratios for antennal

IRs (v2 = 0.120) is statistically indistinguishable from that of ORs

(v2 = 0.137) (p.0.4, Wilcoxon rank-sum test), and that the median

dN/dS ratio of divergent IRs (v2 = 0.176) is statistically indistin-

guishable from that of GRs (v2 = 0.217) (p.0.5, Wilcoxon rank-

sum test). Thus, the selective forces acting on the IR receptor gene

subfamilies parallel those on the ORs and GRs and appear to

correlate with their putative distinct chemosensory functions in

olfaction and gustation (Figure 7C, right). The reason for this

difference is unknown, but might reflect reduced evolutionary

constraints on co-expressed and partially redundant taste receptor

genes or selection for higher diversity in taste receptor sequences to

recognise more variable non-volatile chemosensory ligands in the

environment.

Most residues of IR proteins can be expected to have evolved

under purifying selection to maintain conserved structural and

signalling properties, which may mask detection of positive

selection (v.1) at a small number of sites that contribute to their

Figure 4. Species-specificity of divergent IR repertoires. Phylogenetic tree of all iGluRs and IRs from D. melanogaster (blue), A. aegypti (green),
C. quinquefasciatus (orange) and A. gambiae (red). Sequences were aligned with PROBCONS and the tree was built with RAxML under the WAG model
of substitution, with 500 bootstrap replicates. The scale bar represents the expected number of substitutions per site. Note that due to the high
divergence and number of sequences analysed, bootstrap values in several of the most internal nodes are extremely low and the position of certain
large clades of IR genes on the tree are distinct from trees in other figures.
doi:10.1371/journal.pgen.1001064.g004
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functional diversity. To obtain evidence for site-specific selection

we applied site class models M7 and M8 in PAML to analyse 49

sets of orthologous IR genes of the six species of the melanogaster

group. This test did not identify any sites significantly under

positive selection after Bonferroni correction (Table S4), a result

consistent with orthologous IR genes having the same function

across drosophilids.

Site-specific positive selection may be more easily detectable in

relatively recent IR gene duplicates potentially undergoing

functional divergence. We therefore analysed the sole duplication

of an antennal IR, IR75d.1 and IR75d.2 in D. mojavensis. Assuming

an estimated divergence time of 35 My between D. virilis and D.

mojavensis [40], and based on analysis of dS of IR75d genes in these

species (see Materials and Methods), we estimated this duplication

to have occurred relatively recently, approximately 2.6–5.1 My

ago. Using a branch-site test we identified two sites (p,0.05) that

have evolved under positive selective pressure, where Dmo-

jIR75d.1 and DmojIR75d.2 appear to contain the ancestral and

derived residues, respectively: DmojIR75d.2-S670 maps to the

third transmembrane domain and DmojIR75d.2-Q365 maps to

the putative ligand binding domain. Functional characterisation of

these variant receptors will be required to determine their

significance.

Expansion of the IR repertoire by gene duplication and
retroposition

From potentially one ancestral IR, what genetic processes

underlay the generation of large repertoires of IR genes? We

initially sought evidence for these mechanisms through analysis of

the D. melanogaster IR family. Several monophyletic groups of IR

genes exist in clusters in the genome suggesting an important role

of gene duplication by non-allelic homologous recombination. For

example, eight divergent IRs of the IR94 orthologous groups are

located in three close, but separate, tandem arrays on chromosome

arm 3R (Figure 8A). Other genes in the same clade are also found

scattered on other chromosome arms (X, 2R, 3L) (Figure 6 and

Figure 8A), indicating that interchromosomal translocation has

also occurred frequently, most likely both during and after

formation of the tandem arrays. Similar patterns are observed in

the orthologous/paralogous sequences of these IRs in other

drosophilid species (Figure 8A), as well as for other IR clades (data

not shown). These features are also observed in IR repertoires in

other insects, although incomplete genome assembly prevented a

more precise analysis. For example, in Aedes aegypti the 23 IR7

clade members are found in arrays of 1, 1, 2, 5, 7 and 7 genes on 6

different supercontigs (data not shown).

We also noticed an unusual pattern in D. melanogaster IR gene

structures, in which antennal IRs (as well as iGluRs) contain many

(4–15) introns, while the vast majority of divergent IRs are single

exon genes (Figure 8B). Drastic intron loss in multigene families is

a hallmark of retroposition, where reverse-transcription of spliced

mRNAs from parental, intron-containing genes and reinsertion of

the resulting cDNA at a new genomic location may give rise to a

functional, intronless retrogene [41]. The few introns that are

present in these IRs in D. melanogaster have a highly biased

distribution towards the 59 end of the gene (19/25 introns in the

first 50% of IR gene sequences) (Figure 8C), which is characteristic

of recombination of partially reverse-transcribed cDNAs (a process

which initiates at the 39 end) with parental genes [42]. Sequence

divergence of IRs prevented us from identifying parental gene-

retrogene relationships. Nevertheless, these observations together

suggest that divergent IRs arose by at least one, and possibly

several, retroposition events of ancestral antennal IRs. Once

‘‘born’’, single exon IRs could presumably readily further

duplicate by non-allelic homologous recombination.

