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Abstract

The act of cross-feeding whereby unrelated species exchange nutrients is a common feature of microbial interactions and
could be considered a form of reciprocal altruism or reciprocal cooperation. Past theoretical work suggests that the
evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. Here we re-
evaluate a mathematical model used previously to study persistence of cross-feeding and conclude that the maintenance of
cross-feeding interactions could be favoured for a larger parameter ranges than formerly observed. Strikingly, we also find
that large populations of cross-feeders are not necessarily vulnerable to extinction from an initially small number of cheats
who receive the benefit of cross-feeding but do not reciprocate in this cooperative interaction. This could explain the
widespread cooperative cross-feeding observed in natural populations.
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Introduction

Cross-feeding between unrelated species, termed syntrophy, is

the ability of one organism to use metabolites excreted by another

organism [1]. When this interaction involves a reciprocal

exchange between the partners as a cooperative behaviour and

not merely an exchange of waste products as a result of a selfish

act, cross-feeding can be considered a mutualistic act known as

reciprocal altruism [2] or reciprocal cooperation [3,4]. Such

behaviour is common in the microbial world [4–8] and is of a

fundamental importance to our understanding of microbial

communities and their impact on the environment. A remarkable

example can be found in the association between archaea and

bacteria that couple methane oxidation with sulfate reduction,

respectively. This syntrophic association has been estimated to

involve the consumption of more that 80% of the ocean methane

flux and is an important process needed to reduce the emissions

of the green house gas methane from the ocean into the

atmosphere [9–11]. Syntrophic interactions are also known to

play a key role in the degradation of xenobiotic compounds [12]

which is crucial for the minimization of surface and ground water

contamination by pesticides. Other examples of syntrophy

include interactions between fermentative bacteria and methan-

ogenic archeon [13]; methanogens and ethanol fermenters

[14,15] and between green-sulphur bacteria and the b-proteo-

bacteria [16].

While the importance of cross-feeding syntrophy is clear, what is

less clear is how can a group of individuals who engage in such

form of cooperative behaviour resist invasion by cheats who do not

pay the cost of cooperation but reap the reward? A model

exploring the conditions favouring the origin of cooperative cross-

feeding between two microbial species was recently proposed by

[17]. There the authors uncover some unintuitive constraints,

namely that the benefit of cooperative cross-feeding applies only in

the range of intermediate cell densities and is more easily selected

when the cost of cross-feeding to the donor is low per benefit to the

recipient and when the recipient already provides a large cross-

feeding benefit to the donor. This finding is contingent on the

existence of a trade-off between the cost to cooperators of

performing an altruistic act and the benefit to the recipients

towards whom the cooperation is directed. Such trade-off arises

naturally from the definition of a cooperative act because a cross-

feeding cooperative individual sacrifices its intrinsic growth to

benefit other species by facilitating their ability to grow. The

authors also find that large populations of cooperative cross-

feeders are vulnerable to exploiting genotypes (or cheats) who

share the cross-feeding resources but do not reciprocate in the

cross-feeding themselves.

In this paper we revisit the model presented in [17] and

highlight a number of parameter regimes that tend to increase the

window in which cooperation is favoured. Contrary to [17] we

find that large populations of cross-feeders are not easily taken

over and replaced by a small number of cheats. This result relies

on the assumption that all types have the same carrying capacity.

Subsequently we present an alternative evolutionary model that

relaxes the assumption of equal carrying capacities and again show

that replacement of cooperators by cheats is not the most common

outcome of evolution.
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Results

The mathematical model
In [17] the authors propose the following model of cross-

feeding. Consider a spatially heterogeneous environment contain-

ing two separate local patches. Each patch contains a pair of clonal

microbial populations interacting by cross-feeding in the following

way. Patch 1 contains genotypes X and Y engaged in a cross-

feeding syntrophy with X cross-feeding Y and Y cross-feeding X.

