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Abstract Animals detect motion using a variety of visual cues that reflect regularities in the

natural world. Experiments in animals across phyla have shown that motion percepts incorporate

both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion

computation. However, it remains unclear how visual systems assemble these cues to build

accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion

perception to show how flies combine local pairwise and triplet correlations to reduce variability in

motion estimates across natural scenes. By generating synthetic images with statistics controlled

by maximum entropy distributions, we show that the triplet correlations are useful only when

images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-

OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter

the world’s light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF

processing to improve motion estimation.

Introduction
For any visual system, motion estimation is an important but computationally challenging task. To

accurately extract motion signals from complex natural inputs, visual systems should take advantage

of all useful information. One source of information lies in the stable statistics of the visual input, that

is, in the regularities of natural scenes (Geisler, 2008). A strong version of this hypothesis is that

visual systems are tuned, through evolution and experience, to the statistics of natural environments

(Chichilnisky and Kalmar, 2002; Olshausen and Field, 1996; Simoncelli and Olshausen, 2001;

Srinivasan et al., 1982). However, it remains unclear how visual systems use the statistics of natural

scenes and the motion signals in them to aid in motion estimation (Salisbury and Palmer, 2016;

Sinha et al., 2018).

Motion computation has long been understood algorithmically as selective responses to specific

spatiotemporal correlations (Fitzgerald et al., 2011; Poggio and Reichardt, 1973; Potters and Bia-

lek, 1994). For example, canonical models propose that animals extract motion from visual signals

by detecting pairwise spatiotemporal correlations (Adelson and Bergen, 1985; Hassenstein and

Reichardt, 1956). Higher order correlations could also contribute to motion computation, and Bayes

optimal visual motion estimators can be written as a sum of terms specialized for detecting different

correlation types (Potters and Bialek, 1994; Fitzgerald et al., 2011). This mathematical result fol-

lows from a Volterra series expansion, which provides a general and systematic way to represent

nonlinear computational systems. Higher order correlations are also empirically relevant. For
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example, triplet spatiotemporal correlations are the next lowest-order terms after pairwise correla-

tions, and both humans and flies perceive motion in ‘glider’ stimuli that isolate triplet spatiotemporal

correlations (Clark et al., 2014; Hu and Victor, 2010). The sensitivity to triplet spatiotemporal corre-

lations shows that motion perception incorporates cues neglected by canonical motion detectors.

Interestingly, perceptual sensitivities to triplet spatiotemporal correlations prove that visual sys-

tems must consider the polarity of contrast when computing motion. This is because triplet correla-

tions flip sign when contrast polarities are inverted, which means that the perceptual contribution of

triplet correlations to a motion estimator reverses when all input contrasts are inverted. This con-

trast-polarity dependent motion processing has been hypothesized to be an adaptation to natural

scenes, especially to the light-dark asymmetry of the contrast distribution (Clark et al., 2014;

Fitzgerald and Clark, 2015; Fitzgerald et al., 2011; Leonhardt et al., 2016; Nitzany and Victor,

2014). For example, simulated motion detectors that were optimized to estimate motion in natural

scenes exhibited contrast-polarity-dependent responses similar to flies (Fitzgerald and Clark, 2015;

Leonhardt et al., 2016). These modeling studies suggest that contrast-polarity-dependent

responses emerge from performance optimization in natural scenes, but they do not show that real

visual systems use their sensitivity to triplet spatiotemporal correlations to improve motion esti-

mates. This limitation arises because previous experimental studies measured sensitivities to only a

few triplet correlations (Clark et al., 2014; Leonhardt et al., 2016). However, one cannot assess the

utility of individual correlations in isolation (Clark et al., 2014; Nitzany et al., 2016), and naturalistic

visual signals contain many spatiotemporal correlations with diverse spatiotemporal structures.

Moreover, although previous analyses recognized that some kind of light-dark asymmetry is required

for triplet correlation sensitivity to emerge in optimized motion estimators (Clark et al., 2014;

Fitzgerald and Clark, 2015; Fitzgerald et al., 2011; Leonhardt et al., 2016), they did not discover

which statistical regularities within natural scenes were sufficient for the observed motion signals to

improve accuracy.

Here, we filled these gaps by systematically measuring the nonlinearities in Drosophila visual

motion detection and relating them to light-dark asymmetries in natural scenes. We first systemati-

cally characterized low-order components of the fly’s motion computation algorithm by modeling its

visually evoked turning behavior with a Volterra series expansion (Clark et al., 2011; Clark et al.,

2014; Fitzgerald et al., 2011; Marmarelis and McCann, 1973; Poggio and Reichardt, 1973; Sala-

zar-Gatzimas et al., 2016). Through this framework, we extended canonical pairwise (second-order)

motion computation models by adding a triplet (third-order) component that accounts for contrast-

polarity-dependent motion computation. We evaluated the performance of the inferred algorithm

across an ensemble of moving natural images and discovered that the third-order component

improves velocity estimates by canceling image-induced variability in the second-order component.

Finally, we leveraged maximum entropy distributions to develop a method for generating synthetic

images with precisely controlled contrast statistics. This method revealed that the skewness of natu-

ral images allows the fly’s sensitivity to triplet spatiotemporal correlations to improve its canonical

motion estimates.

Results

The structure of natural scenes induces variability in second-order
motion estimates
To evaluate how canonical motion detectors performed with natural scene inputs, we simulated

responses of the Hassenstein-Reichardt Correlator (HRC) to rigidly translating natural scenes. The

HRC exemplifies canonical motion detectors, which rely exclusively on pairwise spatiotemporal cor-

relations to estimate motion (Adelson and Bergen, 1985; Hassenstein and Reichardt, 1956)

(Figure 1A). It can be equivalently written as a motion energy model (Adelson and Bergen, 1985).

We used a database of natural, panoramic photographs to create naturalistic motion stimuli

(Meyer et al., 2014). In particular, we first converted the photographs’ luminance signals into local

contrast signals (Figure 1B, Figure 1—figure supplement 1). We then rigidly translated these natu-

ral images at various horizontal velocities to simulate full-field motion signals (Badwan et al., 2019;

Dror et al., 2001; Fitzgerald and Clark, 2015; Leonhardt et al., 2016). This rigid translation of

images mimics the motion produced by an animal’s pure rotation, during which visual objects all
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move at the same rotational velocity and occlusion does not change over time. Real motion through

an environment generates more complex signals than this, but rigid translations are straightforward

to compute and rotational visual stimuli are known to induce the rotational optomotor response that

we focus on in this manuscript.

The spatiotemporal contrast signals from these (image, velocity) pairs were used as inputs to the

HRC model, and we evaluated the model’s output for fixed image velocities across different scenes

(Figure 1C, Materials and methods). The model generated a mean response that was linearly tuned

for small velocities, peaked at around 130 ˚/s, and then decayed to zero for fast speeds (Figure 1C

green line). However, we observed substantial variance about the mean response, and this variance

implies that different natural scenes generated different second-order motion estimates, even when

moving at the same velocity (Figure 1C green shading). This is consistent with the finding that

canonical second-order motion detectors generate variable responses with natural scene inputs

(Dror et al., 2001; Fitzgerald and Clark, 2015; Sinha et al., 2018).

Next we sought to investigate how the higher order structure of natural scenes influences the

performance of the second-order motion estimates. Though canonical motion detectors use only

pairwise spatiotemporal correlations, higher order statistics of static images, such as contrast
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Figure 1. Second-order motion detectors perform poorly with natural scene inputs. (A) Schematics of the Hassenstein-Reichardt correlator (HRC). Each

half of the HRC receives inputs from two nearby points in space, which are filtered in time with filters f tð Þ and g tð Þ, and then multiplied together. The full

HRC receives outputs from two symmetric halves with opposite direction tuning and subtracts two outputs. (B) An example two-dimensional

photograph from a natural scene dataset (top), including a one-dimensional section (image) through the photograph (bottom), indicated by the red

line. So that the image can be viewed clearly, the contrasts in the photograph were mapped onto gray levels so that an equal number of pixels were

represented by each gray level. (C) Average response (line) and variance (shaded) of the outputs of an HRC (equivalent to a motion energy model;

Adelson and Bergen, 1985) when presented with naturalistic motion at various velocities. Images were sampled from natural scenes (green) or from a

synthetic image dataset in which all higher order structure was eliminated (purple, see Materials and methods). (D) Example synthetic image in which all

higher order structure was eliminated.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Converting luminance signals into contrast signals (see Materials and methods).
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kurtosis, influence the detector’s variance (Clark et al., 2014; Fitzgerald and Clark, 2015). To dem-

onstrate this, we generated a synthetic image set in which we preserved the second-order statistics

of natural scenes, including their spatial correlation function and contrast variance, but eliminated all

higher order structure (Figure 1D, Materials and methods). When the higher order structure was

eliminated, the HRC’s average tuning was unchanged, but there was a marked decrease in the vari-

ance (Figure 1C purple). This demonstrates that higher order structure in natural scenes induces var-

iability in canonical motion estimates.

Modeling fly motion computation with second- and third-order Volterra
kernels
To investigate how real visual systems compute motion, we wanted to systematically characterize an

animal’s motion computation at the algorithmic level (Marr and Poggio, 1976). Motion computation

requires a nonlinear transformation to form a motion estimate from the visual stimulus (Borst and

Egelhaaf, 1989; Fitzgerald et al., 2011; Poggio and Reichardt, 1973). We approximated this non-

linear transformation using a Volterra series expansion (Marmarelis and McCann, 1973; Marmare-

lis, 2004; Schetzen, 1980; Wiener, 1966). Similar to the Taylor series from calculus, the Volterra

series is a polynomial description of a nonlinearity, with a first-order kernel that describes linear

transformations, a second-order kernel that captures quadratic terms, and higher-order kernels that

combine to represent a wide variety of nonlinearities beyond the second-order. However, many

polynomial terms can be needed to describe some nonlinearities. For instance, the polynomial

description of a compressive, saturating nonlinearity is inefficient, and it can be easier to describe

such transformations using alternative nonlinear model architectures, such as linear-nonlinear cas-

cade models (Dayan and Abbott, 2001). We emphasize that the Volterra kernel description is

explicitly algorithmic, as it aims to summarize the overall system processing without considering the

mechanisms leading to this processing.

Volterra kernels are useful for studying visual motion processing because they allow us to rigor-

ously group response properties by their order (Fitzgerald et al., 2011; Potters and Bialek, 1994),

thereby permitting us to clearly describe both canonical and contrast polarity-dependent compo-

nents of the behavior. For example, the second-order kernel is equivalent to the canonical motion

detecting algorithms, as it explains the sensitivity to pairwise spatiotemporal correlations

(Fitzgerald et al., 2011; Salazar-Gatzimas et al., 2016). Second-order Volterra kernels, along with

related spike-triggered covariance methods (Bialek and van Steveninck, 2005; Sandler and Mar-

marelis, 2015; Schwartz et al., 2006), have been used to model second-order behavior and neural

processing in flies and primates (Clark et al., 2011; Marmarelis and McCann, 1973; Poggio and

Reichardt, 1973; Rust et al., 2005; Salazar-Gatzimas et al., 2016). However, the second-order ker-

nel cannot capture the system’s sensitivity to triplet spatiotemporal correlations. We therefore mini-

mally extended the depth of the Volterra series expansion to include the third-order kernel. The

third-order kernel directly measures sensitivities to triplet spatiotemporal correlations and probes

ON/OFF asymmetries in motion processing.

Experimental measurements of Volterra kernels in fly behavior
We focused on how the fly responds to correlations between nearest-neighbor pixels in the visual

input, which corresponded roughly to a single ommatidium separation (Buchner, 1976) (Figure 2A).

The second-order kernel describes how the behavioral response is influenced by the product of con-

trasts at each pair of spatiotemporal points in the visual input (Figure 2B blue). In comparison, the

third-order kernel describes how the response is influenced by the product of contrasts at each trip-

let of spatiotemporal points in the visual input (Figure 2B green). Note that triplet spatiotemporal

correlations could in principle be computed across three distinct spatial locations, but our analysis

focused on triplet spatiotemporal correlations distributed across two nearest-neighbor pixels.

In order to extract Volterra kernels, especially higher-order ones, we needed a large amount of

data. We thus developed a high-throughput setup to measure turning in walking flies in response to

visual stimuli (Figure 2C) (Creamer et al., 2018; Creamer et al., 2019). In this setup, a fly’s optomo-

tor turning response serves as a readout of its motion perception (Götz and Wenking, 1973;

Hassenstein and Reichardt, 1956), which allowed us to characterize the fly’s motion computation

algorithm by measuring its visually-evoked turning response. Flies spend a large portion of their lives
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Figure 2. We modeled the fly’s motion computation algorithm with second- and third-order Volterra kernels and extracted the kernels using reverse-

correlation (Appendix 1, Materials and methods). (A) Visual depiction of our model, where the fly’s motion computation system consists of a spatial

array of elementary motion detectors (EMDs), and each EMD receives inputs from two neighboring spatial locations. We presented flies with vertically

uniform stimuli with 5˚-wide pixels, roughly matching ommatidium spacing. (B) Diagram showing how the output of one EMD at time t, indicated by

gray dashed line, is influenced by the second- and third-order products in the stimulus. Left: visual inputs of one EMD, sL and sR. The visual stimulus

contained products of pairwise and triplet points with various spatiotemporal structure. One specific pairwise product is highlighted (blue barbell) and

one specific triplet product is highlighted (green triangle). Middle: The motion computation of the EMD is approximated by the second-order kernel

(blue) and the third-order kernel (green). The second-order kernel (blue) K
2ð Þ
LR t1; t2ð Þ is a two-dimensional matrix. For example, the response at time t is

influenced by the products of sL t � 7ð Þ and sR t � 9ð Þ with weighting K
2ð Þ
LR 7; 9ð Þ. The third-order kernel (green) K

3ð Þ
LRL t1; t2; t3ð Þ is a three-dimensional

tensor. The response at time t is influenced by sL t � 1ð ÞsR t � 4ð ÞsL t � 3ð Þ with weighting K
3ð Þ
LRL 1; 4; 3ð Þ. Right: turning response at time t is influenced by

all pairwise and triplet products in the visual stimulus, with weightings given by the second- and third-order kernel elements. (C) Diagram of the fly-on-

a-ball rig. We tethered a fly above a freely-rotating ball, which acted as a two-dimensional treadmill. We presented stochastic binary stimuli, and

measured fly turning responses. (D) The extracted second-order kernel. The color represents the magnitude of the kernel, with red indicating rightward

turning and blue indicating leftward turning to positive pairwise spatiotemporal correlations. Above the diagonal line, the matrix represented left-tilted

pairwise products (example in B) and below the diagonal line represents right tilted pairwise products. (E) The extracted third-order kernel. For

visualization purposes, we show only the two diagonals with the largest magnitude.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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standing and walking on surfaces, making walking optomotor responses ethologically critical

(Carey et al., 2006).

We extracted the second- and third-order Volterra-kernels with reverse-correlation methods. To

do this, we presented flies with spatiotemporally uncorrelated binary stimuli on a panoramic screen

around the fly, measured their turning responses, and correlated the behavior at each time to the

stimuli preceding it (Materials and methods, Appendix 1, Figure 2—figure supplement 1)

(Clark et al., 2011; Mano and Clark, 2017; Salazar-Gatzimas et al., 2016). The measured second-

order kernel showed positive and negative lobes (Figure 2D). The positive lobe below the diagonal

indicates that flies turned to the right when presented with positive correlations in the rightward

direction. This second-order kernel is consistent with classical models of motion computation and

with previous neural and behavioral measurements (Clark et al., 2011; Marmarelis and McCann,

1973; Salazar-Gatzimas et al., 2016). The measured third-order kernel also showed both positive

and negative values (Figure 2E), and we will dissect its detailed structure later in this manuscript.

However, we first set out to evaluate how the third-order kernel contributed to motion estimation

across an ensemble of moving natural images.