Discussion

A model for iGluR and IR evolution
Our comprehensive survey and phylogenetic analysis of iGluR/

IR-like genes permits development of a model for their evolution

(Figure 9). The shared, unusual ‘‘S1-ion channel-S2’’ domain

organisation of prokaryotic GluR0 and eukaryotic iGluRs is

suggestive of a common ancestor of this family by fusion of genes

encoding the separate domains that were present in very early life

forms (Figure 9) [11]. However, we have found prokaryotic

glutamate receptors in only a very small number of bacterial

species. Thus, if an iGluR evolved in the common ancestor of

prokaryotes and eukaryotes, it must have subsequently been lost in

a large number of prokaryotic lineages. It is possible, therefore,

that iGluRs only originated in eukaryotes and were acquired by

certain prokaryotic species by horizontal gene transfer [43]. If the

latter hypothesis is true, the presence of closely related iGluRs in

both plants and animals implies their early evolution within

eukaryotes, potentially in the last common eukaryotic ancestor

[44]. However, the absence of iGluRs in sponges and all examined

unicellular eukaryotes raises the alternative possibility that animal

and plant receptors evolved independently, or were acquired by

horizontal transmission, perhaps from prokaryotic sources.

Whatever the precise origin of iGluRs in animals, their subsequent

divergence into AMPA, Kainate and NMDA subfamilies also

occurred early, although variation in the size of these subfamilies

suggests continuous adaptation of the synaptic communication

mechanisms they serve to nervous systems of vastly different

complexities.

Several outstanding issues regarding IR evolution can now be

addressed. First, we have shown that the IRs were very likely to

have been present in the last common ancestor of Protostomia, an

estimated 550–850 million years ago [20]. IR25a represents the

probable oldest member of this repertoire and conservation of

chemosensory organ expression of IR25a orthologues in molluscs,

nematodes, crustaceans and insects strongly suggests that this

receptor may have fulfilled a chemosensing function in the

protostome ancestor.

Second, the apparent absence of IRs in Deuterostomia suggests

the parsimonious model that IRs evolved from an animal iGluR

ancestor rather than representing a family of chemosensing

receptors that was present in a common ancestor of Animalia

and lost in non-protostomes. Our phylogenetic and gene structure

Figure 5. Expression of divergent IRs in D. melanogaster adult and larval gustatory organs. Immunofluorescence with anti-GFP (green)
and anti-IR25a (magenta) antibodies (overlaid on bright-field images) on whole-mount tissues from animals expressing a membrane targeted GFP
reporter transgene (UAS-mCD8:GFP) under the control of the indicated IR promoter-GAL4 driver transgenes. The scale bars represent 20 mm. (A)
Schematic of the adult D. melanogaster proboscis showing the location of the field of views in (B–D). DCSO: dorsal cibarial sense organ, VCSO: ventral
cibarial sense organ. (B) IR7a-GAL4 drives expression of mCD8:GFP in the labellum. (C) IR11a-GAL4 drives expression of mCD8:GFP in the VCSO. (D)
IR100a-GAL4 drives expression of mCD8:GFP in the DCSO. (E) Schematic of the D. melanogaster larval head showing the location of the field of views
in (F–H). TO: terminal organ, DPS: dorsal pharyngeal sense organ, PPS: posterior pharyngeal sense organ. (F) IR7a-GAL4 drives expression of mCD8:GFP
in the TO. (G) IR11a-GAL4 drives expression of mCD8:GFP in the DPS. (H) IR100a-GAL4 drives expression of mCD8:GFP in the PPS.
doi:10.1371/journal.pgen.1001064.g005
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analysis suggests that IR25a may have derived from a non-NMDA

receptor gene. The transition from an iGluR to an IR may not

have involved drastic functional modifications: both receptor types

localise to specialised distal membrane domains of neuronal

dendrites (post-synaptic membranes and cilia, respectively) and, in

response to binding of extracellular ligands, depolarise these

domains by permitting transmembrane ion conduction which in

turn induces action potentials [45]. Thus, it is conceivable that IRs

Figure 6. Drosophilid IR repertoires. (A) Histogram of the number of IR and iGluR loci identified in the twelve drosophilid species. (B)
Phylogenetic tree of all iGluR and IR genes (excluding pseudogenes and incomplete genes) in the twelve drosophilid species. The tree was
constructed using PhyML [76] under the JTT model of substitution and is based on the most conserved columns of an amino acid alignment.
Bootstrap values were estimated using an approximate likelihood ratio test and are shown as percentages only for internal nodes. The phylogeny was
rooted using the NMDA receptors. The scale bar represents the expected number of substitutions per site.
doi:10.1371/journal.pgen.1001064.g006
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arose simply by a change in expression of an iGluR from an

interneuron (where it detected amino acid signals from a pre-

synaptic partner) to a sensory neuron (where it could now detect

chemical signals from the external environment).