Patch 2 contains genotypes Xc and Y whereby Xc receives a cross-

feeding benefit from Y but does not reciprocate in the cross-

feeding. Population dynamics of each patch are subsequently

modeled as follows:

Patch 1 model
Let X(t) and Y(t) denote densities of genotypes X and Y

respectively, at time t. The rate of expansion of the X population is

governed by:

1. an intrinsic ability to grow denoted by rx;

2. the per capita level of cross-feeding described by byx
Y

Xzcx

where byx

represents a benefit to X per individual of type Y and cx

represents a damping constant that sets the cross-feeding

resource proportional to Y when X is vanishingly small;

3. crowding implemented through a total carrying capacity K of the

two microbial types.

Applying the same population expansion rules to type Y leads to

the following system of equations

dX

dt
~X (rxzbyx

Y

Xzcx

)(1{
XzY

K
),

dY

dt
~Y (ryzbxy

X

Yzcy

)(1{
XzY

K
),

ð1Þ

where ry denotes the growth constant for the population of type Y,

bxy represents a benefit of cross-feeding to Y per individual of type

X with the assumption that bxy = byx. The parameter cy denotes a

damping constant that sets the cross-feeding resource proportional

to X when Y is vanishingly small.

Patch 2 model
Let Xc(t) denote the density of genotype Xc at time t. The model

(1) can be adapted to describe interactions between Xc and Y as

follows

dXc

dt
~Xc(rxczbyx

Y

Xczcxc

)(1{
XczY

K
)

dY

dt
~Yry(1{

XczY

K
)

ð2Þ

where rxc denotes the growth term of non cross-feeder Xc with

rywrxc while cxc denotes the cross-feeding damping constant

defined in a similar way as cx in the model (1).

Xc can be viewed as a non-cooperative (or cheating) genotype.

By definition a cooperative trait carries a cost to cooperator of

performing an altruistic act while providing a benefit to the

recipient towards whom the cooperation is directed. Just as in [17]

we assume the existence of a trade-off between rx and bxy (as well as

between ry and byx) which means that a cross-feeding individual of

a given type sacrifices its own growth to facilitate the growth of

another type. Therefore, comparing model (1) and (2) we note that

rxc
wrx because Xc does not pay a cost of cooperation and that

bxcy~0 as Xc does not provide a cross-feeding benefit to Y and

hence there is no bidirectional cross-feeding (0~bxcyvbxy). This

forms a part of the cost/benefit trade-off and is illustrated in

Figure 1.

The dynamics of model (1)
The cross-feeding model (1) has the following steady states

X �,Y �ð Þ~ 0,0ð Þ and X �,Y �ð Þ~ X ,K{Xð Þ

where 0#X#K.

The eigenvalues of the linearised system (1) around the zero

state are l1 = rx/ry and l2 = 1 and since both l1.0 and l2.0 we

conclude that (0,0) is an unstable steady state.

Therefore a small population (X(0),Y(0)) = (e1,e2) with e1 and e2

denoting positive constants near zero, will initially grow away from

the zero steady state according to the following equation:

(X (t),Y (t))~(e1el1t,e2el2t), for small t: ð3Þ

Subsequently the solution of (2) will approach one of the infinitely

many steady states (X,K2X) situated on the line segment Y = K2X.

Which steady state it converges to cannot be determined with

classical linearization techniques and will depend on the initial

population sizes e1 and e2.

The dynamics of model (2)
Similarly the model (2) has the following steady states

Xc
�,Y �ð Þ~ 0,0ð Þ and Xc

�,Y �ð Þ~ Xc,K{Xcð Þ

where 0#Xc#K.

The eigenvalues of the linearised model (2) around the zero

steady state are lc
1~rxc

=ry and l2 = 1 and since both lc
1.0 and

l2.0 we conclude that (0,0) is an unstable steady state.

Therefore a small population (Xc(0),Y(0)) = (e1,e2) will initially

grow away from the zero steady state according to the following

equation

(Xc(t),Y (t))~(e1e
lc
1

t
,e2el2t), for t small: ð4Þ

Subsequently the solution of (2) will approach one of the infinitely

many steady states (Xc,K2Xc) situated on the line segment

Y = K2Xc. As for model (1), which steady state it converges to

will depend on the initial population sizes e1 and e2.