The third-order kernel improves velocity estimation for moving natural
scenes
The kernels were fit to turning behavior, so the output of the model to moving visual stimuli is the

predicted optomotor turning response. Following previous work (Clark et al., 2014; Fitzgerald and

Clark, 2015; Leonhardt et al., 2016; Poggio and Reichardt, 1973; Potters and Bialek, 1994;

Sinha et al., 2018), we hypothesized that optomotor turning responses provide a proxy for the fly’s

velocity estimate. Using the fitted behavioral model, we could thus investigate how accurately the

fly’s velocity estimate tracks the true image velocity. We evaluated the fly’s motion computation per-

formance with a simple and specific metric: when an entire natural image translates rigidly with con-

stant velocity, how accurately does the behavioral algorithm predict the image velocity (Figure 3A)?

Specifically, does the fly use its sensitivity to triplet spatiotemporal correlations to improve velocity

estimation?

We sampled the velocities from a zero-mean Gaussian distribution with a standard deviation of

114 ˚/s: this distribution roughly matched turning distributions in walking flies (DeAngelis et al.,

2019; Katsov and Clandinin, 2008). Crucially, because we measured the Volterra kernels, we could

separate the fly’s predicted output into two components: the canonical second-order response, r 2ð Þ,

and the non-canonical third-order response, r 3ð Þ (Figure 3A). The second-order response is the out-

put from the second-order kernel, and it describes how the fly responded to naturalistic second-

order spatiotemporal correlations in the stimulus. Similarly, r 3ð Þ is the output from the third-order

kernel, and it describes how the fly responded to naturalistic triplet spatiotemporal correlations. This

separation allowed us to ask how the pairwise and triplet correlations are individually and jointly

used to estimate motion.

We quantified how well the model’s responses predicted the image velocity using the Pearson

correlation coefficient (Clark et al., 2014; Fitzgerald and Clark, 2015; Leonhardt et al., 2016). This

metric supposes that the model response and image velocity are linearly related, and its value sum-

marizes intuitively the mean-squared-error of the best linear fit between the model’s output and the

image velocity. When the correlation coefficient has an absolute value near 1, the model closely

tracks image velocity, while a value near 0 indicates no linear relationship between model and image

velocity. The responses derived from the second-order kernel, r 2ð Þ, correlated positively with the true

velocity (Figure 3B blue), indicating that the second-order response matches the behavioral direc-

tion (Clark et al., 2011; Hassenstein and Reichardt, 1956; Salazar-Gatzimas et al., 2016). Interest-

ingly, the isolated third-order response, r 3ð Þ, anti-correlated with true image velocities (Figure 3B

green). This means that the fly’s third-order response on its own would predict that the fly turns in

the direction opposite to the presented motion. However, when r 3ð Þ was added to r 2ð Þ, the accuracy

Figure 2 continued

Figure supplement 1. Using reverse-correlation to extract second- and third-order kernels from the measured turning response to stochastic binary

stimulus (Materials and methods, Appendix 1).
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Figure 3. The third-order kernel improved motion estimation in natural scenes. (A) Predicting responses of the second- and third-order kernels to

rigidly moving scenes. Top: natural scenes rigidly translating with constant velocities. Middle: cartoon of the second- and third-order kernels. Bottom:

second-order response (blue), third-order response (green), the predicted motion estimate (red) is the summation of r 2ð Þ and r 3ð Þ. (B) Scatter plot of

r 2ð Þ; r 3ð Þ and r 2ð Þ þ r 3ð Þ against image velocity over the ensemble of moving images. 10,000 independent trials were simulated, and 1000 trials were

plotted here. (C) Pearson correlation coefficients between responses of each kernel and the true image velocities (� = 0.44 ± 0.01, -0.14 ± 0.01, 0.54 ±

0.01, 0.56 ± 0.01, from left to right; w = 1.39 ± 0.01; mean ± SEM across 10 groups of 1000 trials). (D) Scatter plot between r 3ð Þ and the residual in r 2ð Þ,

computed by subtracting a scaled image velocity from r 2ð Þ (Materials and methods). � represents the Pearson correlation coefficient mean ± SEM across

10 groups (Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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of the full motion estimator increased by ~25% compared to r 2ð Þ alone (Figure 3B red, Figure 3C).

This important result shows that the third-order responses improve velocity estimates only in con-

junction with second-order responses.

To understand this counterintuitive finding, it’s useful to recognize that the second-order

response is influenced by both the image velocity and the structure of the natural scene. For exam-

ple, recall that the output of the HRC depended both on the velocity of motion and on the particular

image that was moving (Figure 1C). Thus, one way to improve the accuracy of the response is to

reduce scene-dependent variability in the second-order estimate. To investigate whether this inter-

pretation explained the observed improvement, we calculated the residuals of the second-order

responses by subtracting the best linear fit of the image velocity and plotted them against the third-

order responses. We found that the third-order signal was strongly anticorrelated with this scene-

induced residual in the second-order response (Figure 3D). This means that the fly’s sensitivity to

triplet spatiotemporal correlations indeed canceled scene-dependent variability in the second-order

motion estimator to improve the accuracy of motion estimation across natural scenes.

Since the magnitude of the second-order kernel and third-order kernel were each measured

experimentally, our model combined r 2ð Þ and r 3ð Þ with a 1:1 ratio. Nevertheless, we were interested

in whether the fly could have done better with alternate weighting coefficients, so we fit a linear

regression model to reweight r 2ð Þ and r 3ð Þ to best predict image velocity. Strikingly, we found the

optimized relative weighting between r 2ð Þ and r 3ð Þ was near one, and the performance of the best

weighted model was only marginally better than the empirical model (Figure 3C gray). Thus, the

measured second- and third-order kernels were weighted near optimally for performance in natural-

istic motion estimation.

We also wanted to understand how the improvement added by r 3ð Þ depended on the parameters

of our simulation. To see how it depended on the width of the image velocity distribution, we varied

the standard deviation over an order of magnitude. The improvement did not depend strongly on

the variance of the velocity (Figure 3—figure supplement 1). We also asked how the contrast com-

putation affected the performance of the measured algorithm. When we previously converted lumi-

nance into contrast signals, we computed local contrasts on a length scale of 25˚ (measured by full-

width-at-half-maximum), because that is the approximate spatial scale of surround inhibition mea-

sured in flies (Arenz et al., 2017; Freifeld et al., 2013; Srinivasan et al., 1982). When we swept this

spatial scale from 10˚ to 75˚, the improvement added by the third-order kernel first increased,

peaked at around 30˚, and then decreased to negative values after 40˚ (Figure 3—figure supple-

ment 2A–E). When we computed the contrast over time, instead of space, we observed improve-

ments on timescales less than 100 ms, comparable to measured timescales involved in early visual

neurons that compute temporal derivatives (Behnia et al., 2014; Srinivasan et al., 1982;

Yang et al., 2016) (Figure 3—figure supplement 2FG). However, the third-order term hurt perfor-

mance when contrasts were computed on longer timescales. These results show that contrast com-

putations influence the utility of the measured third-order kernel, with maximal utility occurring in a

regime that approximately matches the contrast computation of the fly eye.

Visualizing the measured third-order kernel with impulse responses
Since the measured third-order Volterra kernel improved motion estimates, we wanted to character-

ize it in more detail. To better visualize the third-order kernel, we rearranged its elements in an

impulse response format (Figure 4AB, Materials and methods). The impulse response of a system is

its output when presented with a small and brief input, called an impulse. This impulse may consist

of a change in contrast at a single point, in which case the impulse response captures the linear

response of the system. Analogously, if the impulse consists of a contrast triplet over three points in

space and time, then the triplet impulse response captures the system’s response to the interactions

of those three points, after accounting for those responses already explained by linear or second-

order impulse responses.

Figure 3 continued

Figure supplement 1. The improvement added by the third-order kernel persists across a wide range of velocities.

Figure supplement 2. The length scale of local mean luminance computation affected the performance of the measured kernels.
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Triplet correlation impulse responses are useful because they allow one to rapidly digest how dif-

ferent triplet correlations will affect behavior. For example, in Figure 4A, we colored three occur-

rences of triplets that have the same spatiotemporal structure and their corresponding triplet

impulse responses. We set the origin of the impulse responses to be the most recent point in the

triplet, because the system could not respond to the interaction of three points before all three

points were presented. Since the spatiotemporal structures of these three triplets are the same, the

three impulse responses have the same shape. Note that a negative impulse, consisting of an odd

number of dark elements within the triplet, would drive turning in the opposite direction. In

Figure 4B, we represented impulse responses of different triplet with colormaps and used ball-stick

cartoons to show the relative temporal distances between the points in each triplet. The predicted

time course of the behavioral effect is easy to discern, and the kernel predicts that the behavioral

consequences of triplet correlations will last almost a second. We can more compactly understand

the relative magnitudes of the behavioral effects by summing the impulse responses over time

(Figure 4C) (Salazar-Gatzimas et al., 2016). As expected, the impact of different triplet correlations

varies significantly in both direction and magnitude.

Verification of the third-order kernel measurement
We verified the reliability of our third-order kernel measurement in two ways. First, we tested the

statistical significance of the measured kernel directly. We extracted an ensemble of null kernels by

applying the reverse-correlation analysis to the measured behavioral responses and temporally-

shifted visual stimuli (Materials and methods). By comparing summed kernel elements in the empiri-

cal and null kernels, we found that many terms in the third-order kernel were statistically significant

at the p=0.05 level (Figure 4C). Significance was especially common when the temporal distance

between the points in the triplet spatiotemporal correlation was less than 0.1 s.

Second, we measured the fly’s sensitivity to triplet spatiotemporal correlations with third-order

glider stimuli (Figure 4D, Figure 4—figure supplement 1). Third-order glider stimuli are binary stim-

uli that lack pairwise correlations and are enriched in specific triplet spatiotemporal correlations

(Clark et al., 2014; Hu and Victor, 2010). We used the measured third-order kernel to predict

responses to the glider stimuli. Most of the measured responses were quantitatively predicted by

the third-order kernel (Figure 4D). Several gliders elicited smaller behavioral responses compared to

the kernel prediction; such differences might be attributable to induced long-range spatial correla-

tions in glider stimuli (Clark et al., 2014; Hu and Victor, 2010), which are not captured by our mea-

sured nearest-neighbor kernel. Nevertheless, the successes revealed by this independent

experimental test strongly suggest that we had enough statistical power to reliably fit the third-order

kernel to the behavioral data.

The second- and third-order kernels share temporal structure
Multiple models propose that sensitivity to pairwise and triplet spatiotemporal correlations could

emerge simultaneously from the same nonlinear step in the fly brain (Fitzgerald and Clark, 2015;

Leong et al., 2016; Leonhardt et al., 2016). We were thus curious whether the measured second-

and third-order kernels had a common temporal structure. To compare the second-order and third-

order kernels, we simplified the third-order kernel to a two-dimensional approximation (Figure 4—

figure supplement 2ABC), rearranged the second-order kernel into the impulse response format

(Figure 4—figure supplement 2D), and computed summed kernel strengths to obtain one-dimen-

sional representations for both kernels (Figure 4E). We compared the second- and third-order kernel

elements at the same temporal offsets (Figure 4E top). In the case of pairwise correlations, the tem-

poral offset was determined by the temporal distance between the left and the right points, and in

the case of triplet correlations, the temporal offset was determined by the average temporal dis-

tance between the left and right points. The summed kernel strengths showed that the second-order

and third-order kernels had similar sensitivities to temporal delays between the input pixels, with

peak sensitivity at the shortest delays in our experiment (Figure 4E bottom). An analysis employing

the singular value decomposition yielded similar results, and also showed comparable kinetics in the

behavioral responses to pairwise and triplet correlations (Figure 4—figure supplement 2EFG).

These similarities suggest that the second- and third-order responses originate in common physio-

logical processes.
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Figure 4. Characterization and validation of the measured third-order kernel. (A) Triplet impulse response description. Top: the ball-stick diagram

represents the relative spatiotemporal position of three points in a triplet. The red line denotes the temporal distance between the two left points, Dt31,

and the blue line denotes the temporal distance between the more recent point on the left and the sole right point, Dt21. Bottom: Three specific

example occurrences of the triplet elicit three impulse responses. The response at time t is the sum of the impulse responses to all previous

Figure 4 continued on next page
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Comparing the measured third-order kernel to optimal motion
estimators
A recent theoretical study proposed several motion detectors whose parameters were optimized for

velocity estimation in natural scenes (Fitzgerald and Clark, 2015) (Figure 4—figure supplement 3).

In order to compare our measured third-order kernel to those of these optimized motion detectors,

we presented stochastic binary stimuli to these detectors and extracted their third-order kernels

using reverse-correlation. We found that the third-order kernels of the optimized models were usu-

ally similar to each other (Figure 4F), which is consistent with prior analyses (Fitzgerald and Clark,

2015). The measured third-order kernel consistently agreed with the optimized kernels in its signs,

and in some cases, the kernels were also similar in magnitude. However, certain kernel elements dif-

fered markedly between the optimized models and the behaviorally measured kernel. Perhaps most

noticeably, the behavioral kernel was much smaller than the optimized kernels for correlations whose

spatiotemporal structure involved large delays between the points (Figure 4F, third and fifth kernel

elements). Such differences between the optimized models and the measured behavior could indi-

cate suboptimalities in the fly brain. However, they could also result from unrealistic constraints

imposed on the model optimization, such as fixed temporal processing and restricted model struc-

tures (Fitzgerald and Clark, 2015; Leonhardt et al., 2016). The measured kernel therefore provides

valuable new data to inform theoretical work assessing the optimality of biological motion

estimators.

Positive skewness is sufficient for the third-order kernel to improve
motion estimates
Which features of natural images allow the measured third-order kernel to improve motion esti-

mates? The natural scene dataset is comprised of heterogeneous individual images (Figure 5A), so

we calculated the contrast mean, variance, skewness, and kurtosis of each image individually. The

variance describes the scale of the contrast variation; the skewness quantifies imbalance between

contrasts above and below the mean; and the kurtosis roughly characterizes the frequency of

extreme bright and dark points. Each of these statistics showed a wide distribution over the image

ensemble (Figure 5—figure supplement 1ABCD). These statistics were also highly dependent on

each other: a positively skewed image often had high variance and was highly kurtotic (Figure 5B,

Figure 5—figure supplement 1E). These strong relationships make it difficult to isolate the effects

of individual statistics within the image ensemble.

Figure 4 continued

occurrences of the triplet. The first triplet (lightest green) involves two black points and one white point, so their product is positive, and it elicits an

impulse response with positive sign. The triplet occurs far from current time t, so its influence on the current response is small. The last triplet (darkest

green) involves two white points and one black point, so the product is negative and it elicits an impulse response with flipped sign. It is close to

current time t, and has a large influence on the current response. (B) Third-order kernel visualized using an impulse-response format

(Materials and methods). Top: the ball-stick diagrams as in (A). Bottom: the color map plots the ’impulse response’ to the corresponding triplets, and

color represents the strength of the kernel. Different panels represent different Dt31. In each color map, Dt31 is fixed, the columns represent Dt21, and

the rows represent the time since the most recent point in each triplet. The dashed lines indicate the place where the right point is in the middle of the

two left points in time. (C) The summed strength of the third-order kernel along each column in A. Error bars represent SEM calculated across flies

(n = 72), and significance was tested against the null kernel distribution (*p<0.05, two-tailed z-test (Materials and methods)). (D) The scatter plot

between the measured responses to third-order glider stimuli (Materials and methods, Figure 4—figure supplement 1) against responses predicted

by the third-order kernel (Materials and methods). The correlation between the predicted and measured responses is 0.76. Black dashed line is unity;

gray dashed line is the best linear fit. (E) The measured second- and third-order kernel share temporal structures. Top: the ball-stick diagrams represent

the relative spatiotemporal positions of the two points in each pair (blue), and three points in each triplet (green). Bottom: The kernel strength of the

second-order kernel (blue) and third-order kernel (green) summed across all elements sharing the same spatiotemporal structures, that is summed over

rows in Figure 4—figure supplement 2CD (Materials and methods). Figure 4—figure supplement 3, (F) The extracted third-order kernels from four

optimized motion detectors (Fitzgerald and Clark, 2015) compared to the measured kernel from the fly. The summed kernel strength is summed

across all elements which shared the same spatiotemporal structures diagramed above.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Flies turned in response to third-order spatiotemporal correlations presented in binary glider stimuli.

Figure supplement 2. Rearranging the second- and third-order kernels and computing singular value decompositions on the rearranged kernels.