Third, our analyses of IR repertoires across both divergent and

relatively closely related species provide insights into the

mechanistic basis for the expansion and functional diversification

of the IR repertoire. Gene duplication by non-allelic homologous

recombination is a widespread mechanism for growth of most

multigene families in chemosensory systems [46], and this is also

true for the IRs. Our implication of retroposition as a second

mechanism in the evolution of IR repertoires offers two

advantages for functional diversification. First, by arising from

random re-insertion of reverse transcribed copies of parental

genes, retrogenes normally lack endogenous promoter sequences,

and can therefore potentially acquire novel expression patterns

from genomic sequences flanking their insertion site that are

distinct from their parental ancestor [41]. Indeed, in D.

melanogaster, retrogene or retrogene-derived IRs - the divergent

IRs - are apparently no longer expressed in antennal neurons like

their ancestors, but instead in gustatory (and perhaps other) tissues.

Second, release from the evolutionary constraints of the preser-

vation of splicing signals near exon boundaries may have

contributed to the more rapid divergence of the protein sequences

of these intronless IRs [47].

Analysis of IR repertoires across the well-defined drosophilid

phylogeny provides clear evidence for a birth-and-death model of

evolution, in which, following gene duplication, individual family

members progressively diverge in sequence and, in some cases, are

lost by pseudogenisation and/or deletion [48–49]. Differential

rates of these processes will ultimately shape the precise IR

repertoire of an individual species (discussed below).

Evolutionary and functionally distinct IR subfamilies:
olfactory and gustatory receptors, and ligand-binding
receptors and co-receptors

Our molecular evolutionary analysis has distinguished two

subfamilies in the IR repertoire: conserved, antennal IRs and the

species-specific, divergent IRs. Their distinct evolutionary prop-

erties may correspond to fundamental functional differences, as we

provide here the first evidence, to our knowledge, for expression of

divergent IR subfamily members in subsets of neurons in both

peripheral and internal gustatory organs at both adult and larval

stages of D. melanogaster. The selective and non-overlapping

expression patterns observed in the small sample of IR genes

examined indicate that a large fraction of the divergent IR

repertoire may be expressed in gustatory neurons. It is also

possible that some of these IRs may be expressed in non-

chemosensory tissues. Although subsets of GR genes have been

implicated in the detection of sweet or bitter compounds in

peripheral taste bristles in D. melanogaster [31], a comprehensive

understanding of the physiological breadth and molecular logic of

taste detection is lacking. Our results introduce further complexity

into the molecular mechanisms of taste detection and demand

comprehensive and comparative expression and functional

analysis of divergent IRs and GRs in this sensory system.

Although many gustatory-expressed divergent IRs in D.

melanogaster are recently derived in drosophilids, the ancestral

chemosensory function of IRs is likely to be not in the detection of

airborne volatiles but rather water-soluble, non-volatile com-

pounds, as the last common ancestor of Protostomia was probably

aquatic. Indeed, the strikingly similar expression of IR genes in

internal pharyngeal neurons in D. melanogaster and C. elegans

suggests a conserved role for these receptors in sensing chemical

signals from ingested food. In this light, the derivation of IRs from

receptors detecting amino acid-related neurotransmitters invites

the attractive hypothesis that ligands for these gustatory IRs (as

well as species-specific IRs in other protostomes) are also amino

acids. Almost nothing is known about sensory responses to this

class of chemical signals in D. melanogaster, despite their vital

importance for normal insect physiology and metabolism [50], but

amino acids are chemosensory stimulants in other insects, lobsters

and molluscs [51–53].

Our evolutionary and expression studies have highlighted

IR25a as an atypical member of the repertoire, displaying deep

conservation and broad expression in many olfactory and

gustatory neurons. While we cannot exclude the possibility that

IR25a recognises a specific chemical ligand, co-expression of this

receptor with other cell-type specific IRs favours a model in which

this acts as a co-receptor, analogous both to the heteromeric

assembly of iGluR subunits into functional complexes [1], as well

as to the pairing of ligand-specific ORs with the common OR83b

co-receptor [54–55]. An insect- and antennal-specific homologue

of IR25a, IR8a, may play a similar role specifically for olfactory

IRs.

A common insect nose and species-specific IR repertoires
In addition to IR25a and IR8a, many other D. melanogaster

antennal IRs are highly conserved in insects, both in sequence and

expression pattern. These properties contrast starkly with the

insect OR repertoires, which probably evolved only in terrestrial

insects [56], and which contain only one member displaying

orthology across multiple orders, the atypical OR83b co-receptor

[57]. ORs are an expanded lineage of the ancestral GR repertoire

whose evolutionary origins are unknown [56]. Homologues of GR

genes exist in D. pulex and C. elegans [56,58], but in the latter species

these receptors may not be involved in chemosensation [59–60].