Comparing the dynamics of models (1) and (2)
As in [17] the success of the non-cross feeding strategy is

examined by comparing the cross-feeding genotype to the non

cross-feeding genotype across the two patches. In other words

starting with the same initial population densities (X(0),Y(0)) =

(e1,e2) and (Xc(0),Y(0)) = (e1,e2) in patch 1 and patch 2 respectively,

the X(t) component of the solution of (1) representing densities of

the cross-feeding strategy X is compared with the Xc(t) component

of the solution of (2) representing the density of the non cross-

feeding strategy Xc.

From (3) and (4) it follows that

X (t)~e1el1t
vXc(t)~e1e

lc
1

t

for some small time t. Therefore as found in [17], at low
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population densities Xc always does better than X because rxcwrx

and thereforelc
1wl1. This means that at low densities the cost of

cooperation is not compensated by the benefit of cross-feeding.

Whether there exist a time interval for which the cross-feeding

genotype does better than the non-cross feeding genotype

(X(t).Xc(t)) depends on a range of assumptions regarding the

nature of the trade-off between the cost of cooperation and the

benefit to the recipient, the initial population densities as well as

the values of the intrinsic growth rates and/or the benefit of cross-

feeding. For growth at intermediate densities the study presented

in [17] generates the following results:

N BH1: When byx.0, selection always favours reciprocal cross-

feeding from X to Y when rx#ry.

N BH2: Trade-offs with big gains in bxy per decline in rx enhance

evolution of cooperation.

N BH3: Large byx enhance the evolution of reciprocity in the

other direction from X to Y.

The above results have been generated by approximating non-

linear dynamics with a linear model. In this paper we revisit BH1-

BH3 for the non-linear models (1) and (2) assuming that each

model has the same initial population densities of both genotypes

(e1 = e2). Our study shows that BH1 does not hold in general. As

illustrated in [17], we find that cross-feeding from X to Y is

favoured if the slope of the trade-off curve satisfies
rx{rxc

bxy

~

{0:1, in other words if the cost of cross-feeding is 10% of the

value of the benefit of cross-feeding, and if bxy is sufficiently large

(Figure 1A). In that case the cross-feeder X outgrows the non

cross-feeder Xc for some intermediate time between the initial

exponential growth and the final stationary phase (Figure 2A).

However we find that changing the slope of the trade-off function

has a profound effect on the above outcome. In particular we

consider the case where the slope of the trade-off function is

changing from shallow (20.1) to steep (21). Decreasing the slope

can be achieved either by lowering the benefit of cross-feeding (bxy)

or by increasing the cost of cooperation (rxc
{rx) (see Figure 1A).

In both cases we find that the cross-feeders never outgrow the non

cross-feeders i.e X(t),Xc(t) all t.0 (Figure 2B,C). Note that in the

case where bxy has been decreased (Figure 2B) the parameter byx

was also altered so that bxy = byx. Also note that in the case where

the cost of cooperation has been increased (Figure 2C) the intrinsic

growth rate of the Y genotype, ry, is modified so that the

assumption rywrxc
wrx is upheld.

Whether the cross-feeding is favoured at intermediate densities

is not solely determined by the slope of the trade-off function. For

example retaining the shallow slope of 20.1 but changing the

benefit of cooperation indicates that a small benefit (and therefore

a small cost) of cross-feeding is less likely to favour the cross-

feeding (Figure 1B). While this finding again contradicts BH1 it is

in agreement with the result BH3 given that we assume that

bxy = byx.

The result BH2 states that shallow trade-offs enhance the

evolution of cooperation. While our findings agree with BH2 our

results show that depending on the r and b parameter values, steep

trade-offs can also promote the evolution of cooperation. For

example the lower the values of rxc
and rx (and by definition ry), the

steeper the angle of the trade-off for which the cross-feeding is

favoured at intermediate densities (Figure 1C). Keeping bxy fixed

Figure 1C illustrates that when rxc
= 0.009 and rx = 0.008 the

cross-feeding is favoured for trade-off slopes satisfying (rxc
{rx)

ƒ0:8bxy. However, when rxc
= 0.025 and rx = 0.015 cross-feeding

is favoured for less steeper slopes (rxc
{rx)ƒ0:5bxy. Note that

when rxc
{rx§1:bxy the cross-feeding is never favoured.