Figure supplement 3. Four models optimized to estimate image velocities in natural scenes, adapted from Fitzgerald and Clark (2015).
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Figure 5. Positive skewness is sufficient for the third-order kernel to improve motion estimation. (A) Three example natural scenes with different

degrees of variance and skewness. (B) Joint-density maps of individual image statistics over the ensemble of natural images, showing the relationship

between skewness and variance (left) and skewness and kurtosis (right). (C) Contrast distributions of example images from the natural scene dataset and

two synthetic image datasets. The natural image is shown (black), along with a maximum entropy distribution (MED) with matched mean and variance,

denoted by +mean +var (green) and an MED with matched mean, variance, and skewness, denoted by +mean +var +skew (brown). (D) Example

images from the natural scene dataset and two synthetic image datasets corresponding to three contrast distributions in (C). (E) The Pearson

correlation coefficient between true image velocities and each kernel’s responses in the two synthetic datasets +mean +var (green) and +mean +var

+skew (brown) (F) Example of MEDs in six synthetic datasets, in which the image skewness ranged from �1.25 to 1.25. (G) Example of synthetic images

in three synthetic datasets, corresponding to MEDs in (F) with constrained skewness of 0.25 (top), 0.75 (middle), and 1.25 (bottom). (H) Improvement

added by the third-order response as a function of synthetic image skewness.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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To isolate the effects of individual statistics, we therefore generated several different synthetic

image datasets that have alternate contrast statistics (Materials and methods). To generate each

image, we constructed a synthetic contrast distribution and sampled pixel contrasts from this distri-

bution (Appendix 2, Figure 5—figure supplement 2A). In this way, we could manipulate the statis-

tics of the image by constraining various statistics of the distribution. In particular, we constrained

the distribution to have specific lower order moments, such as mean, variance, and skewness. A dis-

tribution is not solely determined by its lower order moments, so there can be many distributions

sharing the same lower order moments (Figure 5—figure supplement 2A). Among all such distribu-

tions, we chose the most random one, known as the maximum entropy distribution (MED)

(Berger et al., 1996; Jaynes, 1957; Schneidman et al., 2006; Victor and Conte, 2012). Because

we can specify these lower order moments independently, we can ask whether specific statistics are

sufficient to generate the improvement added by the third-order signal.

We began by generating two synthetic image datasets (Materials and methods). In the first data-

set, we generated a synthetic image for each natural image that had the same contrast mean and

variance. To do this, we first found an MED whose contrast mean and variance matched those of the

natural image (Figure 5C, green). We then generated a single synthetic image by sampling from this

MED (Figure 5D green). In the second dataset, we required the synthetic image to have the same

contrast mean, variance, and skewness as the original image (Figure 5CD, brown). By retaining the

skewness, these synthetic images retained naturalistic light-dark asymmetries. We then asked how

the third-order response affected velocity estimates across these two synthetic image datasets.

When only the mean and variance of natural scenes were retained, the third-order response was

near zero (Figure 5—figure supplement 2A, green) and did not improve motion estimation

(Figure 5E). However, when the synthetic scenes were constrained to be naturalistically light-dark

asymmetric, the improvement added by the third-order kernel was recovered (Figure 5E), with mag-

nitude comparable to what was observed for the natural scene dataset (Figure 3C).

Finally, we wanted to see whether the degree of skewness controlled the magnitude of the

improvement. We therefore generated synthetic image datasets in which we systematically varied

the image skewness (Figure 5FG). In these synthetic images, the degree of skewness determined

how much the third-order response could improve the full motion estimate (Figure 5H). When the

images were negatively skewed, the third-order response correlated with image velocity (Figure 5—

figure supplement 3C). However, since it also positively correlated with the residual in the second-

order response, adding it to the second-order response decreased the model’s overall performance

(Figure 5—figure supplement 3CD). When the images were positively skewed, the third-order

response became anticorrelated with the residual in the second-order response and thus improved

the overall motion estimates (Figure 5H, Figure 5—figure supplement 3CD). These synthetic image

sets show that positive image skewness is sufficient for the third-order signal to improve motion esti-

mates. Thus, the measured algorithm for motion estimation leverages light-dark asymmetries found

in natural scenes to improve motion estimates.

Discussion
In this study, we first fit a Volterra series expansion to model the fly’s turning behavior in response

to binary stochastic stimuli, and both second- and third-order terms in the Volterra series contrib-

uted to the turning behavior. We then evaluated the model’s output when it was presented with an

ensemble of rigidly translating natural scenes. There, the second- and third-order terms of the model

combined to produce outputs that better correlated with image velocities. There is no a priori rea-

son to assume that a model fit to explain turning behavior would necessarily predict the image

velocity. Therefore, these results can be taken together to motivate the hypothesis that the magni-

tude of the fly’s turning response is determined by an internal estimate of velocity. Furthermore, this

Figure 5 continued

Figure supplement 1. Natural scenes have heterogenous contrast statistics.

Figure supplement 2. Using maximum entropy distributions (MEDs) to generate synthetic images with controlled image statistics.

Figure supplement 3. The performance of the measured kernels in various synthetic image datasets.
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estimate is specifically tailored for natural environments, since we found that the third-order kernel

relies on light-dark asymmetries that are present in natural scenes but not in arbitrary images. Since

skewed scenes are prevalent across natural environments, and many visual systems exhibit ON-OFF

asymmetric visual processing (Chichilnisky and Kalmar, 2002; Jin et al., 2011; Mazade et al.,

2019; Pandarinath et al., 2010; Ratliff et al., 2010; Zaghloul et al., 2003), many animals are likely

to use similar strategies for motion perception.

Direct demonstration that triplet correlations improve velocity
estimation for natural images
The idea that features of the visual motion computation serve to improve performance in natural

environments is conceptually appealing and theoretically powerful. For example, prior studies have

found that optimized motion detectors had triplet correlation sensitivities similar to those measured

from the fly visual system (Fitzgerald and Clark, 2015; Leonhardt et al., 2016). Although it is

intriguing that biologically relevant response properties emerged in optimized motion detectors, the

link from contrast-polarity dependent motion computation to naturalistic motion estimation

remained indirect. Here we have provided the first direct demonstration that third-order compo-

nents of the fly’s motion computation algorithm improve velocity estimation for moving natural

scenes. This direct demonstration had not been possible before because prior measurements were

limited to a narrow range of correlations, and it was unclear how the measured cues interacted with

unmeasured components of the motion estimation algorithm. For example, here we found that the

third-order kernel appeared counterproductive when viewed in isolation, but the way flies incorpo-

rated triplet correlations was easily interpretable via the deficits of the second-order motion estima-

tor. Remarkably, this problem could have persisted if motion computation needed to be understood

in the context of additional visual motion cues that involve longer spatial-scales or higher order non-

linearities, which have been neglected in this study. This suggests that it might be sufficient to com-

prehensively characterize motion computation with a few local and low-order visual cues, which is

encouraging for the approach outlined here. On the other hand, a mechanistically accurate model of

visual motion processing could eventually summarize the relevant cues in a more succinct and less

abstract way.

Flies use triplet correlations to cancel scene-dependent variability in
second-order cues
We found that the third-order responses in flies were anti-correlated with the natural image veloci-

ties (Figure 3BC). Nevertheless, they improved velocity estimation when added to the second-order

responses (Figure 3D). This result appears counter-intuitive at first but can be understood. Spatio-

temporal correlations are influenced by both the motion and local structure of the scene, but

motion-driven behaviors should ignore fluctuations stemming from the scene’s structure as much as

possible. Pairwise and triplet spatiotemporal correlations are related to contrast variance and skew-

ness, respectively, which are correlated across the ensemble of natural scenes (Figure 5B). This

means that fluctuations in second-order signals tend to be accompanied by fluctuations in third-

order signals. Therefore, with the right weighting, second-order and third-order signals may collabo-

rate to reduce the image-induced signal fluctuations in the motion estimate (Clark et al., 2014).

Indeed, we found that the third-order responses improved motion estimates because they helped to

cancel variability in the second-order responses induced by the structure of natural scenes. This find-

ing highlights a generally important but underappreciated point about cue combination and popula-

tion coding in neural systems. Although a neuron’s tuning is often used as a proxy for its

involvement in stimulus processing, even untuned neurons can contribute productively to down-

stream decoding if their responses are correlated with noise in the tuned neuronal population

(Zylberberg, 2017).

Large computational benefits can underlie small behavioral effects
The HRC has explained a large number of behavioral phenomena and neural responses, and it is rea-

sonable to ask how much we have gained by extending its second-order algorithmic description to a

third-order one. The magnitude of behavior elicited by the third-order kernel is small compared to

the second-order kernel’s contribution. However, the magnitude of the behavioral effect and the
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magnitude of the underlying performance gain can differ significantly. For example, the largest

reported turning response elicited by a third-order glider stimulus is less than 20% of that elicited by

second-order glider stimuli (Clark et al., 2014), yet the performance gain afforded by a motion

detector designed to detect its defining third-order correlation exceeded 30% (Fitzgerald and

Clark, 2015). Similarly, here we predict that many natural images would elicit little output from the

third-order kernel (Figure 3B), yet third-order responses improved the correlation between the

model output and velocity by ~25% (Figure 3C). These performance gains are modest, but they are

comparable to the inarguable benefits provided by spatial averaging and could be ecologically rele-

vant to the fly (Dror et al., 2001; Salazar-Gatzimas et al., 2018). Since we have only approximated

the system with a spatially localized low order polynomial, we also expect that the improvements we

observed here represent a lower bound on the total effects provided by the full mechanism underly-

ing light-dark asymmetric motion processing. Indeed, longer range and higher order motion detec-

tion models can nearly double motion estimation accuracy while predicting realistic glider response

magnitudes (Fitzgerald and Clark, 2015). It will be interesting to investigate whether mechanisti-

cally accurate models that explain the origin of the third-order kernel also reveal larger performance

improvements.

Asymmetric ON-OFF processing could affect motion processing across
the animal kingdom
Here, we showed that flies systematically exploit contrast asymmetries in natural scenes to improve

their visual motion estimates. This resonates with previous work showing that many visual systems

process ON and OFF signals asymmetrically to improve other aspects of visual processing

(Kremkow et al., 2014; Mazade et al., 2019; Pandarinath et al., 2010; Ratliff et al., 2010). More-

over, flies and vertebrates share striking anatomical and functional properties in their motion detec-

tion circuits (Borst and Helmstaedter, 2015; Clark and Demb, 2016; Sanes and Zipursky, 2010),

likely because they are solving similar problems with similar constraints. We thus expect that many

visual systems use ON-OFF asymmetric processing to improve visual motion perception. Neverthe-

less, it remains unclear how similar or different the details of such strategies will be across the animal

kingdom. Indeed, although both primates and insects respond to third-order glider stimuli, their pat-

terns of response differ (Clark et al., 2014; Hu and Victor, 2010; Nitzany et al., 2017). ON-OFF

asymmetric visual processing also varies in other ways, and there is evidence that contrast adapta-

tion in ON and OFF pathways is different between primate and salamander retinas (Chander and

Chichilnisky, 2001).

Adaptations to differences in both habitat and early sensory processing could potentially explain

these divergences. Here, we found positive and negative contrast skewness in different terrestrial

scenes (Figure 5—figure supplement 1C), but positive skewness was most prevalent across the

scenes. If certain habitats feature scenes that are predominantly negatively skewed, our work pre-

dicts that animals living in these habitats should have opposite third-order responses to flies

(Figure 5H). More generally, natural scenes in different habitats are known to be similar in some sta-

tistics and different in others (Balboa and Grzywacz, 2003; Burkhardt et al., 2006). Interestingly,

positive skewness might be particularly common in natural luminance distributions, because lumi-

nance signals are the product of many independent factors that generically combine to produce log-

normal distributions (Richards, 1982). Nevertheless, the skewness level that matters for motion

detecting circuits also depends on earlier processing operations in the eye (Figure 3—figure sup-

plement 2C). In our numerical experiments, we computed local contrast signals. The spatial scales

of this preprocessing influenced the statistics of the resulting contrast, which in turn influenced the

performance of the motion computation. Biologically, this suggests that signal processing in early

visual circuits can strongly influence how downstream circuits organize their computations

(Dror et al., 2001; Fitzgerald and Clark, 2015). Alternatively, early sensory processing might be tai-

lored to accommodate the computational requirements of downstream processing. These possibili-

ties are not mutually exclusive, and in both cases, the early visual processing must work in concert

with the downstream motion detectors to form robust and consistent perceptions.
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Volterra kernels systematically characterize nonlinear motion
computations
The algorithm used by the visual system to extract motion signals is a nonlinear transformation from

light detection to motion estimates. There are numerous ways to characterize a nonlinear system. In

many cases, visual neuroscientists have purposefully designed stimuli, such as sinusoidal gratings,

plaids, and gliders, to probe specific nonlinearities in the system (Clark et al., 2014; Creamer et al.,

2018; Euler et al., 2002; Fisher et al., 2015; Haag et al., 2016; Hu and Victor, 2010;

Movshon et al., 1985; Rust et al., 2005; Salazar-Gatzimas et al., 2018; Salazar-Gatzimas et al.,

2016). In other cases, they have used stochastic stimuli to fit simple predictive models, such as lin-

ear-nonlinear models, generalized linear models, cascade models, and normalization models to cap-

ture a restricted but relatively broad set of biologically plausible nonlinearities (Dayan and Abbott,

2001; Leong et al., 2016; Maheswaranathan et al., 2018; McIntosh et al., 2016; Salazar-

Gatzimas et al., 2016; Simoncelli and Heeger, 1998).

Here, we approximated the nonlinear system with Volterra kernels (Marmarelis and Naka, 1972;

Wiener, 1966). This represents a general and systematic approach to nonlinear system identifica-

tion, since (1) one need not make strong assumptions about the system to measure its kernels, (2)

higher order kernels can in principle be added to characterize the system arbitrarily well, and (3) a

complete set of kernels predicts the system’s output for arbitrary input signals. One major limitation

of this approach is that higher order kernels become progressively more difficult to fit as the number

of kernel elements increases. This makes the approach most practical when a few low-order terms

already capture conceptually important variables. Here, we leveraged the fact that second-order ker-

nel capture the canonical models for visual motion estimation while third-order kernel probes ON/

OFF asymmetries in motion processing. These two kernels can be related to distinct statistics of nat-

ural scenes.

Polynomial approximations to complex nonlinear systems have also been useful in other domains

of neuroscience. For example, the experimental phenomenon of frequency-dependent long-term

potentiation can be explained by extending canonical pairwise spike-timing-dependent plasticity

models to include the relative timing of three spikes (Pfister and Gerstner, 2006; Sjöström et al.,

2001). This makes learning sensitive to third-order correlations (Gjorgjieva et al., 2011). In the field

of texture perception, researchers have long sought low order statistics that explain whether two

patterns are texturally discriminable (Julesz, 1962; Julesz et al., 1973; Julesz et al., 1978). Similar

to our findings for motion perception, both natural scene statistics and upstream visual processing

play important roles (Hermundstad et al., 2014; Portilla and Simoncelli, 2000; Tkacik et al., 2010).

As a final example, understanding how neural network structure impacts dynamics was aided by for-

mally expanding the network’s connectivity matrix into low-order connectivity motifs (Hu et al.,

2014; Trousdale et al., 2012). These motifs might relate to measurable properties of the neocortex

(Song et al., 2005).

Velocity estimation is a useful approximation to motion computation
In this paper, we evaluated the fly’s motion computation algorithm by measuring the accuracy of

velocity estimation. Prior studies have often hypothesized that velocity estimation is a key require-

ment of motion processing and optomotor circuitry (Clark et al., 2014; Dror et al., 2001;

Fitzgerald and Clark, 2015; Fitzgerald et al., 2011; Poggio and Reichardt, 1973; Potters and Bia-

lek, 1994). It is thus reassuring that a model that better fit optomotor behavior also predicted image

velocity more accurately. Nevertheless, motion computation is involved in perceptual tasks beyond

the optomotor response, such as detecting looming stimuli (Card and Dickinson, 2008;

Zacarias et al., 2018). In such tasks, the goal may not be to estimate the velocity of the visual

object, but spatiotemporal correlations might nevertheless be useful (Nitzany and Victor, 2014). In

addition, fly motion detecting neurons respond to static sinusoids or local luminance changes with-

out obvious relevance for motion processing (Fisher et al., 2015; Gruntman et al., 2018; Salazar-

Gatzimas et al., 2018), which suggests that motion computation algorithms might be jointly opti-

mized alongside the detection of other visual features. Finally, visual systems have to coordinate

with motor systems to achieve accurate sensorimotor transformations, so one should take the prop-

erties of the motor system into consideration when evaluating the performance of a motion compu-

tation algorithm (Dickinson et al., 2000). Future work could consider more sophisticated evaluation
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metrics that better reflect the total ethological relevance of the visual environment to the fly. As we

continue to distill the factors that combine to set the ultimate performance criteria, the use of veloc-

ity estimation is likely to remain a simple, useful, and insightful approximation.