These observations suggest that, in insects, the IRs represent the

first olfactory receptor family, whose members were fixed

functionally early in their evolution to detect olfactory stimuli

that are important for all species of this animal class. Consistent

with this, the antenna of the mayfly Rhithrogena semicolorata – an

insect belonging to the Paleoptera and not the Neoptera that

encompasses all species described here – bears coeloconic sensilla

(potentially housing IR-expressing neurons) but not trichoid or

basiconic sensilla (which house OR-expressing neurons in all other

insects examined) [61]. Available data on ligands for IR sensory

Figure 7. Gene loss and gain and selective pressures in drosophilid IR repertoires. (A) Estimates of the number of IR loci (number of
pseudogenes is indicated in parentheses) on internal nodes of the drosophilid phylogeny and gene gain (blue dots), gene loss (red slashes) and
pseudogenisation (orange slashes) events on each branch. The gene loss and gene gain rates on the terminal branches are indicated in parentheses
after the species names. (B) Histogram of the gene gain (red) and loss (black) rates estimated for the terminal branches of the phylogeny. (C)
Distribution and median (horizontal line) of dN/dS rates of iGluR and IR genes estimated for all twelve drosophilid species (left) or five melanogaster
subgroup species (right). dN/dS values were significantly different between iGluRs, antennal IRs and divergent IRs (p,0.01, Wilcoxon rank-sum tests).
In the right-hand plot, the dashed grey lines represent the median values calculated from the dN/dS values for the melanogaster subgroup OR and GR
genes, as reported in [39]. dN/dS values were significantly different both between antennal IRs and GRs and between divergent IRs and ORs (p,0.01,
Wilcoxon rank-sum tests).
doi:10.1371/journal.pgen.1001064.g007
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Figure 8. Mechanisms of IR repertoire expansion. (A) Genomic location of the IR genes (black arrowheads; pseudogenes in grey) belonging to
the IR94 and IR52 clades in D. melanogaster, D. sechellia, D. ananassae and D. virilis. Equivalent chromosome arms (Muller elements) (labelled on the
left of each chromosome arm) between the species are indicated by colour and horizontal alignment [93]. Tandem arrays of genes are indicated by
horizontal black lines, and the distances between close arrays are shown. The ‘‘IR’’ and some number prefixes for gene names are omitted in clusters
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neurons - and the role of specific IRs within these neurons - are

limited, but include stimuli such as carboxylic acids, water and

ammonia, which are known to be physiologically and behaviour-

ally important in many insect species [62]. ORs, by contrast, may

be primarily dedicated to detection of species-specific odour cues.

In this light, the IRs are attractive molecular targets for novel,

broad-spectrum chemical regulators of insect odour-driven

behaviours, with applications in the control of disease vectors,

such as mosquitoes, and agricultural pests.

Given the general conservation of the antennal IRs, what is the

significance of the more recently evolved, species-specific variation

in this family of chemosensory receptors? It is particularly

informative to consider this question in the evolutionarily closely

related drosophilid species. These display prominent differences in

their global geographical distribution and chemosensory-driven

behaviours [63–64], and include both generalists, which feed and

breed on a wide range of substrates, and specialists, which have

highly restricted ecological niches. The chemical ecology is best-

understood for D. sechellia, a species endemic to the Seychelles that

utilises the acid-rich fruit of Morinda citrifolia as its sole food source

and oviposition site, a remarkable specialisation as this fruit is

repulsive and toxic for other drosophilids [64–65]. Genetic hybrids

between D. sechellia and D. simulans indicate that host specialisiation

is due to loss-of-function mutations, rather than gain of new

chemosensory perception abilities [65]. The accelerated rate of IR

gene loss in D. sechellia compared to its sibling D. simulans (and

other drosophilids) bears the hallmark of genetic adaptation of this

chemosensory repertoire to the restricted host fruit. Notably, one

of the D. sechellia pseudogenes is IR75a, an antennal IR expressed

in a neuron responsive to several acids [62]. Thus, DsecIR75a

represents an interesting gene whose mutation may be directly

linked to host specialisation of this species. Future study of this

where space is limiting. The scale bar represents 20 Mb for the chromosomes and 30 kb for gene lengths and distances between genes within the
same tandem array. (B) Phylogenetic tree of D. melanogaster iGluRs and IRs, in which branches are colour-coded by the number of introns in each
extant gene sequence or predicted ancestor. The tree was built with RAxML under the WAG model of substitution, with 1000 bootstrap replicates,
and the colours representing intron numbers were inferred and displayed with Mesquite. Pseudogenes were excluded from this analysis. The scale
bar represents the expected number of substitutions per site. (C) Histogram illustrating the distribution of intron positions as a percentage of protein
length for iGluRs and antennal IRs (blue) and divergent IRs (red). Each bar represents the probability of occurrence of an intron at a given percentile of
the protein.
doi:10.1371/journal.pgen.1001064.g008