Reducing the initial population densities for both models (1) and

(2) can lead to a dramatic change in the outcome from cross-

feeding being favoured at intermediate densities (Figure 3A) to

cross-feeders never outgrowing the non cross-feeders (Figure 3B).

Similar results have been observed in [17].

We also note that changing the slope of the trade-off

relationship has an impact on the final population densities. For

example comparing the outcomes of Figures 2A and 2B it can be

seen that decreasing the benefit of cross-feeding leads to lower final

population sizes of both X and Xc genotypes. This could be

explained in the following way. Decreasing the benefit of cross-

feeding lowers the impact of cross-feeding on population growth

and therefore growth of different genotypes is dominated by their

intrinsic ability to grow. Given that rywrxc
wrx the Y genotype

dominates the dynamics of both model (1) and (2) resulting in a

smaller final population sizes of both X and Xc. Similarly, by

comparing the outcomes of Figure 2A and 2C it can be seen that

an increase in the cost of cooperation also results in lower final

population sizes of both X and Xc. In this case an increase in the

cost of cooperation was achieved by increasing ry{rx and ry{rxc

so that again the genotype Y dominated the dynamics of both

model (1) and (2) resulting in a smaller final population sizes of

both X and Xc.

Evolutionary dynamics
Competition between cheats and cooperators. So far we

have been considering a scenario where pairs of interacting

microbial genotypes engaging in different levels of cross-feeding

grow in two isolated patches or colonies [17]. One could envisage

a situation where at some point the populations will become large

enough so that other types could migrate or could arise by

mutation. This immediately raises the following question. What

would happen to the equilibrium dynamics in patch (1) if a small

amount of a cheating genotype Xc is introduced either through

migration from patch 2 or through mutation in genotype X? To

answer this question model (1) can be adapted as in [17] to include

an equation for the cheating genotype Xc:

dX

dt
~X (rxzbyx

Y

XzXczcx

)(1{
XzXczY

K
)

dY

dt
~Y (ryzbxy

X

Yzcy

)(1{
XzXczY

K
)

dXc

dt
~Xc(rxczbyx

Y

XzXczcx

)(1{
XzXczY

K
)

ð5Þ

We are interested in the dynamics of (5) given the initial conditions

(X(0),Y(0),Xc(0)) = (X*,Y*,e), where (X*,Y*) is a non-zero steady state

of model (1) and e is a small constant. Such initial conditions

denote the fact that a small population of non-cross feeding cheats

Figure 1. Trade-off between the cost of cooperation and the benefit to the recipient determines cross-feeding success. Whether
cross-feeding is favoured at intermediate densities depends on: A. the slope of the trade-off function with cross-feeding more easily selected for
shallow slopes; B. the values of the cost (rxc

{rx) and the benefit (bxy) of cross-feeding with cross-feeding more easily selected for high rxc
{rx and

bxy; C. the value of the intrinsic growth parameters (ry,rxc
,rx) with cross-feeding more easily selected for low ry,rxc

and rx. Throughout the figure black
lines denote cases where cross-feeding is favoured while red lines denote cases where cross-feeding is not favoured.
doi:10.1371/journal.pone.0014121.g001
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has been introduced into patch 1 after its resident population has

reached an ecological equilibrium.

Apart from the zero steady state the model (5) has infinitely

many steady states satisfying the equation X+Y+Xc = K. As with

models (1) and (2) the local stability of these steady states cannot be

determined from simple linearization techniques. Numerical

simulations indicate that for an initial condition (X*,Y*,e) the

model (5) will converge to a steady state (X*2d1,Y*2d2,d1+d2)

where d1 and d2 are small constants (Figure 4). This means that

once established the cooperator genotype is not necessarily

vulnerable to exploitation by the cheating genotype. Instead the

cheat remains in the population but at low levels, close to the

initial value e.

A similar observation can be made for the case where a

small amount of cooperator genotype is introduced into

patch 2 whose resident genotypes have reached an ecological

equilibrium.