Potential mechanisms underlying the measured light-dark asymmetries
Visual systems in both vertebrates and invertebrates split into ON and OFF pathways that process

light and dark signals separately and asymmetrically (Balasubramanian and Sterling, 2009;

Chichilnisky and Kalmar, 2002; Clark and Demb, 2016; Leonhardt et al., 2016; Ratliff et al.,

2010; Ravi et al., 2018; Sagdullaev and McCall, 2005; Salazar-Gatzimas et al., 2018). Some of

these differences could result from biological constraints. Others could be an ethologically relevant

adaptation to light-dark asymmetries found in the natural world. Either way, it is difficult to extrapo-

late from asymmetric neuronal processing of light and dark signals to functional asymmetries in

downstream processing, including behavior. In this study, we used the behavioral turning responses

to measure asymmetries in the flies’ motion computation algorithm, instead of examining ON and

OFF processing channels at the neuronal level. Since optomotor sensitivity to triplet spatiotemporal

correlations is necessarily a functional consequence of underlying asymmetric visual signal process-

ing, we could thus directly link light-dark asymmetries in natural scenes to the functional impact of

ON-OFF asymmetric neural circuitry. It is similarly important to identify additional light-dark asym-

metric behaviors that can clarify the functional role of other light-dark asymmetries in visual

processing.

Having established the functional relevance of ON-OFF asymmetric visual processing, it is next

important to find its neural implementation. Previous work has suggested that front-end nonlinear-

ities could account for certain optomotor illusions in flies (Bülthoff and Götz, 1979), and it is con-

ceivable that such nonlinearities could generate contrast asymmetric motion responses (Clark and

Demb, 2016; Fitzgerald et al., 2011). However, several simple front-end nonlinearities can improve

motion estimation without inducing the observed triplet correlation responses (Fitzgerald and

Clark, 2015). Alternatively, nonlinear processing at the level of direction-selective T4 and T5 neurons

could also generate the asymmetries we observed here. Indeed, differentially affecting T4 and T5

activity, either through direct silencing or by manipulating upstream neurons, alters the behavioral

responses of flies to triplet correlations (Clark et al., 2014; Leonhardt et al., 2016), and parallel

experiments in humans similarly find that contrast-asymmetric responses are mediated by neurons

separately modulated by moving ON and OFF edges (Clark et al., 2014). Yet, it remains unclear

whether asymmetric responses of T4 and T5 are inherited from upstream neurons. For instance, con-

trast adaptation could differ between the two pathways (Chichilnisky and Kalmar, 2002), and

incompletely rectified inputs to T4 and T5 could generate asymmetrical responses to light and

dark inputs (Salazar-Gatzimas et al., 2018). The weightings of T4 and T5 signals in downstream cir-

cuits could also result in contrast asymmetric phenomena. This rich landscape of possibilities moti-

vates us to think that multiple mechanisms are likely to be involved. By measuring behavior and

distilling the abstract algorithmic properties of the system, we will be able to constrain the contribu-

tions of individual circuit components without confining ourselves to an overly narrow class of mech-

anistic models.

Relating algorithm and implementation in fly visual motion estimation
David Marr famously asserted that neural computation needs to be understood at both the algorith-

mic and implementational levels (Marr and Poggio, 1976). The benefits of this dual understanding

go both ways. On one hand, the brain is immensely complicated, and an algorithmic theory can pro-

vide an invaluable lens for making sense of its details. On the other hand, the nuances of neuronal

implementation can lead to new algorithmic questions and mechanistically satisfying answers. Marr

used the optomotor response of flies to articulate his philosophy over forty years ago, and the com-

munity is still leveraging this problem to unravel the subtle relationships between algorithm and

mechanism in the brain. The HRC model provided the first algorithmic theory of fly visual motion

estimation, and this model’s insights into the roles of spatial separation, differential time delays, and

nonlinear signal integration have now been verified mechanistically (Arenz et al., 2017;

Fisher et al., 2015; Haag et al., 2016; Leong et al., 2016; Salazar-Gatzimas et al., 2016;

Takemura et al., 2017). They still provide the bedrock of our understanding. Yet the precise
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mathematical form and mechanistic origin of the nonlinearity remain controversial, with different

papers pointing out compelling roles for membrane voltages, intracellular calcium signals, and ON-

OFF pathways (Badwan et al., 2019; Gruntman et al., 2018; Haag et al., 2016; Leong et al.,

2016; Leonhardt et al., 2016; Salazar-Gatzimas et al., 2018; Wienecke et al., 2018). None of this

complexity invalidates the core insights of the HRC, nor does the HRC’s domain of success warrant

apathy toward the fundamental importance of these unexpected findings. Instead of algorithm and

mechanism providing parallel or hierarchical goals, they should be treated as parts of one integrated

understanding of the circuit.

Materials and methods

Fly husbandry
Flies were grown at 20˚C, 50% humidity in 12-hr day/night cycles on a dextrose-based food. Flies

used for the behavioral experiment were non-virgin wildtype (D. melanogaster: WT: +; +; +) females

between 24 and 72 hr old.

Psychophysics
The fly’s turning behavior was measured with the fly-on-a-ball rig, as described in previous studies

(Clark et al., 2011; Creamer et al., 2018). The fly was tethered above a ball floating on a cushion of

air. The ball served as a treadmill such that the fly could walk and turn while its position and orienta-

tion were fixed. The rotational response of the fly was the averaged rotation magnitude of the ball

in 1/60s bins with an angular resolution of ~0.5˚. Panoramic screens surrounded the fly, covering 270˚

horizontally and 106˚ vertically (Creamer et al., 2019). A Lightcrafter DLP (Texas Instruments, USA)

projected visual stimulus to the screens with chrome green light (peak 520 nm and mean intensity of

100 cd/m2). The spatial resolution of the projector was around 0.3˚ and the projector image was

updated at 180 Hz. The rig’s temperature was 34-36˚.

Visual stimuli
Visual stimuli varied along the horizontal axis in 5˚ pixels and were uniform along the vertical dimen-

sion. Since the panoramic screen was 270˚ wide, the horizontal axis was divided into 270=5 ¼ 54 pix-

els, so the screen was divided into 54 vertical bars.

We used two types of binary stochastic visual stimuli for kernel extraction, a three-bar-block stim-

ulus type, and a four-bar-block stimulus type. In the 3 (4)-bar-block stimuli, each block contained 3

(4) neighboring vertical bars that flickered white or black independently in space and time. The iden-

tical blocks then repeated periodically around the fly. Since there are 54 bars, the entire visual field

was divided into 18 (14.5) blocks. Each bar updated its contrast every 1/60 second.

We used third-order glider stimuli (Hu and Victor, 2010) to directly measure the fly’s sensitivity

to three-point correlations. Third-order glider stimuli are binary patterns of black and white pixels. In

each glider stimulus, one can enforce a three-point spatiotemporal correlation. Here, we considered

only three-point spatiotemporal correlations that involved two neighboring points in space. We

described the specific configuration of each glider with a four-parameter scheme, Dt31;Dt21; LnR;Pð Þ.
We defined the 1st point to be the more recent one of the two points sharing a spatial location,

while the other point at this spatial location was defined to be the 3rd point. The final point, which

was in a position adjacent to the 1st and 3rd points, was defined to be the 2nd point. The temporal

interval between the 2nd point and 1st point was denoted as Dt21, and Dt31 was defined similarly.

For example, Dt31 ¼ 1 means that the 3rd point is 1 frame (16 ms) before the 1st point. Although

Dt31 is positive by definition, Dt21 can be positive or negative. We used L and R to indicate whether

the 1st and the 3rd points are on the left or right of the 2nd point. As detailed previously

(Clark et al., 2014; Hu and Victor, 2010), in positive parity gliders (P ¼ þ1) one or three of these

three points are white, whereas negative parity gliders (P ¼ �1) have one or three of the points

black. We illustrated the configuration of each glider using a ’ball-stick’ diagram, where the x-axis

represents space, the y-axis represents time, time runs downward, and the plus (minus) sign denotes

the polarity of the glider (Figure 4—figure supplement 1A). Overall, we presented 52 ¼ 13� 2� 2

different stimuli: thirteen different temporal intervals, each with two directions and two polarities

(Table 1).
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HRC model
We constructed a classical Hassenstein-Reichardt correlator (HRC) model (Hassenstein and Reich-

ardt, 1956). The output rHRC tð Þ was defined as

rHRC tð Þ ¼ s1 � fHRC½ � s2 � gHRC½ �� s2 � fHRC½ � s1 � gHRC½ �;

where s1 tð Þ and s2 tð Þ denote the contrast signals from two spatial locations, * denotes convolution in

time, and fHRC tð Þ, gHRC tð Þ are the temporal filters of the delay line and the non-delay line. In

particular,

fHRC tð Þ ¼ t exp � t

tHRC

� �

;

for t� 0, fHRC tð Þ ¼ 0 for t<0, and

gHRC tð Þ ¼ d

dt
fHRC tð Þ;

where tHRC ¼ 20 ms.

Modeling the fly’s motion computation algorithm with Volterra kernels
We approximated the fly’s motion computation algorithm with second- and third-order Volterra ker-

nels. We provide a detailed description of this model in Section 1 of Appendix 1. In brief, we discre-

tize space into pixels with Dx ¼ 5˚ resolution, discretize time into time bins with Dt ¼ 1=60 s

resolution, and index locations in space with an integer subscript �. We modeled the response of the

fly r tð Þ as the sum of an array of elementary motion detectors (EMDs) acting at each position in

space:

r tð Þ ¼
X

�

r� tð Þ;

where r� tð Þ denotes the response of EMD at spatial location �. That term is itself the sum of the sec-

ond-order response r
2ð Þ
� tð Þ and third-order response r

3ð Þ
� tð Þ:

r� tð Þ ¼ r
2ð Þ
� tð Þþ r

3ð Þ
� tð Þ:

The second- and third-order responses are defined as follows (see also Appendix 1):

Table 1. Statistics of responses to third-order glider stimuli with different spatiotemporal structures.

Index Dt31 (16 ms) Dt21 (16 ms) (nP¼1; nP¼�1) (pP¼1; pP¼�1)

1 1 0 (18, 12) (0.0003, <0.0001)

2 2 0 (35, 29) (0.0299, 0.0003)

3 3 0 (14, 8) (0.4218, 0.0092)

4 4 0 (14, 8) (0.0201, 0.3552)

5 1 1 (18, 13) (<0.0001, <0.0001)

6 2 2 (35, 30) (0.0026, <0.0001)

7 3 3 (14, 9) (0.2323, 0.0875)

8 4 4 (14, 9) (0.6778, 0.1700)

9 1 -1 (8, 8) (<0.0001, 0.0044)

10 2 1 (8, 8) (0.0041, 0.0617)

11 1 2 (8, 8) (0.0044, 0.6713)

12 3 1 (21, 21) (0.5396, 0.4470)

13 3 2 (21, 21) (0.1042, 0.0203)
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r
2ð Þ
� tð Þ ¼ 2

t1 ;t2

X

K
2ð Þ
LR t1;t2ð Þs� t� t1ð Þs�þ1 t� t2ð Þ Dtð Þ2;

r
3ð Þ
� tð Þ ¼ 3

t1;t2;t3

X

K
3ð Þ
LRL t1;t2;t3ð Þ s� t� t1ð Þs�þ1 t� t2ð Þs� t� t3ð Þ� s�þ1 t� t1ð Þs� t� t2ð Þs�þ1 t� t3ð Þ

� �� �

Dtð Þ3;

where s� tð Þ and s�þ1 tð Þ denote the visual inputs that the EMD at spatial location � receives. (In

Figure 2B and Figure 2—figure supplement 1, we used sL tð Þ and sR tð Þ to represent s� tð Þ and

s�þ1 tð Þ). The second-order response r
2ð Þ
� tð Þ is the sum of second-order features,

s� t� t1ð Þs�þ1 t� t2ð Þ, weighted by the second-order kernel, K
2ð Þ
LR t1;t2ð Þ. The third-order response,

r
3ð Þ
� tð Þ, is the sum of third-order features, s� t� t1ð Þs�þ1 t� t2ð Þs� t� t3ð Þ, and

s�þ1 t� t1ð Þs� t� t2ð Þs�þ1 t� t3ð Þ, weighted by the third-order kernel, K
3ð Þ
LRL t1;t2;t3ð Þ. Note that we use

the notation K
3ð Þ
LLR in Appendix 1, which can be transformed into K

3ð Þ
LRL by interchanging the position

of the second and the third spatial and temporal arguments.

In particular, K
3ð Þ
LRL t1;t2;t3ð Þ ¼K

3ð Þ
LLR t1;t3;t2ð Þ.

Measuring Volterra kernels with stochastic stimuli and reverse-
correlation
To estimate the kernels, we presented stochastic binary stimuli to flies and reverse-correlated the

corresponding response with the input. In particular, we estimated the second-order kernel by

reverse-correlating the mean-subtracted turning response with the products of two points in space

and time (Appendix 1),

K̂
2ð Þ
LR t1;t2ð Þ ¼ 1

2
K̂

2ð Þ
LR�3

t1;t2ð Þþ K̂
2ð Þ
LR�4

t1;t2ð Þ
� �

;

where K̂
2ð Þ
LR�3

t1;t2ð Þ is the estimated second-order kernel from the three-bar-block stimulus and

K̂
2ð Þ
LR�4

t1;t2ð Þ is the estimated second-order kernel from the four-bar-block stimulus. In particular,

K̂
2ð Þ
LR�3 4ð Þ t1;t2ð Þ ¼ 1

54

1

2g4

stim Dtð Þ2
X

�¼1;2;3; 4ð Þ

1

T t

X

rturn tð Þs� t� t1ð Þs�þ1 t� t2ð Þ;

where rturn tð Þ is the mean-subtracted response, and gstim is the magnitude of the contrast in the

binary stimulus (Appendix 1). s1 tð Þ; s2 tð Þ; s3 tð Þ represent the contrasts of 3 independent bars in 3-bar-

block stimulus, and s�þ1 t� t2ð Þ � s1 t� t2ð Þ for �¼ 3. Similarly, s1 tð Þ, s2 tð Þ, s3 tð Þ, s4 tð Þ represent the con-

trasts of 4 independent bars in four-bar-block stimulus, and s�þ1 t� t2ð Þ � s1 t� t2ð Þ for �¼ 4. We pre-

sented three-bar-block stimulus to 35 flies, and four-bar-block stimulus to 37 flies, for T ¼ 20 min. All

fly kernel estimates were averaged to generate the final kernel estimate. Note that we enforce

K̂
2ð Þ
LR t1;t2ð Þ ¼ 0 when t1 ¼ t2, because we model the visual motion estimator as a mirror-antisymmetric

operator (Appendix 1).

Similarly, we estimated the third-order kernel by reverse-correlating the mean-subtracted turning

response with the products of three points in space and time (Appendix 1).

K̂
3ð Þ
LRL t1;t2;t3ð Þ ¼ 1

2
K̂

3ð Þ
LRL�3

t1;t2;t3ð Þþ K̂
3ð Þ
LRL�4

t1;t2;t3ð Þ
� �

;

K̂
3ð Þ
RLR t1;t2;t3ð Þ ¼ 1

2
K̂

3ð Þ
RLR�3

t1;t2;t3ð Þþ K̂
3ð Þ
RLR�4

t1;t2;t3ð Þ
� �

;

where

K̂
3ð Þ
LRL�3 4ð Þ t1;t2;t3ð Þ ¼ 1

54

1

6

1

g6

stim Dtð Þ3
X

�¼1;2;3; 4ð Þ

1

T t

X

rturn tð Þs� t� t1ð Þs�þ1 t� t2ð Þs� t� t3ð Þ;
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K̂
3ð Þ
RLR�3 4ð Þ t1;t2;t3ð Þ ¼ 1

54

1

6

1

g6

stim Dtð Þ3
X

�¼1;2;3; 4ð Þ

1

T t

X

rturn tð Þs�þ1 t� t1ð Þs� t� t2ð Þs�þ1 t� t3ð Þ;

and t1 6¼ t3.