Figure 9. A model for the evolution of iGluRs and IRs. Schematic phylogenetic tree highlighting the branches along which specific gene
families or genes appeared with their putative functions, inferred from their presence or absence in sequenced genomes of extant species (see
Figure 1). Solute binding proteins (SBPs, which exhibit the same protein fold as the iGluR/IR amino terminal domain and ligand-binding domain) and
ion channels were likely present in primitive life forms as related protein domains exist in Eukaryota, Bacteria and Archaea [94]. iGluRs are shown in
purple, IRs in red and insect GRs and ORs in green. Various speculative models for the origins of iGluRs are shown. Putative genetic ancestors from
which IRs, GRs and ORs derived are shown in grey followed by a ‘‘.’’ symbol. The resolution of the phylogeny is necessarily biased towards
invertebrate lineages and branch lengths contain no temporal information.
doi:10.1371/journal.pgen.1001064.g009
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receptor, and other species-specific IRs, may offer novel models to

link genetic changes with phenotypic adaptation during animal

evolution.

Genetic insights into the origins of animal olfactory
systems

Finally, our results may shed light into the outstanding question

of the evolutionary origin of animal olfactory systems. Common

neuroanatomical features have long been appreciated in animal

olfactory circuitry, notably glomeruli, which represent sites of

synaptic connection of OSNs of identical molecular and

physiological specificity with second order neurons [66]. Whether

these represent homologous or analogous structures across phyla is

unclear. Revelations of fundamental distinctions in the structure,

function and regulation of mammalian and insect ORs support a

theory of convergent evolution of the neuronal circuits in which

these receptors act [67–68].

Our demonstration that most, if not all, insect olfactory systems

comprise two molecularly distinct receptor families, the ORs and

IRs, indicates that the evolution of receptor repertoires can be

uncoupled from a presumed common origin of the OR and IR

neuronal circuits within the insect ancestor. Thus, during a

significantly greater timescale across animal phyla, profound

molecular differences between olfactory receptor genes do not

necessarily imply distinct evolutionary origins of the neuronal

circuitry in which they are expressed. Our discovery of IRs in

mollusc olfactory organs reveals this to be an interesting potential

‘‘hybrid’’ organism in olfactory system evolution. The A. californica

rhinophore and oral tentacle also express a large family of GPCR-

family candidate chemosensory receptors, belonging to the same

Rhodopsin superfamily as vertebrate ORs [21]. The co-existence

of both insect-like and vertebrate-like olfactory receptors in this

species provides evidence for the occurrence of an evolutionary

transition between these distinct olfactory receptor families. Thus,

while extant animal olfactory systems display an enormous

diversity in their receptor repertoires, there may remain - perhaps

unexpectedly - a sufficient genetic trace within receptor gene

families themselves to open the possibility of a common

evolutionary origin of this sensory system.

Materials and Methods

Gene identification and annotation
Eukaryota (non-drosophilids). Genomic and available

annotated protein databases for each eukaryotic species were

downloaded from the sources described in Table S2 (spring 2009

versions). Prokaryotic genome and protein sequences were

downloaded from NCBI. We built and calibrated an HMM with

HMMER [69] for iGluR/IR gene identification by adding

sequences of the D. melanogaster PF00060 domain (iGluR ligand-

gated ion channel) to those of the PF00060 domains from the

Pfam database [17]. This HMM (LC05) was used to screen protein

databases using HMMER. For each species, all significant hits

(HMMER E value ,e-5) were subsequently used, in addition to D.

melanogaster iGluR and IR sequences [15], as queries in exhaustive

PSI-BLAST searches with standard parameters until convergence.

All identified sequences (below an arbitrary threshold E value ,

e-5) were then used as queries in TBLASTN searches of genomic

DNA databases. For each DNA hit (E value ,e-3), we analysed a

genomic region of approximately 20 kb spanning this sequence for

the presence of a bona fide iGluR or IR gene, by using the LC05

HMM and homology analysis with D. melanogaster iGluRs and IRs

to annotate exons in these regions using GeneWise [70]. Predicted

proteins were verified by analysing the number and placement of

transmembrane segments using the TMHMM Server v2.0 [71],

and domain organisation using the Pfam database. Most

annotated sequences (Datasets S1 and S2) appear to be

incomplete at their 59 ends as they do not encode N-terminal

signal sequences, as determined by analysis with SignalP 3.0 [72],

and we were normally not able to annotate this part of the protein

with confidence. However, as this region is highly divergent in

amino acid sequence, its absence is likely to have little influence on

our phylogenetic analyses.