Evolution of cooperation. The competition model (5)

assumes that all interacting types have the same carrying

capacity, which in practice might not always be the case. In fact

a cross-feeding between unrelated species often involves organisms

that specialize on different resources. One such example is the

interactions between two mutant strains

Escherichia coli and Salmonella enterica ser. Typhimurium described in

[18]. Both strains were grown in lactose but Salmonella is not able to

utilize lactose as an energy resource and instead uses a metabolite

(acetate) excreted by E.coli. On the other hand, E.coli can only

degrade lactose in the presence of the amino acid methionine,

which is synthesized by Salmonella but not by E.coli.

Motivated by [18] we alter the assumptions in (5) in order to

explore general conditions for the evolution of cooperative

cross-feeding. We begin by assuming that there is no

interspecific competition for resources between the two cross-

feeding types X and Y. This assumption is motivated by the fact

that E.coli and Salmonella enterica ser Typhimurium do not utilize the

same limiting nutrient as energy source and therefore do not

compete for the same resource. For simplicity we also assume

that the benefit of cross-feeding is simply proportional to the

density of the individuals of the type providing nutrients.

Therefore the cross-feeding interactions between X and Y can

Figure 2. Simulation of two-species population growth for the model (1) and model (2). In the case of model (1) type X and Y cross-feed
each other and in the case of model (2) Xc doesn’t cross-feed Y but Y cross-feeds Xc. Here we plot X(t) solution of (1) (full line) together with Xc(t)
solution of (2) (dashed line) with A. ry = 0.011, rx = 0.008, rxc

= 0.009, bxy = byx = 0.01; B. ry = 0.011, rx = 0.008, rxc
= 0.009, bxy = byx = 0.001; C. ry = 0.03,

rx = 0.015, rxc
= 0.025, bxy = byx = 0.01. For both simulations of model (1) and (2) and in all three cases presented here K = 10000, cy~cx~cxc

~1 and
e1 = e2 = 0.01.
doi:10.1371/journal.pone.0014121.g002
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now be written as:

dX

dt
~X (rxzbyxY )(1{

bX

Kx

),

dY

dt
~Y (ryzbxyX )(1{

Y

Ky

):

ð6Þ

where b is the parameter describing the intraspecific competi-

tion amongst individuals of type X while Kx and Ky denote

carrying capacities of X and Y respectively. The above system

(6) has a trivial (0,0), two semi-trivial (Kx/b,0), (0, Ky) and the

non-trivial steady state (Kx/b,Ky). While the trivial and both

semi-trivial steady states are unstable, the non-trivial steady

state is stable (see Text S1).

We choose bxy, the benefit of cross-feeding to Y per individual X,

as the evolving trait belonging to a one-dimensional phenotypic trait

space [0, bxymax]. This phenotype can be viewed as an investment

made by X into cooperation so that individuals with bxy = 0 do not

invest into cooperation while individuals with bxy = bxymax invest

maximally into cooperation. We assume that there will always be a

biologically feasible maximum to any investment.

We now consider the effect of adding a mutant type Xm with

phenotypic characteristic bxym to the system (6) that is at the non-

trivial steady state (Kx/b,Ky). The evolution of the benefit of cross-

feeding to Y per individual X (bxy) is governed by the following

three trade-offs:

1. The trade-off between investment into cooperation (bxy) and an

intrinsic ability to grow (rx) is denoted by rx = f(bxy), which is a

decreasing function of bxy.

2. We also assume an asymmetric competition between the

resident type X and a mutant type Xm, whereby increased

investment into cooperation results in an increased competitive

ability. This can in part be justified by the inevitable existence

of structure with a given environment. For example Salmonella

strains that produce large amount of methionine could have a

larger amount of acetate in their neighbourhood (created by

E.coli through cross-feeding) than the Salmonella types producing

less methionine. Therefore we define a function b(bxy2bxym)

Figure 3. Initial population densities influence whether the cross-feeding will be favoured. For both simulations of model (1) and (2)
ry = 0.11, rx = 0.088, rxc

= 0.09, bxy = byx = 0.01, K = 10000 and cy~cx~cxc
~1. A. cross-feeding is favoured for initial conditions e1 = e2 = 0.01; B. cross-

feeding is not favoured for initial conditions e1 = e2 = 0.001.
doi:10.1371/journal.pone.0014121.g003
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describing the effect of the mutant strategy bxym on the resident

strategy bxy which is a decreasing function of bxy2bxym.