We then enforced mirror anti-symmetry by,

K̂
2ð Þ
LR�sym t1;t2ð Þ ¼ 1

2
K̂

2ð Þ
LR t1;t2ð Þ� K̂

2ð Þ
LR t2;t1ð Þ

� �

;

K̂
3ð Þ
LRL�sym t1;t2;t3ð Þ ¼ 1

2
K̂

3ð Þ
LRL t1;t2;t3ð Þ� K̂

3ð Þ
RLR t1;t2;t3ð Þ

� �

;

K̂
3ð Þ
RLR�sym t1;t2;t3ð Þ ¼�K̂

3ð Þ
LRL�sym t1;t2;t3ð Þ;

where K̂
2ð Þ
LR�sym t1;t2ð Þ, K̂ 3ð Þ

LRL�sym t1;t2;t3ð Þ and K̂
3ð Þ
RLR�sym t1;t2;t3ð Þ are the symmetrized kernels, and we

refer to them as the mirror anti-symmetric component.

We next evaluated how much variance in the fly’s turning behavior can be explained by the esti-

mated second- and third-order kernels. We presented the same stochastic stimulus sequence to

many flies, so we averaged the turning response from different flies, denoted as �rturn tð Þ, to estimate

the true stimulus-associated turning response rstim�driven tð Þ. We predicted the turning response

rpred tð Þ to the same stimulus sequence,

rpred tð Þ ¼ r
2ð Þ
pred tð Þþ r

3ð Þ
pred tð Þ;

where r
2ð Þ
pred tð Þ ðr 3ð Þ

pred tð ÞÞ is the predicted response from the second-order (third-order) kernel. We cal-

culated rpred tð Þ using only the anti-symmetric component of the kernel, that is K̂
2ð Þ
LR�sym t1;t2ð Þ and

K̂
3ð Þ
LRL�sym t1;t2;t3ð Þ: The Pearson correlation between rpred tð Þ and �rturn tð Þ were 0.686 and 0.787 in

three-bar and four-bar experiments.

If fly turning responses are driven only by visual stimuli, are mirror anti-symmetric, and use only

second- and third-order correlations, then the measured second- and third-order kernel would

explain all the variance in the stimulus-driven turning responses, and the Pearson correlation

between rpred tð Þ and rstim�driven tð Þ should be one. However, our measured kernels only explained

about half of the variance. There are several potential reasons for this. First, the turning responses of

flies appeared very noisy, making it difficult to estimate the true stimulus-driven response. That is,

�rturn tð Þ was a poor estimation of rstim�driven tð Þ. Second, we wanted to minimally extend the canonical

second-order motion detector while being able to account for light-dark asymmetric visual process-

ing, so we added only one more term, the third-order kernel. However, the fly might respond to

higher order spatiotemporal correlations in visual inputs, and our model did not capture them.

Representing the second- and third-order kernels in the impulse
response format
To better understand and visualize the extracted kernels, we rearranged the elements in the kernels

such that we could interpret kernels as the impulse response to a pair (triplet) of contrasts. This is

analogous to the impulse response to a single contrast change at one point in a linear system.

Before rearrangement, the rows (columns) of the second-order kernel represent the temporal

argument t1 (t2) in the matrix K̂
2ð Þ
LR�sym t1; t2ð Þ. After rearrangement, the rows correspond to the time

since the more recent point, and the columns represent different temporal intervals between the

two points, with negative intervals meaning that the right point is more recent than the left point

(Figure 4—figure supplement 2D) (Salazar-Gatzimas et al., 2016). We denote this new format as

K̂
2ð Þ
impulse t;Dt21ð Þ � K̂

2ð Þ
LR�sym t;tþDt21ð Þ;

where Dt21 ¼ t2 � t1 and t¼min t1;t1 þDt21ð Þ. Because we have enforced mirror anti-symmetry

in K̂
2ð Þ
LR�sym, the columns of K̂

2ð Þ
impulse t;Dt21ð Þ are anti-symmetric around Dt21 ¼ 0. We interpreted the
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columns of K̂
2ð Þ
impulse t;Dt21ð Þ as the impulse response of the fly to a pair of adjacent contrast changes

separated by Dt21 in time.

Similarly, before rearrangement, the three dimensions of the third-order kernel represent the

three temporal arguments of K̂
3ð Þ
LRL�sym t1; t2; t3ð Þ. Once rearranged, we define

K̂
3ð Þ
impulse t;Dt21;Dt31ð Þ � K̂

3ð Þ
LRL�sym t;tþDt21;tþDt31ð Þ;

where t¼min t1;t1 þDt21;t1þDt31ð Þ, Dt21 ¼ t2 � t1, and Dt31 ¼ t3 � t1. Rows again represent the time

since the last point, the columns represent the temporal distance between the more recent point on

the left and the sole right point, and the third tensor dimension represents the temporal distance

between two left points (Figure 4B). For this third-order kernel, we also summed along the rows for

0.75 s to define the summed kernel strength (Figure 4C),

K̂
3ð Þ
summed Dt21;Dt31ð Þ ¼

t<0:75

X

K̂
3ð Þ
impulse t;Dt21;Dt31ð Þ:

Testing the significance of the measured third-order kernel with ‘null
kernels’
We tested the significance of the measured kernel with synthetic null kernels (Figure 4C). We shifted

the stimulus with 100 random temporal offsets (the offset was at least 2 seconds long), reverse-cor-

related these shifted stimuli with responses, and generated 100 synthetic null kernels. The 100 ker-

nels extracted from the misaligned stimulus and response were used to test the significance of the

real kernel. We calculated the summed kernel strength of these 100 null kernels, and built the null

distribution of summed kernel strength and performed two-tailed z-test. We tested kernel strength

in the region of the kernels: t3 � t1 from 0 to 250 ms, and t2 � t1 from – 250 to 250 ms, which

equaled 528 ¼ 16� 33 kernel strengths in total. There are 43 significant (p <0.05) responses, and

around 23% of the total significant points (10 in total) aggregated when

jt1 � t2j<83 ms, t3 � t1j j<83 ms. Therefore, we further simplified our kernel by setting third-order

kernel elements to zero when jt1 � t2j � 83 ms or t3 � t1j j � 83 ms, and denoted the ’cleaned’ kernel

as K̂
3ð Þ
LRL�sym�clean t1; t2; t3ð Þ. To be consistent, we also set elements of the second-order kernel to zero

when jt1 � t2j>83 ms, and denoted it as K̂
2ð Þ
LR�sym�clean t1; t2ð Þ.

The exact p-values for the summed third-order strength were shown for t2 � t1 ¼ ½�133ms; 133ms�
with 16.7 ms increment in the following table from top to bottom.

Dt31 ¼ 16 ms Dt31 ¼ 33:3 ms Dt31 ¼ 50 ms

0.4328 0.7506 0.3948

0.9784 0.0514 0.1870

0.7381 0.0587 0.0904

0.3340 0.9650 0.5661

0.4435 0.6801 0.6273

0.2154 0.8081 0.8081

0.0645 0.0942 0.0641

0.0008 0.7077 0.0015

<0.0001 0.3014 0.9246

<0.0001 0.0823 0.9375

0.8873 <0.0001 0.0149

0.0177 0.3112 0.0001

0.1011 0.0487 0.2435

0.2565 0.3086 0.5983

0.6328 0.5057 0.7153

0.1037 0.4815 0.3233

0.3677 0.2075 0.6670
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Comparing the measured third-order kernel with the glider responses
We measured the fly’s sensitivity to three-point correlations using a suite of third-order glider stimuli.

Overall, we presented 52 ¼ 13� 2� 2 different stimuli (See Visual stimuli in Materials and methods,

Table 1, Figure 4—figure supplement 1A). Each glider stimulus elicited sustained turning

responses (Clark et al., 2014), so we averaged the response over time and denote it as

r
glider

Dt31;Dt21;L=R;Pð Þ, where the subscript specifies the stimulus type. Since we assume the fly’s motion com-

putation is mirror anti-symmetric, we subtracted responses to the pairs of gliders with different

directions but with the same temporal interval and polarity, and denote it as rglider
Dt31;Dt21;Pð Þ,

r
glider

Dt31;Dt21;Pð Þ ¼
1

2
r
glider

Dt31;Dt21;O;Pð Þ� r
glider

Dt31;Dt21;�O;Pð Þ

� �

;

where O denotes the orientation of the glider (i.e. left or right), and �O denotes the opposite orien-

tation. We plotted 18 out of 26 averaged responses in Figure 4—figure supplement 1B.

In Table 1, we listed the number of flies tested for each glider (nP¼1 is the number of flies tested

with positive gliders, nP¼�1 with negative gliders), and the p-values of Student t-tests, which were

tested against zero response (pP¼1 is the significance level for positive gliders, pP¼�1 for negative

gliders).

The measured third-order kernel and the measured glider responses should both reflect the fly’s

sensitivity to three-point correlations. To test agreement between these two measurements, we

used the measured third-order kernel to predict the fly’s responses to glider stimuli. We made the

prediction by summing the ‘diagonal line’ of the third-order kernel. Specifically, we found the pre-

dicted response to specific third-order gliders by summing over all elements in the kernel with the

same temporal differences as the glider:

r
ð3Þ�pred

Dt31;Dt21ð Þ ¼ 54� 6 �g6

stim

X

t

K
3ð Þ
LRL�sym t;tþDt21;tþDt31ð Þ Dtð Þ3:

The constant of 54� 6 takes into consideration the spatial summation all 54 putative EMDs and all

six parts of third-order kernel in one EMD (Appendix 1), and gstim ¼ 1 is the contrast of the glider

stimuli. For gliders who have two points on the right side, we used KRLR�sym instead of KLRL�sym. Since

the third-order kernel is agnostic to the polarity of the three-point correlations and reflected only

the average of the fly’s sensitivity to positive and negative correlations, we averaged the responses

of positive and negative gliders. This neglects higher-order components of glider responses that

could nevertheless be biologically meaningful.

r
glider�ave

Dt31;Dt21ð Þ ¼
1

2
r
glider

Dt31;Dt21;1ð Þ� r
glider

Dt31;Dt21;�1ð Þ

� �

:

We then compared the r
glider�ave

Dt31;Dt21ð Þ with r
3ð Þ�pred

Dt31;Dt21ð Þ (Figure 4D).

Comparing the temporal structure of the second- and third-order
kernels
To compare the temporal structure of the two kernels, we first rearranged and combined the ele-

ments in the third-order kernel into a two-dimensional representation and then rearrange the sec-

ond-order kernel in the impulse response format. Specifically, we rearranged the elements in the

third-order kernel into K̂
3ð Þ
aligned�LRL t; DtLR;DtLLð Þ, where t corresponds to the time since the most

recent point, DtLR is the average time difference between left points and the right point, and 2DtLL

is the temporal separation between the two left points (Figure 4—figure supplement 2A left). In

particular,

K̂
3ð Þ
aligned�LRL t; DtLR;DtLLð Þ � K̂

3ð Þ
LRL�sym t2þDtLR �DtLL;t2;t2 þDtLRþDtLLð Þ;

where t¼min t2 þDtLR�DtLL;t2;t2 þDtLRþDtLLf gð Þ. We similarly defined
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K̂
3ð Þ
aligned�RLR t; DtRL;DtRRð Þ � K̂

3ð Þ
RLR�sym t2þDtRL �DtRR;t2;t2 þDtRLþDtRRð Þ;

where t corresponds to the time since the most recent point, DtRL is the average time difference

between right points and the left point, and 2DtRR is the temporal separation between the two right

points (Figure 4—figure supplement 2A right). Finally, we summed over the within-point time dif-

ferences (DtRR and DtLL), and summed these two pieces to obtain a matrix (Figure 4—figure supple-

ment 2B),

K̂
3ð Þ
align�2D t; DtRLð Þ ¼

X

2DtLL<9Dt

K̂
3ð Þ
aligned�LRL t; �DtRL;DtLLð Þþ

X

2DtRR<9Dt

K̂
3ð Þ
aligned�RLR t; DtRL;DtRRð Þ;

where Dt¼ 1=60 s.

K̂
3ð Þ
align�2D t; DtRLð Þ has rows and columns that are conceptually comparable to those of

K
2ð Þ
impulse t;Dt21ð Þ, as rows represent times since the most recent point and columns describe the tem-

poral distance between right and left points. However, in K̂
2ð Þ
impulse the columns are spaced by

16.67 ms Figure 4—figure supplement 2D), whereas in K̂
3ð Þ
align�2D the columns are spaced by 8.33 ms

(Figure 4—figure supplement 2B). This results from the fact that Dt21 is an integer number of

frames in K̂
2ð Þ
impulse; whereas 2DtRL is an integer number of frames in K̂

3ð Þ
align�2D. We thus averaged two

neighboring elements in K̂
3ð Þ
align�2D (Figure 4—figure supplement 2C), so that it has the same resolu-

tion as the K̂
2ð Þ
impulse.

We then summed both K̂
3ð Þ
align�2D and K̂

2ð Þ
impulse in each column, and we rescaled the two summed ker-

nels so that the norm of each was 1 (Figure 4E). In order to ease the visual comparison of the tem-

poral structure between the two kernels, we also flipped the sign of the summed K̂
3ð Þ
align�2D.

Comparing the second- and third-order kernels with the singular value
decomposition (SVD)

We factorized K̂
3ð Þ
align�2D and K̂

2ð Þ
impulse into the products of a set of basis vectors with SVD (Figure 4—

figure supplement 2EFG),

K̂2

impulse ¼Uð2Þ �
X ð2Þ �V ð2ÞT ;

K̂
ð3Þ
align�2D ¼Uð3Þ �

X ð3Þ �V ð3ÞT ;

where U ið Þ; S ið Þ;V ið Þ; are the left-singular vectors, singular values, and right-singular vectors of

the associated ith-order kernel. We use u
2ð Þ
1
;v

2ð Þ
1

(u
3ð Þ
1
;v

3ð Þ
1
) to denote the left and right singular vectors

corresponding to the largest singular values. For visualization purposes, in Figure 4—figure supple-

ment 2G, we flipped the sign of v
3ð Þ
1

so that readers could visually compare the temporal structure of

these two vectors.

Extracting kernels of various motion detectors that were optimized to
predict image velocity in natural scenes
We characterized four other motion detectors (Figure 4—figure supplement 3) with Volterra ker-

nels (Fitzgerald and Clark, 2015). These motion detectors have various physiological plausible

structures and were optimized to predict image velocities in natural scenes. We fed the same sto-

chastic binary stimuli sequence to these motion detectors, collected the corresponding responses,

and extracted the second and third-order kernels using reverse-correlation. In Figure 4F, we pre-

sented the summed kernel strength of the third-order kernels. Note that we only presented several

examples, and the spatiotemporal arguments of these examples are represented graphically.
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Natural scene dataset
We used a natural scene dataset (Meyer et al., 2014), which contains 421 panoramic luminance-cali-

brated naturalistic two-dimensional pictures. Each picture has 927� 251 pixels and subtends 360˚

horizontally and 97.4˚ vertically, so that the spatial resolution is ~0.30˚/pixel. In our study, we used 1-

dimensional images, which were single rows from the two-dimensional pictures. Therefore, there

were 105671 ¼ 421� 251 images in the dataset. We refer to the two-dimensional scenes as pictures

or photographs, and refer to the one-dimensional slices as images.

Preprocessing photographs
To simulate the photoreceptors, we converted the luminance pictures into contrast pictures with a

blurring step and contrast computation step.

First, to simulate the spatial resolution of the fly’s ommatidia, we blurred the original photograph

(Figure 4—figure supplement 1B), denoted by I, with a two-dimensional Gaussian filter fblur x; yð Þ.