Drosophilids. D. melanogaster iGluR and IR sequences were

used as queries in exhaustive PSI-BLAST and TBLASTN

searches of the genome assemblies described in Table S2. PSI-

BLAST was carried out for 20 iterations or until no new sequences

with an E value ,e-3 were recovered. For genes that were

apparently missing in some species, we used manual syntenic

analysis to determine whether this represented a real absence from

the genome. Genes were manually reannotated to ensure the

presence of appropriate structural features as described above, as

well as reasonable splice site signals and start/stop codons. Missing

or mis-annotated exons in one species were usually easily corrected

by comparison with homologous sequences in other species. Genes

containing nonsense mutations were manually resequenced (see

below) to confirm or refute their annotation as pseudogenes (Table

S3). We also resequenced parts of genes where there were gaps in

the genome assembly (Table S3).

Phylogenetic analyses
Protein tree building. The amino acid sequences of the

selected iGluRs/IRs were aligned with PROBCONS [73] and

examined in Jalview [74]. The alignments were cleaned manually

to obtain final high-quality alignments of 150–300 residues,

depending on the sequences analysed (see Dataset S3 for all

alignments pre- and post-cleaning). We used ProtTest [75] to

assess the best model of substitution to infer the phylogeny. The

trees were then calculated with PhyML [76] or RAxML [77] and

viewed and graphically edited with FigTree (tree.bio.ed.ac.uk),

Mesquite [78] or iTOL [79]. For trees of drosophilid iGluRs/IRs,

pseudogenes and incomplete genes were excluded from

alignments, and we applied the JTT model of amino acid

substitution in PhyML. Bootstrap values were estimated using an

approximate likelihood ratio test.

Character matrix tree building. Selected protein

sequences were aligned using MUSCLE [80] and the positions

of introns were reported on the alignment. A character matrix was

built according to the presence of introns at each potential intronic

site. The tree was built using the PARS software from the PHYLIP

package (evolution.genetics.washington.edu/phylip.html).

Orthology determination. Genes were defined as

orthologous when they were best reciprocal BLAST hits and

when they grouped in the same clade in phylogenetic trees.

Because we could not unambiguously assign orthologues to some

IRs, we classified those genes as members of larger orthologous

groups encompassing several members in some species.

Gene and protein nomenclature
IR genes were named according to a unified nomenclature

system based upon a foundation of the cytologically derived D.

melanogaster IR gene names [15]. Receptor names are preceded by

a four-letter species abbreviation consisting of an uppercase initial

letter of the genus name and three lower case initial letters of the

species name (e.g. Anopheles gambiae = Agam; Daphnia pulex = Dpul).

Orthologues of D. melanogaster sequences are given the same name

(e.g. CquiIR25a, AcalIR25a). If multiple copies of an orthologue of a

D. melanogaster gene exist for a species (based on sequence, not

Chemosensory Ionotropic Receptor Evolution

PLoS Genetics | www.plosgenetics.org 16 August 2010 | Volume 6 | Issue 8 | e1001064



function), they are given the same name followed by a point and a

number (e.g. ApisIR75d.1, ApisIR75d.2). If several in-paralogues

exist both in D. melanogaster and other species, these are all given

the same number (indicating their grouping within a common

clade), but different final letterings. For novel, species-specific IRs,

we defined new names numbering from 101 upwards to avoid

confusion with D. melanogaster gene names, which number up to

IR100a. For species-specific IRs that form monophyletic clades

and had high (.60%) amino acid identity, we gave these the same

name with an additional number suffix after a point (e.g.

AaegIR75e.1, AaegIR75e.2). We did not rename genes with

previously published names (e.g. C. elegans GLR-7 and GLR-8 [9]).

For vertebrate iGluRs, we used the NC-IUPHAR nomenclature

[81]: each species name is followed by ‘‘Glu’’, a letter representing

the subtype of the receptor (K for Kainate, A for AMPA and N for

NMDA), and a number, reflecting predicted orthology with

mammalian iGluRs. We did not name (or rename) invertebrate

iGluRs in this study, except for newly predicted gene sequences

(Table S3), where logical variants of NC-IUPHAR nomenclature

were assigned.

Evolutionary analysis
Gene birth and death rate estimation. To estimate the

gene birth and death rates of IRs on the drosophilid phylogeny we

used the gene numbers listed in Table S1. Incomplete genes (i.e.

genes for which we could not annotate full-length sequences

because of lack of sequence data) were classified as present. To

estimate the number of gene gain and loss events for each

orthologous group we estimated gene numbers on internal

branches using a maximum likelihood method [82] implemented

in the software CAFÉ [83]. These numbers were then summed to

estimate the number of IR gene gains and losses on each branch of

the phylogeny. The divergence times for the species tree were

taken from the published estimates [40,84]. The gene birth and

death rates per million years on the terminal branches were

calculated as number of gene losses or gene gains divided by the

number of genes on the respective internal node divided by the

length in million years of the respective terminal branch. The gene

death rates, D, averaged over the whole species tree were

calculated as in [85]: D~
Pn
i~1

Li

Ci

� ��
t, where n is the number

of branches in the tree, Li is the number of gene losses on branch i,

Ci is the number of gene copies at the internal node of branch i

and t is the total time of the phylogeny. For the estimation of the

gene gain rate, B, Li was replaced by the numbers of gene gains,

Gi, on branch i.