3. Finally we assume the existence of a trade-off between the

investment into cooperation and the carrying capacity Kx,

where the carrying capacity is now a decreasing function of bxy,

denoted by K(bxy). This assumption is motivated by the known

inhibitory properties of methionine [19] so that an increased

investment into cooperation leads to the over production of

methionine which in turn leads to a reduction in the carrying

capacity of the cooperating producer.

The equations for the new (mutated) system are given by:

dX

dt
~X (f (bxy)zbyxY )(1{

b(0)Xzb(bxy{bxym)Xm

K(bxy)
),

dY

dt
~Y (ryzbxyXzbxymXm)(1{

Y

Ky

),

dXm

dt
~Xm(f (bxym)zbyxY )(1{

b(0)Xmzb(bxym{bxy)X

K(bxym)
):

ð7Þ

The fitness of the invading mutant Xm is the largest eigenvalue of

the system (7) at the steady state (Kx/b,Ky,0) (see [20]), and is

denoted by lbxy (bxym) which takes the following form

lbxy (bxym)~(f (bxym)zbyxKy)(1{
b(bxym{bxy)K(bxy)

K(bxym)b(0)
):

For a discussion of the notion of fitness see [21]. The invader’s

success will depend on its fitness in the following way: an invader

with phenotypic characteristic bxym when initially rare will be able

to invade the resident population with phenotypic characteristic bxy

if lbxy
(bxym).0. Alternatively, if lbxy

(bxym),0, the invading

population will die out. A phenotypic value for which the local

fitness gradient is zero is called an ‘evolutionarily singular strategy’

[21], in our case denoted by b*. According to [21] and [22], at a

singular strategy several evolutionary outcomes are possible. A

singular strategy can: lack convergence stability and therefore act

as an evolutionary repellor; be both evolutionarily and conver-

gence stable and therefore be the final outcome of the evolution

(also called ‘continuously stable strategy’); and, finally, be

convergence stable but not evolutionarily stable, in which case it

is called a ‘branching point’. These classifications are based on the

assumption that, away from a singular strategy, the principle of

mutual exclusion holds so that, after a successful invasion, the

Figure 4. Evolutionary dynamics where mutants do not invade. A. Numerical simulations of the model (1) with ry = 0.011, rx = 0.008,
bxy = byx = 0.01, K = 10000 and cy~cx~cxc

~1. The figure shows an initial population X(0) = Y(0) = 0.01 converging to a steady state (X*,Y*).
B. Numerical simulations of the model (5) where a small amount of non-cross feeder (Xc(0) = 0.01), is introduced into the steady state population
(X*,Y*). The figure shows that the cross-feeder X is not vulnerable to invasion by non-cross feeder Xc. In addition to the above parameters rxc

= 0.009.
doi:10.1371/journal.pone.0014121.g004
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nearby invading population takes over and replaces the resident

population. However, in a small neighbourhood of a singular

strategy, the successful invasion by a nearby mutant can, under

certain conditions, result in the coexistence of the invader and of

the resident type populations [22].

Here the outcome of the evolution of cooperation is investigated

in a manner similar to the one described in [23]. The results are

summarized in the Table 1 and detailed calculations are presented

in Text S2.

Under what conditions the cheating type Xm that does not

invest into cooperation and hence have bxym = 0, outcompetes the

resident type X that has a non-zero investment into cooperation

namely bxy.0? From Table 1 it follows that this is only possible

when K is a convex function near the singular strategy b*(see

Figure 5A left for an example). In that case the singular strategy

could be a repellor which means that if the benefit to Y of the

resident population X, bxy, is less than b*, the system will evolve

towards the population where there is no benefit to Y from X. On

the other hand if bxy.b*, the system will evolve towards the

population where Y receives a maximal possible benefit from X

(Figure 5A right).

In all of the remaining cases the following outcomes are

possible. The singular strategy b* is a continuously stable strategy

(CSS) which implies that an initially monomorphic population of

type X with the trait bxy remains monomorphic throughout the

course of evolution with a non-zero investment into cooperation,

b*, representing the final outcome of evolution. Alternatively

b*could be a branching point whereby an initially monomorphic

population becomes dimorphic in the vicinity of b*. In this case the

outcome of evolution is a population containing two or more

phenotypes with varying degree of investment into cooperation.