Iblur x;yð Þ ¼ I*fblur ¼
u;v

X

I xþ u;yþ vð Þfblur u;v
� �

;

fblur u;vð Þ ¼ 1

2pl2blur
exp �u2þ v2

2l2blur

� �

; u� � u� uþ; v� � v� vþ:

where * denotes cross-correlation. The filter extends to �3lblur, that is

uþ ¼ vþ ¼ u�j j ¼ v�j j ¼ 3lblur, where lblur is related to full-width-at-half-maximum (FWHM) by

lblur ¼ FWHMblur

2
ffiffiffiffiffiffiffi

2 ln2
p , and we chose FWHMblur ¼ 5:3˚ (Stavenga, 2003). The original pictures cover the full

circular range horizontally, but only 97.4˚ vertically. When the range of the filter extended beyond

the vertical boundary of the picture, we padded the picture by ’vertical reflection’. This reflection

padding was also used when we calculated the local mean-luminance. In Figure 1B, where we dem-

onstrated one example picture, we did not perform this blurring step in order to preserve high spa-

tial acuity such that it is pleasing for human eyes.

Second, we converted the luminance signals in the blurred photograph to contrast signals (Fig-

ure 1—figure supplement 1CD) (Fitzgerald and Clark, 2015),

c x;yð Þ ¼ Iblur x;yð Þ� Imean x;yð Þ
Imean x;yð Þ ;

Imean x;yð Þ ¼ Iblur*flocal�mean;

where c x;yð Þ is the contrast at each location x;yð Þ. Imean is the local mean luminance, which is the

averaged luminance weighted by a two-dimensional Gaussian spatial filter flocal�mean. The length scale

of flocal�mean can be equivalently described by llocal�mean and FWHMlocal�mean, where

llocal�mean ¼ FWHMlocal�mean

2
ffiffiffiffiffiffiffi

2 ln2
p . We swept FWHMlocal�mean from 10˚ to 75˚ (Figure 3—figure supplement

2ABC).

Alternatively, we also computed the local mean luminance over time instead of over space in Fig-

ure 3—figure supplement 2FG,

Imean x;y; tð Þ ¼
u

X

Iblur�time x;y; tð Þflocal�mean�time t� uð Þ;

where Iblur�time x;y; tð Þ is the simulated naturalistic moving luminance signal (Fitzgerald and Clark,

2015), and the local mean luminance was the averaged luminance signals over time, with the tempo-

ral filter flocal�mean�time tð Þ ¼ exp �t=tlocal�meanð Þ, where flocal�mean�time tð Þ is normalized to have a sum of 1.

We swept tlocal�mean from 10 ms to 500 ms (Figure 3—figure supplement 2FG).

Depending on the parameters in local mean computation, we had 20 natural scene datasets,

including 14 datasets whose local mean luminance was computed statically and 6 dynamically.

Unless specified, we used the natural scene dataset with contrast images preprocessed statically

with FWHMlocal�mean ¼ 25˚.
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Eliminating the higher order structure of natural scene ensemble
We created a synthetic image dataset where we effectively preserved only the second-order struc-

ture of natural scenes ensemble and eliminated the higher-order structure. We viewed each 1D

image as a random vector determined by Pnatural Xð Þ; where X is a n-dimensional vector (n ¼ 927 for

927 pixels). The covariance matrix of Pnatural Xð Þ determines the point variance and pairwise spatial

correlations in natural scenes. We intended to construct a Gaussian distribution Psynthetic Xð Þ such that

its covariance matrix is the same as Pnatural Xð Þ. In this way, the image ensemble sampled from

Psynthetic Xð Þ will contain the same second-order statistics as the natural scene ensemble, but it would

lack the higher order statistics present in the natural scene ensemble.

Because the pixels in images are horizontally translational invariant, the covariance matrix

of Pnatural Xð Þ is a circulant matrix and can be diagonalized by a discrete Fourier transform. Therefore,

we constructed Psynthetic Xð Þ and generated the synthetic dataset in the frequency domain

(Bialek, 2012). Operationally, we first performed a discrete Fourier transform (with fft function in

Matlab v2018a, RRID:SCR_001622) on each one-dimensional image in the natural scene dataset and

obtained its Fourier domain representation y ið Þ ¼ y
ið Þ
k1
; y

ið Þ
k2
; . . . ; y

ið Þ
kn

� �

, where ið Þ denotes the ith images,

and kn denotes the knth Fourier component. We then calculated the average power of frequency kn,

denoted as s2

kn
, where s2

kn
¼ 1

m

P

m

i

y
ið Þ
kn

� �

y
ið Þ
kn

� ��
, and � denotes complex conjugation. At each fre-

quency kn, we built two Gaussian distributions G< ~N 0;
s2

kn

2

� �

and G= ~N 0;
s2

kn

2

� �

. To generate one

synthetic image, we sampled two real numbers from these two distributions as the real and imagi-

nary part of Fourier component of the synthetic image at frequency kn. In the end, we performed an

inverse Fourier transform to the sampled Fourier components to gain a synthetic image in the spatial

domain. In total, we generated 1000 high-order-structure-eliminated synthetic images, and refer to

this synthetic image dataset to as the dataset in which higher order structure was eliminated.

Computing and manipulating statistics of individual one-dimensional
images
The natural scene dataset was comprised of an ensemble of heterogeneous images, and the statis-

tics of different images can be drastically different from each other. Thus, we considered each one-

dimensional image to have its own contrast distribution, P
ið Þ
pixel Xð Þ, where i indexes the image and the

contrast of each pixel in an image as an independent sample of the random variable X. For each nat-

ural image, we computed its sample mean, sample variance, sample skewness, and sample kurtosis

of pixels, and show the histogram of these statistics (Figure 5—figure supplement 1

and Figure 5B).

We generated 14 ¼ 2þ 10þ 2 synthetic image datasets to mimic various statistical properties of

natural scenes (Table 2). These 14 datasets differ in three parameters: (1) the contrast range; (2)

whether the contrast skewness was constrained; and (3) the specific value of the imposed skewness

when the skewness was constrained. We conceptually justify this image synthesis method in Appen-

dix 2, and here we focus on methodological details. For every image in the natural scene dataset,

we generated a corresponding image in each synthetic image dataset. This involved two steps.

In step one, we determined all relevant image statistics and generated the corresponding maxi-

mum entropy distribution (MED). Operationally, for each individual image, we found its contrast

range, cmin; cmax½ �; the largest contrast magnitude, dc ¼ max jcminj; jcmaxjð Þ; and the sample mean, c�.

We then derived the contrast range specified in Table 2, binned the range into N discrete levels, cal-

culated the contrast frequency at each level to estimate P
ið Þ
pixel Xð Þ; and estimated the contrast vari-

ance cs2 and skewness cg from this estimated distribution. Finally, we solved the MED (Appendix 2)

with the constrained statistics specified in Table 2. In the ’imposed skewness’ column, ’NA’ means

that the skewness was not constrained in the MED.

In step two, we generated the synthetic image. The solved MED captures the pixel statistics but

does not capture any spatial correlations between pixels. Therefore, we decided to interpolate

between sampled pixels to coarsely mimic the spatial correlations. Operationally, for an individual

image, we calculated its spatial correlation function and found the cutoff distance, Dxa; where the

correlation falls below a ¼ 0:2. We then sampled contrast values independently from the solved
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MED and placed these contrasts Dxa pixels apart. Finally, we up-sampled the low-resolution image

to a high-resolution image using the resample function in Matlab v2018a (RRID:SCR_001622).

Note that MED-3 through MED-7 are theoretically related to MED-8 through MED-12 by contrast

inversion. We thus generated synthetic datasets MED-8 to MED-12 by simply inverting the contrast

of images in dataset MED-3 to MED-7.

Simulating naturalistic motion with natural scenes
To simulate the full-field motion signals induced by self-rotation in the natural environment, we rig-

idly translated images at various horizontal velocities (Fitzgerald and Clark, 2015). For each trial,

we randomly chose one 1-dimensional image from the dataset. We had 35 image datasets in total,

including 20 natural scene datasets preprocessed with different parameters and 15 synthetic image

datasets, we therefore built 35 naturalistic motion datasets, where all images were sampled from a

particular image dataset in each motion dataset. We sampled the velocity in two ways. First, we sam-

pled it from a Gaussian distribution with zero mean and standard deviation of 114 ˚/s. This standard

deviation is the measured standard deviation of the spontaneous rotational turning speed of freely

walking flies. In Figure 3—figure supplement 1, we varied the standard deviation of the Gaussian

distribution from 32 ˚/s to 512 ˚/s. Second, we selected an image velocity at discrete values ranging

from 0 ˚/s to 1000 ˚/s with a 10 ˚/s interval. Given an image-velocity pair, we rigidly move this image

with this velocity for one second. The temporal resolution is 60 Hz.

To eliminate any potential left-right asymmetry in naturalistic motion datasets, if we moved an

image rightward at a certain speed, we always simulated a paired trial in which the same image was

flipped horizontally and moved leftward with the same speed.

Calculating the responses of different motion detectors to naturalistic
motion signals
Our study concerns two motion detectors: the HRC and the measured kernels. For the HRC, we cre-

ated an array of 54 overlapping HRC elementary motion detectors which extended 270˚ horizontally.

We calculated the instantaneous HRCs’ outputs at the end of each trial and averaged them across

space to get the model’s output rHRC. For the measured kernels, we calculated the instantaneous

output of the kernels at the end of each trial, including the second-order response, r 2ð Þ; the third-

order response, r 3ð Þ, and the total response, r ¼ r 2ð Þ þ r 3ð Þ.
In Table 3, we listed the simulation parameters for each figure, including the motion detector,

the image dataset, the velocity distribution, and the number of trials (image-velocity pairs). If the

Table 2. Parameters for synthetic image datasets.

Index of dataset Imposed mean Imposed variance Imposed skewness Contrast range Discrete levels

MED-1 c� cs2 NA ½c� � dc; c� þ dc� 32

MED-2 c� cs2 cg ½c� � dc; c� þ dc� 32

MED-3 0 cs2 1.25 ½�dc; dc� 32

MED-4 0 cs2 1 ½�dc; dc� 32

MED-5 0 cs2 0.75 ½�dc; dc� 32

MED-6 0 cs2 0.5 ½�dc; dc� 32

MED-7 0 cs2 0.25 ½�dc; dc� 32

MED-8 0 cs2 �0.25 ½�dc; dc� 32

MED-9 0 cs2 �0.5 ½�dc; dc� 32

MED-10 0 cs2 �0.75 ½�dc; dc� 32

MED-11 0 cs2 -1 ½�dc; dc� 32

MED-12 0 cs2 �1.25 ½�dc; dc� 32

MED-13 0 cs2 NA [-2.5, 2.5] 512

MED-14 0 cs2 cg [-2.5, 2.5] 512
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dataset is natural scenes, we also listed its preprocessing parameter FWHMlocal�mean. If the velocity

distribution is Gaussian, we listed its standard deviation.

For example, in Figure 3, we predicted the motion estimates of the measured kernel to the natu-

ralistic motion. The naturalistic motion was created with images sampled from the natural scene

dataset that has preprocessing parameter FWHMlocal�mean ¼ 25˚, and created with velocity sampled

from the Gaussian distribution that has standard deviation of 114 ˚/s. We simulated 10,000 indepen-

dent trials, and had 20,000 trials after enforcing left-right symmetry.

Evaluating the performance of a motion detector
We denote the true velocity of the image as vimg and the response of a motion detector as vest. We

assessed the accuracy of the motion estimation using two metrics. First, we measured the Pearson

correlation � between vimg and vest,

�¼ covðvest;vimgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðvestÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðvimgÞ
p ;

where the variances and covariances are evaluated across any of the naturalistic motion datasets

introduced above. To estimate the uncertainty in � induced by finite sample sizes, we randomly sep-

arated all independently simulated trials into 10 groups, calculated the Pearson correlation for each

group, and estimated the SEM of the Pearson correlation across the groups. Second, when the

image velocity was sampled at discrete values, we measured the variance of vest conditional on each

possible image velocity, var vestjvimg ¼ v0
� �

.

Evaluating the improvement added by the third-order response
To evaluate how much improvement was added by the third-order response to the second-order

response, we calculated the relative Pearson correlations: improvement ¼ � 2þ3ð Þ�� 2ð Þ

� 2ð Þ . As in Evaluating

the performance of a motion detector, to estimate the uncertainty induced by finite sample sizes,

Table 3. Natural scene datasets for naturalistic motion simulations.

Image dataset
(FWHMlocal�mean=tlocal�mean)

Velocity distribution (svel, or discrete
values, ˚/s) Number of trials

Motion
Detector

Figure 1C green Natural scene (25˚) Discrete [0:10:1000] 1000 each velocity HRC

Figure 1C purple Synthetic-higher order
structure eliminated

Discrete [0:10:1000] 1000 each velocity HRC

Figure 3 Natural scene (25˚) Gaussian (114) 10000 Fly

Figure 3—
figure supplement 1

Natural scene (25˚) Gaussian
(32, 64, 128, 256, 512)

8000 each velocity
distribution

Fly

Figure 3—
figure supplement 2DE

Natural scene (10˚ ~ 75˚) Gaussian (114) 8000 each
FWHMlocal�mean

Fly

Figure 3—
figure supplement 2FG

Natural scene (10 ~ 500 ms) Gaussian (114) 8000 each tlocal�mean Fly

Figure 5CDE green,
Figure 5—
figure supplement 3A

Synthetic-MED-1 Gaussian (114) 8000 Fly

Figure 5CDE brown
Figure 5—
figure supplement 3B

Synthetic-MED-2 Gaussian (114) 8000 Fly

Figure 5FGH
Figure 5—
figure supplement 3CD

Synthetic-MED 5–14 Gaussian (114) 8000 each dataset Fly

Figure 5—figure supplement
3G blue

Synthetic-MED-13 Gaussian (114) 8000 Fly

Figure 5—figure supplement
3G red

Synthetic-MED-14 Gaussian (114) 8000 Fly
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we separated all trials into 10 groups, calculated the Pearson correlation for each group, calculated

the improvements in each group, and estimated the SEM of the improvements across the groups.

Assessing the empirical weighting of the second-order and third-order
responses
We modeled the image velocity as a linear combination of the second-order and third-order

responses

vimg ¼ a 2ð Þr 2ð Þþa 3ð Þr 3ð Þ þ �img;

and estimated the optimal weighting coefficients, âð2Þ; â 3ð Þ� �

, using ordinary least square regression.

We calculated �best ¼
cov rbest;vimgð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var rbestð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var vimgð Þ
p , where rbest ¼ â 2ð Þr 2ð Þ þ â 3ð Þr 3ð Þ. We computed the relative

weighting coefficient as w¼ a
2ð Þ=a 3ð Þ.

Calculating the residual of second-order response
The second-order response can be viewed as a function of the image velocity, as well as noise that

depends on image structure:

r 2ð Þ ¼ b 2ð Þ vimgþ � 2ð Þ:

We estimated the noise term as

�̂ 2ð Þ ¼ r 2ð Þ� b̂ 2ð Þvimg;

where b̂ 2ð Þ minimized the squared residual and �̂ 2ð Þ denotes the estimated residual (noise).
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Appendix 1

Modeling the fly’s optomotor turning response with
Volterra kernels
The visual motion system of the fly can generally be considered as a nonlinear mapping from

spatiotemporal visual stimuli, denoted s x; tð Þ, to behavioral turning responses, denoted r tð Þ. In
general, any time-invariant nonlinear system can be written with a Volterra series,

r tð Þ ¼H 0ð ÞþH 1ð Þ s x; tð Þ½ �þH 2ð Þ s x; tð Þ½ �þH 3ð Þ s x; tð Þ½ �þ . . . ;

where each H nð Þ is a convolutional operator,

H nð Þ s x; tð Þ½ � ¼
Z

dh1

Z

dt1 � � �
Z

dhn

Z

dtnK
nð Þ h1; . . . ;hn;t1; . . . ;tnð Þs h1; t� t1ð Þ � � � s hn; t� tnð Þ;

hi are spatial coordinates, ti are temporal coordinates, and K nð Þ is termed the nth-order

Volterra kernel (Marmarelis and McCann, 1973; Schetzen, 1980). The system is fully specified

by these kernels. In this section, we describe how we use this framework to model the fly’s

visual system. We make several simplifying assumptions about the fly’s visual system.