Analysis of selective forces. We inferred the dN/dS ratio

(v) by maximum likelihood as implemented in PAML [86]. All

PAML analyses were run three times using different input

parameters to avoid local optima. To create multiple sequence

alignments of orthologous genes, we first aligned the amino acid

sequences using MUSCLE. Pseudogenes and incomplete genes

were avoided in these analyses, and if genes had multiple

annotated isoforms we used only those conserved with the other

species. The resulting alignments were then used to guide the

nucleotide coding region alignments using custom-written

software [87]. Columns with gaps were omitted for the dN/dS

calculations. For all analyses, we assumed the topology illustrated

in Figure 7A. We applied model M0 to estimate the global

selective pressure acting on the IR and iGluR genes. To compare

our data with a previous analysis of drosophilid ORs [39], we

applied a branch model to estimate the global selective pressure

acting on the IR and iGluR genes. In this model, one dN/dS ratio

was assigned to the five melanogaster subgroup species and one

ratio was assigned to D. ananassae (model = 2, NSsites = 0). The D.

ananassae ratio was then discarded to leave one dN/dS ratio

depicting the selective pressure acting on the respective gene in

the melanogaster subgroup.

To identify positively selected sites we applied models M7 (beta)

and M8 (beta & v) in PAML and compared them using a

maximum likelihood ratio test (LRT). If M8 fitted the data

significantly better than M7, we applied a Bayes Empirical Bayes

(BEB) estimation method as implemented in PAML to identify the

sites that are estimated to be under positive selection.

We applied another test to analyse the duplication of IR75d in

D. mojavensis. To test if residues of these genes evolved under

positive selective pressure, we first compared a model that assigns

one single dN/dS ratio to all branches with a model that assigns one

additional ratio to the branches following the duplication. If this

second model fitted the data significantly better than the first

model we used branch-site model A (model = 2, NSsites = 2) with

v= 1 fixed on the branches after the duplication as null model and

compared it to this same model A but allowing v.1 on the

branches following the duplication. To estimate the age of the

IR75d duplication in D. mojavensis, we applied model M0 to

estimate dS on the branch before the duplication and on the two

branches after the duplication. By relating these dS values to each

other and assuming a divergence time of 35 My between D.

mojavensis and D. virilis, we obtained two estimates of the timing of

the duplication event.

Re-sequencing of drosophilid IR genes
Genomic DNA was extracted from the sequenced drosophilid

genome strains (obtained from the Drosophila Species Stock

Center, University of California-San Diego) using a standard

DNA extraction protocol. PCR primers were designed to amplify

,500 bp regions covering putative nonsense or missense

mutations or spanning gaps in the genome sequence (oligonucle-

otide sequences are listed in Table S5). PCR amplifications were

performed using Taq DNA Polymerase (PEQLAB Biotechnolo-

gie GmbH) in a MasterCycler Gradient Thermocycler (Eppen-

dorf) with the following programme: 95uC for 3 min, 35 cycles of

(95uC for 30 sec, 55uC for 1 min, 72uC for 1 min) and 72uC for

10 min, with minor modifications of annealing temperature and

elongation times for different primer pairs and amplicon sizes.

Products were gel purified (Machery-Nagel) and sequenced with

BigDye Terminator v3.1 according to the manufacturers’

protocols.

Reverse-transcription PCR
Insects: total RNA was extracted from hand-dissected tissues of

wildtype A. mellifera and D. melanogaster (w1118 strain) using the

RNeasy Mini Kit (Qiagen), and reverse-transcribed using oligo-dT

primers and the SuperScript III First-Strand Synthesis System

(Invitrogen). Genomic DNA was extracted using standard

procedures. Primers were designed to amplify short regions

overlapping an intron, if possible at the 39 end of the coding

sequence (Table S5). PCR product amplification and purification

were performed as described above and sequenced to verify their

identity. Multiple independent cDNA preparations were analysed

for each primer pair.

Aplysia. Mature Aplysia dactylomela (100–300 g) were collected

from Kings Beach, Caloundra, Queensland, Australia. Animals

were anaesthetised in 337 mM MgCl2 equivalent to 50% of their

weight. Tissues were removed and snap frozen in liquid nitrogen

for RNA isolation. Adult Aplysia californica (100–500 g) were

obtained from Marine Research and Educational Products

(Escondido, CA, USA), and the rhinophore was removed and
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stored in RNAlater (Qiagen). Total RNA was extracted from

samples using TRI Reagent (Sigma). One mg of total RNA was

treated with DNase I (Invitrogen) and cDNA was synthesised from

0.5 mg DNase-treated RNA using 200 ng random pentadecamers

and the Superscript III Reverse Transcriptase System (Invitrogen).