Table 1 shows that convex K does not always imply that the

singular strategy b* is a repellor. Under certain conditions (see

Text S2) it can also be a branching point (Figure 5B) or a CSS.

Therefore the instances where a cheat phenotype with bxy = 0

outcompetes and replaces a cooperating phenotype with bxy.0

could be viewed as relatively rare.

However, given that the carrying capacity trade-off is motivated

by the inhibitory properties of methionine [19] we argue that a

concave K illustrated in Figure 5C left would be more appropriate

as there is a threshold concentration of methionine above which

the carrying capacity decreases. In this case the singular strategy is

never a repellor and therefore cheats never outcompete and

replace cross-feeding cooperators (Figure 5C right).

In this section we have classified a variety of evolutionary

outcomes with respect to persistence of cooperation that depend

on the shape of the K and ßb trade-offs. While there are many

experimental evolutionary studies on microbial cooperation that

have acknowledged the existence of different outcomes when a

cooperative population is invaded by a mutant with a different

investment into cooperation [24–29] very little is still known about

the conditions that favour the evolution of cooperative cross-

feeding between species. Pioneering work on the experimental

evolution of novel cooperation between two cross-feeding species,

[18], has been an important step towards a better understanding of

the factors that enable interspecific cooperation in a cross-feeding

interaction. But as highlighted by the author in [18] there is still ‘‘a

lack of clear explanation of the mechanisms necessary for the

evolutionary origin of cooperation, particularly between species’’.

Further experimental studies are needed to shed light on this

important problem.

Discussion

When the cost of cross-feeding to the donor (rxc
{rx) is greater

or equal to the benefit to the recipient (bxy) cooperation is never

favoured. Indeed, by definition a reciprocal interaction provides a

direct fitness benefit to the cooperators and this suggests that a

cooperative trait will only be selected if the benefit to cooperate is

higher than its cost. Additionally, this also reflects the fact that an

individual that doesn’t pay the cost of cooperation in the short

term will not gain the benefit of cooperation in the long term [4].

Previous theoretical results indicate that the cross-feeding is

more easily selected when its cost to the donor is low per benefit to

the recipient, in other words (rxc
{rx)=bxy is sufficiently small

[30,31] and when the recipient already provides a large cross-

feeding benefit to the donor, in other words when bxy is sufficiently

large [17]. Our study recovers the same outcomes (Figure 1A,B)

but in addition we obtain results that are at odds with those

presented in [17] in the case of growth at intermediate densities.

Before summarising the differences in outcomes we note that they

come about due to the fact that while we study the non-linear

system (1) the results in [17] are obtained using a linear

approximation of (1). Contrary to [17], we find that the cross-

feeder does not always outgrow the non cross-feeder when the

benefit of cross-feeding to X per individual of type Y is byx.0 and

rx#ry (Figure 2B,C). In addition to [17] we find that steep trade-

offs can also promote the evolution of cross-feeding (Figure 1C).

Namely, a decrease in the intrinsic growth rates increases the

range of values of (rxc
{rx)=bxy for which the cross-feeding is

favoured. This is explained by the fact that when intrinsic growth

rates are low compared to the benefit of cross-feeding, the cross-

feeding term dominates the overall growth of microorganisms and

therefore the cost of cross-feeding is not required to be too low for

the cross-feeding to be favoured. Surprisingly, our model indicates

that in some cases cross-feeding is favoured even if the cost to the

donor is up to 80% of the value of the benefit to the recipient. This

seems to suggest the following. Firstly, if populations have high

intrinsic growth rate and are therefore less dependent on the cross-

feeding interactions to grow, cross-feeding interactions are less

Table 1. Possible evolutionary singularities (b*) with different functional forms of K and b.

b concave near 0
(b0(0),0)

b linear near 0
(b0(0) = 0)

b convex near 0
(b0(0).0)

K concave near b*

(K0(b*),0)
Branching point or CSS CSS CSS

K linear near b*

(K0(b*) = 0)
Branching point Degenerate CSS

K convex near b*

(K0(b*).0)
Branching point or repellor Branching point or repellor Branching point; repellor or CSS

doi:10.1371/journal.pone.0014121.t001
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favoured. Secondly, an increase in synergic benefit of cooperation

should result in cooperation being more easily selected for [32].