Assumption 1. The system is third-order. This implies, K nð Þ h1; . . . ;hn; t1; . . . ; tnð Þ ¼ 0 for n>3:

This choice aims to account for the system’s potential ability to asymmetrically process light-

dark signals while minimally extending the canonical second-order algorithm.

Assumption 2. The system is spatially-invariant. This implies that

K nð Þ h1; . . . ;hn;t1; . . . ;tnð Þ ¼K nð Þ h1þ dh; . . . ;hnþ dh;t1; . . . ;tnð Þ:

Assumption 3. The system consists of a spatial array of elementary motion detectors

(EMDs), and each EMD responds to inputs that are close in space. Since the spatial distance

between neighboring ommatidia in fruit fly is around 5˚, we discretize space into pixels with

Dx¼ 5
� resolution, and we use integer indices to denote the relative spatial location. We

further assume that the fly EMD does not respond to interactions between points that are

spaced more than Dx apart,

K nð Þ h1; . . . ;hn;t1; . . . ;tnð Þ ¼ 0; hi�hj

�

�

�

�>Dx:

This modeling simplification is frequently made in fly neuroscience (Buchner, 1976), but

modern receptive field measurements in individual motion detectors in Drosophila suggest

that they integrate over a wider field of view (Leong et al., 2016; Salazar-Gatzimas et al.,

2016) .

Assumption 4. The system is mirror anti-symmetric. This means that if r tð Þ is the system’s

response to stimulus s x; tð Þ, then the system will respond to s �x; tð Þ with response �r tð Þ. This is
an important assumption for motion processing systems, and we will discuss its implications

for Volterra kernels later in this section.

Given the first three assumptions, we model the fly’s turning response r tð Þ as

r tð Þ ¼
X

NEMD

�¼1

r
0ð Þ
� tð Þþ r

1ð Þ
� tð Þþ r

2ð Þ
� tð Þþ r

3ð Þ
� tð Þ

� �

;

where

r
0ð Þ
� tð Þ ¼ r0;

r
1ð Þ
� tð Þ ¼

Z

dt1K
1ð Þ

t1ð Þs x�; t� t1

� �

þ
Z

dt1K
1ð Þ

t1ð Þs x� þDx; t� t1

� �

;
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r
2ð Þ
� tð Þ ¼

X

h12f0; Dxg

X

h22f0; Dxg

Z Z

dt1dt2K
2ð Þ h1;h2;t1;t2ð Þs x� þh1; t� t1

� �

s x� þh2; t� t2

� �

;

r
3ð Þ
� tð Þ ¼

X

h12f0; Dxg

X

h22f0; Dxg

X

h3¼f0; Dxg

Z Z Z

dt1dt2dt3K
3ð Þ h1;h2;h3;t1;t2;t3ð Þ

�s x� þh
1
; t� t1

� �

s x� þh
2
; t� t2

� �

s x� þh
3
; t� t3

� �

:

The response r tð Þ is the sum of responses contributed by the ith-order kernel at different

spatial locations �, denoted with r
ið Þ
� tð Þ. K 1ð Þ

t1ð Þ; K 2ð Þ h
1
;h

2
;t1;t2ð Þ; and K 3ð Þ h

1
;h

2
;h

3
;t1;t2;t3ð Þ

approximates how each EMD maps the inputs s x�; t
� �

and s x� þDx; t
� �

into its output. NEMD ¼ 54

is the number of putative EMD units.

Next, we will simplify the notations for K 2ð Þ h
1
;h

2
; t1; t2ð Þ and K 3ð Þ h

1
;h

2
;h

3
; t1; t2; t3ð Þ , and

discuss symmetries in these kernels.

The second-order kernel K 2ð Þ h1;h2; t1; t2ð Þ is a four-dimensional tensor, with 2 dimensions in

time and 2 dimensions in space. Since h1 � h2j j � Dx , the values that can be taken are limited

2 discrete points, and all possible combinations of (h
1
;h

2
) are ðL; LÞ, ðL;RÞ, ðR; LÞ

and R;Rð ), where LðRÞ denotes left (right). We replace the spatial arguments with subscripts,

and the 4-dimensional K 2ð Þ h1;h2; t1; t2ð Þ can be rewritten with four 2-dimensional kernels,

K 2ð Þ h1;h2;t1;t2ð Þ ¼

K
2ð Þ
LL t1;t2ð Þ

K
2ð Þ
LR t1;t2ð Þ

K
2ð Þ
RL t1;t2ð Þ

K
2ð Þ
RR t1;t2ð Þ

8

>

>

>

<

>

>

>

:

:

In K 2ð Þ
h1;h2

t1;t2ð Þ; the first (second) temporal argument is related to the spatial location

represented by the first (second) subscript. For example, K
2ð Þ
LR t1;t2ð Þ means

K 2ð Þ h1 ¼ L;h2 ¼ R;t1;t2ð Þ.
There are three types of symmetries in these K 2ð Þ

h1;h2

t1; t2ð Þ. First, since the system is

translationally-invariant, K
2ð Þ
LL t1; t2ð Þ ¼ K

2ð Þ
RR t1; t2ð Þ. Second, K 2ð Þ

LR t1; t2ð Þ describes how the system

responds to sL t � t1ð ÞsR t � t2ð Þ, and K
2ð Þ
RL t2; t1ð Þ describes how the system responds to

sR t � t2ð ÞsL t � t1ð Þ.
Because multiplication operator is commutative, that is

sL t � t1ð ÞsR t � t2ð Þ ¼ sR t � t2ð ÞsL t � t1ð Þ, one should have K
2ð Þ
LR t1; t2ð Þ ¼ K

2ð Þ
RL t2; t1ð Þ.

Therefore, the second-order response of an EMD can be simplified as,

r
ð2Þ
� ðtÞ ¼

Z Z

dt1dt2
�

2K
ð2Þ
LR ðt1;t2Þs�ðt� t1Þs�þ1ðt� t2Þ

þK
ð2Þ
LL ðt1;t2Þ

�

s�ðt� t1Þs�ðt� t2Þþ s�þ1ðt� t1Þs�þ1ðt� t2Þ
��

;

where we replace the spatial arguments in stimulus with discrete subscripts � as well.

Third, to derive the consequences of mirror anti-symmetry, note that the second-order

kernel is locally sensitive to two discrete points in space, s x; tð Þ ¼ sL tð Þ; sR tð Þ½ �. Mirror-anti-

symmetry states that if the system’s response to sL tð Þ ¼ a tð Þ and sR tð Þ ¼ b tð Þ is r tð Þ, then the

system’s response to the reflected stimulus, sL tð Þ ¼ b tð Þ and sR tð Þ ¼ a tð Þ, is �r tð Þ, where a tð Þ
and b tð Þ are arbitrary functions of time. The system’s response when sL tð Þ ¼ a tð Þ and sR tð Þ ¼
b tð Þ is

r
2ð Þ
�;ab tð Þ ¼

Z Z

dt1dt2 K
2ð Þ
LL t1;t2ð Þ a t� t1ð Þa t� t2ð Þþ b t� t1ð Þb t� t2ð Þð Þþ 2K

2ð Þ
LR t1;t2ð Þa t� t1ð Þb t� t2ð Þ

h i

;

and the response when sL tð Þ ¼ b tð Þ and sR tð Þ ¼ a tð Þ is
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r
2ð Þ
�;ba tð Þ ¼

Z Z

dt1dt2 K
2ð Þ
LL t1;t2ð Þ b t� t1ð Þb t� t2ð Þþ a t� t1ð Þa t� t2ð Þð Þþ 2K

2ð Þ
LR t1;t2ð Þb t� t1ð Þa t� t2ð Þ

h i

:

If r
2ð Þ
�;ba tð Þ ¼�r

2ð Þ
�;ab tð Þ for any a tð Þ and b tð Þ, then one must have

K
2ð Þ
LL t1;t2ð Þ ¼�K

2ð Þ
LL t1;t2ð Þ ¼ 0;

and

K
2ð Þ
LR t1;t2ð Þ ¼�K

2ð Þ
LR t2;t1ð Þ:

Thus, the general expression for the second-order response of the EMD further simplifies to

r
2ð Þ
� tð Þ ¼ 2

Z Z

dt1dt2K
2ð Þ
LR t1;t2ð Þs� t� t1ð Þs�þ1 t� t2ð Þ:

We analyzed the third-order kernel in a similar manner. It is a 6-dimensional tensor, with 3

dimensions in time and 3 dimensions in space. Its spatial arguments are also limited to two

points, and all possible combinations of h1; h2; h3ð Þ are ðL;L;LÞ, ðR;R;RÞ, ðL;L;RÞ, ðL;R;LÞ,
ðR;L;LÞ, ðR;R;LÞ, R;L;Rð Þ and ðL;R;RÞ. We replace the spatial arguments with subscripts, and

represent the 6-dimensional third-order kernel with eight 3-dimensional kernels,

K 3ð Þ h
1
;h

2
;h

3
;t1;t2;t3ð Þ ¼

K
3ð Þ
LLL t1;t2;t3ð Þ

K
3ð Þ
RRR t1;t2;t3ð Þ

K
3ð Þ
LLR t1;t2;t3ð Þ

K
3ð Þ
LRL t1;t2;t3ð Þ

K
3ð Þ
RLL t1;t2;t3ð Þ

K
3ð Þ
RRL t1;t2;t3ð Þ

K
3ð Þ
RLR t1;t2;t3ð Þ

K
3ð Þ
LRR t1;t2;t3ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

:

As was the case of the second-order kernel, in K 3ð Þ
h1;h2;h3

t1;t2;t3ð Þ the first (second, third)

temporal argument is related to the spatial location denoted with the first (second, third)

subscript. For example, K
3ð Þ
LLR t1;t2;t3ð Þ ¼K 3ð Þ h1 ¼ L;h2 ¼ L;h3 ¼ R;t1;t2;t3ð Þ.

As before, these eight blocks are redundant. From spatial-invariance and the commutative

property of multiplication, one finds

K
3ð Þ
LLL t1;t2;t3ð Þ ¼K

3ð Þ
RRR t1;t2;t3ð Þ;

K
3ð Þ
LLR t1;t2;t3ð Þ ¼K

3ð Þ
LRL t1;t3;t2ð Þ ¼K

3ð Þ
RLL t3;t1;t2ð Þ;

K
3ð Þ
RRL t1;t2;t3ð Þ ¼K

3ð Þ
RLR t1;t3;t2ð Þ ¼K

3ð Þ
LRR t3;t1;t2ð Þ:

For each 3D tensor, at least two out of the three spatial arguments are the same, so there is

symmetry within the tensor. For example,

K
3ð Þ
LLR t1;t2;t3ð Þ ¼K

3ð Þ
LLR t2;t1;t3ð Þ;

and

K
3ð Þ
LRR t1;t2;t3ð Þ ¼K

3ð Þ
LRR t1;t3;t2ð Þ:

Following this logic, the third-order response of an EMD can be written as
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r
ð3Þ
� ðtÞ ¼

Z Z Z

dt1dt2dt3
�

3K
ð3Þ
LLRðt1;t2;t3Þs�ðt� t1Þs�ðt� t2Þs�þ1ðt� t3Þ

þ 3K
ð3Þ
RRLðt1;t2;t3Þs�þ1ðt� t1Þs�þ1ðt� t2Þs�ðt� t3ÞþK

ð3Þ
LLLðt1;t2;t3Þ

�
�

s�ðt� t1Þs�ðt� t2Þs�ðt� t3Þþ s�þ1ðt� t1Þs�þ1ðt� t2Þs�þ1ðt� t3Þ
��

:

One can again apply the definition of mirror anti-symmetry to find

K
3ð Þ
LLL t1;t2;t3ð Þ ¼ 0;

K
3ð Þ
LLR t1;t2;t3ð Þ ¼�K

3ð Þ
RRL t1;t2;t3ð Þ:

Thus, with mirror anti-symmetry, the third-order response of an EMD can be simplified as,

r
ð3Þ
� ðtÞ ¼ 3

RRR

dt1dt2dt3K
ð3Þ
LLRðt1;t2;t3Þ½ðs�ðt� t1Þs�ðt� t2tÞs�þ1ðt� t3Þ�

s�þ1ðt� t1Þs�þ1ðt� t2Þs�ðt� t3ÞÞ�:

We have shown how mirror anti-symmetry manifest in the second and third-order kernels. In a

similar way, for the zero- and first-order kernel, mirror anti-symmetry implies that,

r0 ¼ 0;

K 1ð Þ
t1ð Þ ¼ 0:

Intuitively, r0 term is the response of the EMD when there is no visual input. A reasonable

motion detector should not be biased to turn left or right when there is no visual input. The

first-order kernel describes how the response is influenced by stimulus at a single spatial

location, which should not give any motion information, thus K 1ð Þ
t1ð Þ ¼ 0.

In summary, in our model, the turning response is

r tð Þ ¼
X

�

r� tð Þ ¼
X

�

r
2ð Þ
� tð Þþ r

3ð Þ
� tð Þ

� �

;

r
2ð Þ
� tð Þ ¼ 2

Z Z

dt1dt2K
2ð Þ
LR t1;t2ð Þs� t� t1ð Þs�þ1 t� t2ð Þ;

r
ð3Þ
� ðtÞ ¼ 3

RRR

dt1dt2dt3K
ð3Þ
LLRðt1;t2;t3Þ½ðs�ðt� t1Þs�ðt� t2Þs�þ1ðt� t3Þ�

s�þ1ðt� t1Þs�þ1ðt� t2Þs�ðt� t3ÞÞ�;

where r � tð Þ is the response of each EMD at spatial location �. In the experiments, we

discretized time into bins of size Dt¼ 1=60 seconds, so the integrals become summations, and

we write the local responses as

r
2ð Þ
� tð Þ ¼ 2

t1;t2

X

K
2ð Þ
LR t1;t2ð Þs� t� t1ð Þs�þ1 t� t2ð Þ Dtð Þ2;

r
3ð Þ
� tð Þ ¼ 3

X

t1 ;t2;t3

K
3ð Þ
LLR t1;t2;t3ð Þ s� t� t1ð Þs� t� t2ð Þs�þ1 t� t3ð Þ� s�þ1 t� t1ð Þs�þ1 t� t2ð Þs� t� t3ð Þ

� �� �

Dtð Þ3:
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Appendix 2

Manipulating image statistics with maximum entropy
distributions
To investigate how the skewness of the image contrast distribution influences motion

detection, we want to develop a method for generating synthetic images with specified

skewness values. In Section 1, we formalize this image synthesis problem and provide a

rationale for the maximum entropy method. In Section 2, we derive formulae for finding

maximum entropy distributions (MED) with constrained lower-order moments. In Section 3, we

discuss how the contrast range sets implicit constraints on the MED.

1. Motivation
We consider each 1-dimensional natural image to have its own contrast distribution, P

ið Þ
pixel Xð Þ,

such that the contrast of each pixel in the ith image is an independent sample from P
ið Þ
pixel Xð Þ.

We would like to generate a synthetic contrast distribution, P ið Þ
syn Xð Þ, such that P ið Þ

syn Xð Þ shares
certain low-order contrast statistics with P

ið Þ
pixel Xð Þ. More specifically, we want P ið Þ

syn Xð Þ and
P

ið Þ
pixel Xð Þ to have matched means, variances, and/or skewness levels. However, it’s important to

recognize that P ið Þ
syn Xð Þ is ambiguously determined by its lower-order moments, because many

distributions share finite set of moments. Nevertheless, among all of these qualified

distributions, the distribution with maximal entropy is unique. The maximum entropy

requirement thus implicitly specifies all unconstrained statistics. Maximum entropy

distributions are also conceptually appealing because they have the least statistical structure

consistent with the set of chosen constraints. Here we use maximum entropy distributions to

generate synthetic images with specific statistics by sampling pixel contrasts from P ið Þ
syn Xð Þ. By

manipulating the statistics that define P ið Þ
syn Xð Þ, we are able to manipulate the contrast statistics

of the synthetic image.

2. Solving maximum entropy distribution by minimizing the free
energy function
To illustrate the structure of the maximum entropy distribution (MED) with constrained

moments, we concretely consider the example when the MED is constrained to have a specific

mean, variance, and skewness. We refer to this distribution as the mean-variance-and-

skewness constrained MED. Since constraining the mean, variance, and skewness is equivalent

to constraining the first, second and third moments, we equivalently refer to this distribution

as the third-order MED.