No-RT controls were also carried out for each RNA sample using

0.5 mg DNase-treated RNA to confirm the absence of genomic

DNA contamination. PCR amplification using primer pairs for

individual Aplysia IRs or for a b-actin control (Table S5) were

performed using REDTaq DNA polymerase (Sigma) according to

the manufacturer’s protocol.

Construction of IR-GAL4 transgenes
Primers were designed to amplify putative promoter regions

from Oregon-R D. melanogaster genomic DNA with flanking

restriction sites, extending from immediately upstream of the

predicted start codon to the following 59 extents: IR7a (2318 bp),

IR11a (2099 bp), IR52b (446 bp), IR56a (2400 bp) and IR100a

(512 bp) (Table S5). Gel purified PCR products were T:A

cloned into pGEM-T Easy (Promega), end-sequenced, and sub-

cloned into a pGAL4-attB vector, comprising the GAL4 ORF-

hsp70-39UTR in the pattB vector [30]. These constructs were

integrated into the attP2 landing site [88], by standard

transformation procedures (Genetic Services, Inc.). IR-GAL4

transgenic flies were double-balanced and crossed with flies

bearing a UAS-mCD8:GFP transgene [89] to visualise driver

expression.

Histology
RNA in situ hybridisation on Aplysia. a 743 bp region of

A. dactylomela IR25a cDNA was amplified and cloned into pGEM-T

(Promega) as a template for synthesis of sense and antisense

digoxigenin-labelled RNA probes (Roche). In situ hybridisation on

12 mm rhinophore cryosections was performed essentially as

described [90]. Sections were photographed using an Olympus

BX60 with Nomarski optics and a Nikon Digital Sight DS-U1

camera.
Immunofluorescence on larval and adult Drosoph-

ila. Third instar larvae were placed in a Petri dish containing

16PBS/0.1% Triton (P/T) and their head regions containing

chemosensory organs were removed with forceps. For adults,

probosci were pulled off the head with forceps and the labellum

and the more proximal parts separated. Dissected tissues were

placed in a 1.5 ml microcentrifuge tube and fixed in 4% PFA in

16PBS for 1 hour at 4uC, washed 3610 minutes in P/T, blocked

for 30 minutes in 5% heat-inactivated goat serum in P/T (P/T/

S) and incubated overnight at 4uC with mouse anti-GFP

(Invitrogen) and rabbit anti-IR25a [15], both diluted to 1:500

in P/T/S. Tissues were washed and blocked as above and

incubated with Alexa488-anti mouse and Cy3-anti rabbit

secondary antibodies (Milan Analytica AG), both diluted to

1:500 in P/T/S for 2 hours at room temperature. Samples were

mounted on glass slides with 100 ml Vectashield. Images were

collected with a Zeiss LSM 510 Meta upright confocal

microscope (Zeiss, Oberkochen, Germany), using a Plan-

APOCHROMAT 636/1,40 Oil DIC objective.

Supporting Information

Dataset S1 iGluR and IR predicted protein sequences.

Sequences are in FASTA format. The header line of each

sequence displays i) the new sequence name (except for previously

annotated non-vertebrate iGluRs), ii) the old sequence name (for

previously annotated sequences) and, in some cases, iii) comments,

separated by spaces. Internal stop codons and frameshifts are

indicated by an ‘X’. Unknown residues (due to gaps in genomic

sequence data) are indicated by an ‘x’.

Found at: doi:10.1371/journal.pgen.1001064.s001 (1.16 MB

TXT)

Dataset S2 iGluR and IR predicted transcripts. Sequences are

in FASTA format. The header line of each sequence displays the

new sequence name, except for previously annotated non-

vertebrate iGluRs.

Found at: doi:10.1371/journal.pgen.1001064.s002 (3.40 MB

TXT)

Dataset S3 Alignments used for phylogeny. This folder contains

the multiple sequence alignments used for phylogenetic analyses,

before and after alignment cleaning in FASTA and PHYLIP

format, respectively, as well as the intron alignment file used in

Figure 2D.

Found at: doi:10.1371/journal.pgen.1001064.s003 (1.21 MB ZIP)

Table S1 Drosophilid iGluR and IR repertoires.

Found at: doi:10.1371/journal.pgen.1001064.s004 (0.04 MB

XLS)

Table S2 Sources of eukaryotic genomic and protein sequence

data.

Found at: doi:10.1371/journal.pgen.1001064.s005 (0.70 MB

DOC)

Table S3 Nomenclature of newly annotated and previously

identified iGluR and IR genes.

Found at: doi:10.1371/journal.pgen.1001064.s006 (0.19 MB

XLS)

Table S4 Nonsynonymous to synonymous substitution rates of

IR genes.

Found at: doi:10.1371/journal.pgen.1001064.s007 (0.03 MB

XLS)

Table S5 Oligonucleotides.

Found at: doi:10.1371/journal.pgen.1001064.s008 (0.05 MB

XLS)
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