The advantage of cross-feeding is also known to change with

initial population densities of interacting microorganisms [17]. In

addition we find that a reduction in the initial population densities

can lead to a dramatic change in the outcome from cross-feeding

being favoured at intermediate densities to cross-feeders never

being able to outgrow non cross-feeders.

In evolutionary terms, our study reveals a result different to that

reported in [17]. We find that once a population of two cross-

feeders has been established in a spatially isolated colony, the large

populations of cross-feeders are not vulnerable to small numbers of

exploiting genotypes that arise through migration or mutation and

who share in the cross-feeding resources but do not reciprocate in

cross-feeding themselves. However, this result relies on the

assumption that all microbial types have the same carrying

capacity. Subsequently we considered a more general evolutionary

model assuming that X and Y utilize different resources and

therefore have different carrying capacities, [18]. Motivated by

[19] we also introduced the following additional trade-offs: an

increased investment into cooperation results in an increased

competitive ability but a decreased carrying capacity. We find that

an exploiting genotype that does not reciprocate in cross-feeding

can take over and replace the resident cooperator genotype only in

certain cases when the carrying capacity trade-off is convex. Given

that such trade-off is motivated by the inhibitory properties of

methionine [19] we argue that a concave trade-off illustrated in

Figure 5C would be more appropriate as there is a threshold

concentration of methionine above which the carrying capacity

decreases. Our results indicate that a concave trade-off between

investment into cooperation and carrying capacity is most likely to

give rise to populations containing a single phenotype that has a

non-zero investment into cooperation.

In conclusion our results have a number of important messages.

Firstly, the shape of the trade-off between the cost and benefit of

cooperation has a profound effect on the success of cross-feeders

(cooperators) in comparison to non cross-feeders (cheats). In other

words whether cross-feeding is favoured or not depends on

whether the cost to the donor decreases slower or faster than the

benefit to the recipient. This is in accordance with both classical

[33–35] and recent [36–40] theoretical work showing that the

precise form of the trade-off curves crucially determines the

outcome of evolution. Therefore in order to deepen our

understanding of the evolution of cooperative cross-feeding, it is

extremely important to obtain precise estimation of the shape of

the cost/benefit trade-off. Elucidating the shape of a trade-off

relationship in general is something that has so far proven to be

particularly challenging. However, due to their large population

sizes, short generation times and known genetic structure

microorganisms present an ideal system with which to experi-

mentally study the nature and form of trade-off relationships

[41,42].

Secondly, we have demonstrated that the impact of the trade-off

between the cost and the benefit of cross-feeding varies with

different environments. For example, in the environments where

the intrinsic growth rates of microbes under consideration are

higher than the benefit of cross-feeding, cooperative behaviour is

favoured only for sufficiently shallow trade-offs. However, in the

environments where the intrinsic growth rates are lower than the

benefit of cross-feeding, cooperation behaviour is favoured for a

large range of trade-off slopes.

Finally, when considering the evolution of cross-feeding we

found that if all interacting individuals have the same carrying

capacity a small population of cheats could not invade an already

established population of cooperating cross-feeders. If we assume

that cross-feeding species specialize on different resources and

hence have different carrying capacities the outcome of evolution

depends on the shape of the trade-off between investment into

cooperation and competitive ability and the trade-off between

investment into cooperation and carrying capacity. The most

common outcome of evolution is either polymorphism where the

evolving population contains two or more genotypes with varying

degree of cooperation or monomorphism where the evolving

population contains a single phenotype that makes a non-zero

investment into cooperation. This further demonstrates that cross-

feeding could be viewed as a robust interaction, a result that

accords with a large number of cross-feeding examples readily

observed in nature.

Materials and Methods

Numerical simulations were performed using MATLAB.

Parameter values for each illustration are provided in the figure

legends.
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Text S1 Calculating the steady states of system (6) and their

stability.
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PDF)

Text S2 Detailed calculations of the results presented in Table 1.

Found at: doi:10.1371/journal.pone.0014121.s002 (0.19 MB

PDF)
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