The entropy of a random variable X is

H Xð Þ ¼E � logP Xð Þ½ �;

where P Xð Þ is the probability distribution of X, and E½� is the expectation operator over P Xð Þ.
In particular, E½� ¼

R

dxP X ¼ xð Þ½�. By definition, the third-order MED is the probability

distribution, P� Xð Þ, such that

P� Xð Þ ¼
P Xð Þ

argmax H Xð Þ;

subject to,

E Xi
� �

¼ �i; i¼ 1;2;3:

where �1, �2 and �3 are the first-, second-, and third moments. To optimize for P� Xð Þ, one can

introduce Lagrange multipliers, l0;l1;l2 and l3, to enforce the normalization of the probability
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distribution and the three moment constraints. The problem is thus transformed into

extremizing

L P Xð Þ;l0;l1; l2; l3ð Þ ¼E � logP Xð Þ½ �þl0

Z

dxP X ¼ xð Þ� 1

� �

þ
X

i¼1;2;3

li E Xi
� �

��i

� �

:

Note that L P Xð Þ;lð Þ is a functional of P Xð Þ, and a necessary condition for P Xð Þ to extremize L

is

0¼ dL

dP X ¼ xð Þ ¼� logP X ¼ xð Þþ 1ð Þþl0þl1xþl2x
2 þl3x

3:

This implies that third-order MED has the form

P X ¼ xð Þ ¼ exp �1þl0 þl1xþl2x
2 þl3x

3
� �

;

and the Lagrange multipliers must be solved to satisfy
R

dxP X ¼ xð Þ ¼ 1; and

E Xi½ � ¼ �i; i¼ 1;2;3:

An alternative to solving the nonlinear constraint-satisfaction equations for the Lagrange

multipliers is to find l� ¼ l�
1
; l�

2
; l�

3

� �

such that

l� ¼
l

argmin F lð Þ;

where

F lð Þ ¼ log Z lð Þð Þ;Z lð Þ ¼
Z

dxQ x; lð Þ;Q x; lð Þ ¼ exp l1 x��1ð Þþl2 x2 ��2

� �

þl3 x3��3

� �� �

:

Here Q x;lð Þ can be thought of an unnormalized probability distribution for X, Z lð Þ is the
normalizing factor, and F lð Þ is the log of this normalizing factor. Readers familiar with

statistical mechanics will recognize F lð Þ as the free energy function and Z lð Þ as the partition

function. It turns out that the third-order MED is

P� Xð Þ ¼ 1

Z l�ð ÞQ x;l�ð Þ:

This distribution manifestly has the right functional form, so to prove that it is the third-order

MED we merely need to show that all constraints are satisfied by the distribution. Indeed, the

constraint that
R

dxP X ¼ xð Þ ¼ 1 is trivially satisfied because the partition function

Z l�ð Þ normalizes Q x;l�ð Þ. Since l� minimizes the free energy, we also know

qF l�ð Þ
qli

¼ 0:

This derivative is easily evaluated as

qF lð Þ
qli

¼ qlog Z lð Þð Þ
qli

¼ 1

Z lð Þ
qZ lð Þ
qli

¼ 1

Z lð Þ
q
R

dxQ x; lð Þ
qli

¼ 1

Z lð Þ

Z

dx
qQ x; lð Þ

qli

¼ 1

Z lð Þ

Z

dxQ x; lð Þ xi ��i

� �

¼ El Xi
� �

��i;

where El½� is the expectation operator over Pl xð Þ ¼Q x;lð Þ=Z lð Þ. Consequently,

qF l�ð Þ
qli

¼ 0¼)El� Xi
� �

¼ �i;

and minimizing the free energy provides parameters that guarantee that the constraints are

satisfied.

This free energy formulation is computationally convenient because F lð Þ is a convex

function that can be easily minimized using powerful techniques from convex optimization. To

see this, note that the matrix of second derivatives is,
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q
2F lð Þ
qliqlj

¼ q

qli

1

Z lð Þ
qZ lð Þ
qlj

¼� 1

Z lð Þ

� �2
qZ lð Þ
qli

qZ lð Þ
qlj

þ 1

Z lð Þ
q
2Z lð Þ
qliqlj

:

We showed above that

1

Z lð Þ
qZ lð Þ
qli

¼ El xi��i

� �

¼)� 1

Z lð Þ

� �2
qZ lð Þ
qli

qZ lð Þ
qlj

¼�El xi��i

� �

El xj ��j

� �

:

Similarly, we next note that

1

Z lð Þ
q
2Z lð Þ
qliqlj

¼ 1

Z lð Þ
q
2

qliqlj

Z

dxQ x; lð Þ ¼ 1

Z lð Þ

Z

dx
q
2Q x; lð Þ
qliqlj

¼ 1

Z lð Þ

Z

dxQ x; lð Þ xi ��i

� �

xj��j

� �

¼ El xi ��i

� �

xj ��j

� �� �

:

Therefore, these two terms together imply that

q
2F lð Þ
qliqlj

¼ El xi��i

� �

xj��j

� �� �

�El xi ��i

� �

E xj��j

� �

¼Covl xi ��i;x
j ��j

� �

:

Since the second derivative of F lð Þ is a covariance matrix for all values of l, and all covariance

matrices are positive semi-definite, this implies F lð Þ is a convex function.

Similarly, one can find the maximum entropy distribution (MED) with constrained mean and

variance by minimizing another free energy function:

l� ¼ l�
1
;l�

2

� �

¼
l

argmin F l1;l2ð Þ;

where

F lð Þ ¼ log Z lð Þð Þ;Z lð Þ ¼
Z

dxQ x; lð Þ;Q x; lð Þ ¼ exp l1 x��1ð Þþl2 x��2ð Þð Þ;

and the maximum entropy distribution will be

P� Xð Þ ¼ 1

Z l�ð ÞQ x;l�ð Þ:

We refer this distribution as the mean-and-variance-constrained MED or second-order MED.

In practice, we solved each MED by numerically minimizing its associated free energy

function with the fminunc function in MATLAB v2018a.

3. Contrast bounds set implicit constraints on the MED
In the previous section, we emphasized that the free energy, F, depends on the Lagrange

multipliers parameters l, because optimizing over these parameters allowed us to find the

corresponding MED. However, the free energy also depends on the constrained moments, �,

which entered the formulae as a set of fixed parameters. Moreover, the free energy depends

on the state space of the random variable, which is the set of values that X can take. For

continuous variables, this manifests as the integral bound, a; b½ �, in the partition function,

Z lð Þ ¼
R b

a
dxQ x; lð Þ. Therefore, we generally expect

l� ¼ l� �;a;bð Þ ¼
l

argmin F lj�;a;bð Þ:

Since X represents the pixel contrast, we refer to a;b½ � as the contrast range and a or b

separately as contrast bounds. In this section, we discuss in detail how l� depends on a;b½ �.
Since a;b½ � influences the MED, we say a;b½ � sets an implicit constraint on the MED.

A natural choice of the contrast range is the entire real line. For example, when one

constrains the mean and variance of a distribution and defines X on the entire real line, then
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the MED is the Gaussian distribution. Moreover, by rewriting the probability density of the

Gaussian

P X ¼ xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp � x��ð Þ2

2s2

 !

;

in a slightly different form

P X ¼ xð Þ ¼ e�1=2

ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp

�

s2
x��ð Þ� 1

2s2
x2 �s2 ��2
� �

� �

;

we may identify the Lagrange multipliers that minimize the free energy as, l�
1
¼ �

s2, l
�
2
¼� 1

2s2.

In the Gaussian distribution, the probability density drops to zero very fast as x goes to

positive or negative infinity, because l2x
2 is a large negative number in either case. However,

when one wants to find an MED whose highest-order constraint is an odd-order moment, a

finite contrast bound becomes necessary. This is because the sign of l2nþ1x
2nþ1 depends on

the sign of x for any natural number n, thereby causing the probability density to approach

zero on one half of the real line and to explode on the other half. To illustrate this point

concretely, consider the first-order MED that has a constrained mean. The first-order MED

must take the form

P X ¼ xð Þ ¼ 1

Z
exp l1 x��1ð Þð Þ:

In this distribution, exp l1 x��1ð Þð Þ blows up when x either goes to þ¥ or �¥ (unless l1 ¼ 0). In

any case, no normalizing factor Z could satisfy
Rþ¥
�¥

1

Z
exp l1 x��1ð Þð Þ ¼ 1. Therefore, the first-

order MED is generally ill-defined on the real line.

We thus sought to compute the dependence of the first-order MED on its contrast range.

The parameters in the MED minimize the free energy

l� ¼
l

argmin F lja;b;�1ð Þ ¼
l

argmin log

Z b

a

dxexp l x��1ð Þð Þ:

Without loss of generality, we can shift the x-axis such that the contrast range is symmetric

around 0. Setting x0 ¼ x� 1

2
bþ að Þ, we find

l* ¼
l

argmin F l
�

�b0;�0� �

¼
l

argmin log

Z b0

�b0
dx0 exp l x0��0ð Þð Þ;

where b0 ¼ 1

2
b� að Þ and �0 ¼ �1 � 1

2
bþ að Þ.

This optimization problem for the first-order MED can be solved analytically. First, note that

the partition function is

Z lð Þ ¼
Z b0

�b0
dx0 exp l x0��0ð Þð Þ ¼ 2b0 l=0

1

l
el b0��0ð Þ� el �b0��0ð Þ� �

l6=0

�

:

This partition function is continuous at l¼ 0. To see this, note that

l!0

limZ lð Þ ¼
l!0

lim
el b0��0ð Þ� el �b0��0ð Þ

l
¼

l!0

lim
b0��0ð Þel b0��0ð Þ� �b0��0ð Þel �b0��0ð Þ

1
¼ 2b0 ¼ Z 0ð Þ;

where we used L’Hôpital’s rule to evaluate the limit. Therefore the free energy,

F ljb0;�0ð Þ ¼ log 2b0ð Þ l=0

log el b0��0ð Þ� el �b0��0ð Þ� �

� log lð Þ l6=0

�

;

is also continuous at l¼ 0. Furthermore, the partition function is differentiable at l¼ 0. In

particular,
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dZ

dl

�

�

�

�

l¼0

¼
h!0

lim
Z hð Þ�Z 0ð Þ

h

¼
h!0

lim

1

h
eh b0��0ð Þ� eh �b0��0ð Þ� �

� 2b0

h

¼
h!0

lim
eh b0��0ð Þ� eh �b0��0ð Þ� 2b0h

h2

¼
h!0

lim
b0��0ð Þeh b0��0ð Þ� �b0 ��0ð Þeh �b0��0ð Þ� 2b0

2h

¼
h!0

lim
b0��0ð Þ2eh b0��0ð Þ� �b0��0ð Þ2eh �b0��0ð Þ

2

¼�2b0�0;

where we again used L’Hôpital’s rule. Consequently, the derivative of the free energy

at l¼ 0 is

dF

dl

�

�

�

�

l¼0

¼ 1

Z

dZ

dl

�

�

�

�

l¼0

¼�2b0�0

2b0
¼��0:

The derivative for l 6¼ 0 is straightforward to evaluate, and we find

dF

dl

�

�

�

�

l6¼0

¼ b0��0ð Þel b0��0ð Þ� �b0��0ð Þel �b0��0ð Þ

el b0��0ð Þ� el �b0��0ð Þ � 1

l
¼��0þ b0

elb
0 þ e�lb0

elb
0 � e�lb0

� 1

l
:

Therefore, the final formula is

dF l
�

�b0;�0� �

dl
¼

��0 l¼ 0

��0 þ b0 e
lb0þe�lb0

elb
0�e�lb0 � 1

l
l 6¼ 0

�

:

We determine l� by setting this expression equal to zero.

Most simply, if �0 ¼ 0, then l� ¼ 0 minimizes the free energy, and the MED is a uniform

distribution. This result is intuitive. Without an explicit mean constraint, the zeroth-order MED

with a finite contrast bound is a uniform distribution with zero mean, and the requirement that

the distribution have zero mean is already satisfied.

If �0 6¼ 0, we need to solve

0¼��0þ b0
el

*b0 þ e�l*b0

el
�b0 � e�l�b0

� 1

l*
:

We rearrange this expression to find

�0

b0
¼ el

�b0 þ e�l*b0

el
�b0 � e�l�b0

� 1

l�b0
¼ coth l�b0ð Þ� 1

l�b0
;

where coth xð Þ is the hyperbolic cotangent function. If we define f xð Þ ¼ coth xð Þ� 1

x
; then we can

rewrite the above equation as

�0

b0
¼ f ðl�b0Þ;

and we get

l* ¼ 1

b0
f�1

�0

b0

� �

:

From the above equation, we observe that l� depends only on �0

b0 and
1

b0. From Appendix 2—

figure 1A, we see that l� monotonically increases with �0

b0 . Intuitively,
�0

b0 sets the relative scale of

�0 in the contrast range and the degree of asymmetry in the distribution. For example, when �0

is zero, we know that l� is zero and the MED is perfectly symmetric. As �0 deviates from 0, l�
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deviates from zero and the distribution distorts asymmetrically from the uniform distribution to

satisfy the non-zero mean. As the ratio of �0 and b0 grows larger, l� has to deviate more from

0, and the distribution becomes increasingly asymmetric. When �0

b0 is small, l� is roughly linear

in �0

b0 . Also note that there is a simple proportionality between l� and 1

b0. This dependence is

easily understood by the requirement that l�x is dimensionless.
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Appendix 2—figure 1. The shape of MED depends on the contrast range. (A) The shape of

function f�1 xð Þ, where f xð Þ ¼ coth xð Þ � 1=x. (B) The mean-variance-constrained MED depends

on the contrast range. The mean is constrained to be 0. The upper bound of the contrast

range is fixed at 1.5, and the ratio of the lower-bound to upper bound changes from �1 to

�0.2. As the contrast range becomes more asymmetric, the MED becomes more asymmetric.

(C) When the contrast range is asymmetric, the mean-variance-constrained MED has induced

non-zero skewness.

The mean-and-variance-constrained MED also depends on the finite contrast range. To

simplify the discussion, we again set the zero point of x-axis such that the contrast range is

symmetric around 0. Thus, our task is to find l1; l2 that minimize the free energy function,

l* ¼ l*
1
;l*

2

� �

¼
l

argmin F l1;l2j�1;�2;bð Þ ¼
l

argmin log

Z b

�b

dxexp l1 x��1ð Þþl2 x2 ��2

� �� �

;

where �1 and �2 are the shifted first-order and second-order moments imposed on the MED,

and ½�b;b� is the shifted contrast range. As was the case for the first-order MED, when �1 ¼ 0,

the distribution is symmetric and l�
1
¼ 0. Furthermore, as the contrast bound becomes large,

the distribution approaches the Gaussian distribution. However, when �1 6¼ 0, the distribution

has to distort asymmetrically to achieve the non-zero mean, with large distortions occurring

when the mean is within a few standard deviations of the boundary (Appendix 2—figure 1B).

As a result, even though we did not require the distribution to have a specific skewness, the

second-order MED can have non-zero skewness (Appendix 2—figure 1C).

These mathematical considerations lead to the design of our numerical methods.

Operationally, for each individual image, we found its contrast range, cmin; cmax½ �; and the

largest contrast magnitude, dc ¼ max jcminj; jcmaxjð Þ. Then we constructed a symmetric contrast

range around the constrained mean �1, and computed the MED on �1 � dc; �1 þ dc½ � . This
avoided inducing non-zero skewness in the mean-and-variance-constrained MED. For

consistency, we used the same symmetric contrast range for the mean-variance-and-skewness-

constrained MED. Since the contrast bound implicitly influences the shape of the MED and

different individual images have different contrast ranges, this method takes guidance from

natural scenes and uses heterogenous contrast ranges that match the contrast range of each
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original natural scene. However, this heterogeneity introduces variability across images that

could potentially impact the estimation accuracy we observed. Therefore, we also simulated

secondary datasets where we used a common symmetric bound for all synthetic images. We

chose this bound such that we could successfully solve the MED for the mean, variance, and

skewness levels of most natural images.

Chen et al. eLife 2019;8:e47579. DOI: https://doi.org/10.7554/eLife.47579 45 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.47579

