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Abstract

Background

Primary immunodeficiency diseases represent an expanding set of heterogeneous condi-
tions which are difficult to recognize clinically. Diagnostic rates outside of the newborn
period have not changed appreciably. This concern underscores a need for novel methods
of disease detection.

Objective

We built a Bayesian network to provide real-time risk assessment about primary immunode-
ficiency and to facilitate prescriptive analytics for initiating the most appropriate diagnostic
work up. Our goal is to improve diagnostic rates for primary immunodeficiency and shorten
time to diagnosis. We aimed to use readily available health record data and a small training
dataset to prove utility in diagnosing patients with relatively rare features.

Methods

We extracted data from the Texas Children’s Hospital electronic health record on a large
population of primary immunodeficiency patients (n = 1762) and appropriately-matched set
of controls (n = 1698). From the cohorts, clinically relevant prior probabilities were calculated
enabling construction of a Bayesian network probabilistic model(PIl Prob). Our model was
constructed with clinical-immunology domain expertise, trained on a balanced cohort of 100
cases-controls and validated on an unseen balanced cohort of 150 cases-controls. Perfor-
mance was measured by area under the receiver operator characteristic curve (AUROC).
We also compared our network performance to classic machine learning model perfor-
mance on the same dataset.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237285 February 16, 2021

1/15


https://orcid.org/0000-0003-2549-0678
https://orcid.org/0000-0001-5975-4550
https://orcid.org/0000-0001-5684-5457
https://orcid.org/0000-0003-0716-3630
https://doi.org/10.1371/journal.pone.0237285
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237285&domain=pdf&date_stamp=2021-02-16
https://doi.org/10.1371/journal.pone.0237285
https://doi.org/10.1371/journal.pone.0237285
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

PI Prob for predicting risk of primary immunodeficiency

This does not alter our adherence to PLOS ONE
policies on sharing data and materials.

Results

PI Prob was accurate in classifying immunodeficiency patients from controls (AUROC =
0.945; p<0.0001) at a risk threshold of >6%. Additionally, the model was 89% accurate for
categorizing validation cohort members into appropriate International Union of Immunologi-
cal Societies diagnostic categories. Our network outperformed 3 other machine learning
models and provides superior transparency with a prescriptive output element.

Conclusion

Artificial intelligence methods can classify risk for primary immunodeficiency and guide man-
agement. Pl Prob enables accurate, objective decision making about risk and guides the
user towards the appropriate diagnostic evaluation for patients with recurrent infections.
Probabilistic models can be trained with small datasets underscoring their utility for rare
disease detection given appropriate domain expertise for feature selection and network
construction.

Introduction

Infectious diseases contribute substantially to the costs of healthcare. For invasive Streptococ-
cus pneumoniae alone, one estimate suggests that $3.5 billion US Dollars (USD) are spent in
direct costs for complications related to this single organism [1]. Among individuals who suf-
fer infectious disease, a subsection will have ongoing risk of morbidity and mortality owing to
an underlying genetic susceptibility. Such patients with primary immune defects (PI) often
present in subtle fashion and may be mistaken for individuals with routine infection leading to
diagnostic delay and death [2].

Once thought to be rare, there are now 416 distinct PI diseases with 430 molecular etiolo-
gies known [3]. However, due to improved understanding about its biology and expanded test-
ing capabilities, PI is now estimated to affect between 1:1000 to 1:5000 individuals and prior
work suggest that upwards of 1% of the general population may have features of PI risk [4-6].
Yet, early recognition of PI remains a challenge with time to diagnosis remaining largely fixed
over the past 4 decades and is estimated at 7.5-9 years from symptom onset [2]. Projected
annual costs for PI patients prior to diagnosis is nearly $140,000 USD which may be reduced
by approximately $78,000 USD following diagnosis [7,8]. In order to spare costs and undue
morbidity, efforts are underway to facilitate early PI diagnosis and treat affected patients in a
precise manner [4,9].

To aid in disease diagnosis, artificial intelligence methods can assist in population-wide and
individual-level risk assessment [10,11]. In particular, models which meld reasoning and
uncertainty can facilitate diagnosis amongst at-risk individuals [12]. Bayesian networks (BNs)
are one such model which combine relevant features, joint probability distributions and an
intuitive structure to answer questions in biomedicine [13]. Specifically, BNs have proven use-
ful for clinical decision support for detecting lung cancers, prediction of heart failure, comput-
ing survival for individuals with colon cancer, aiding in liver disease evaluation and enabling
pathology specimen evaluation among other use cases [6,14-19]. They are also particularly
effective for generating predictions even when trained on small datasets [20]. It is for these rea-
sons that we chose to build a BN for PI risk prediction and clinical guidance.
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Fig 1. Bayesian network structure. A. An example Bayesian network with parent and child nodes connected by arcs. B. The general structure of
our network components. Training data (*may be updated over time) and patient features allow for improving inference (i.e. probabilities) and
structure over time making these networks dynamic. (EHR = Electronic Health Record).

https://doi.org/10.1371/journal.pone.0237285.9001

More specifically, BNs are probabilistic graphical models which embed data, expert opinion
or a combination of the two into an intuitive graph thereby enabling reasoning given inherent
uncertainty [21]. The basic structure of a BN (Fig 1A) consists of nodes, each representing a
variable, and arcs (arrows) which connect nodes in a causal relationship [22]. Underlying this
intuitive and transparent structure are Bayes’ theorem and Bayesian statistics which allow for
calculating conditional and joint probability distributions across many variables within the
network [23,24]. The BN allows for both data and domain knowledge to be packaged into a
single model that can yield insights about real-world probabilities, can be updated with new
data or opinion over time and can tolerate missing information [13,21,22].

Here, we describe a BN which both assesses risk of underlying primary immunodeficiency
and provides clinical guidance (Fig 1B). Our network model (PI Prob) was constructed by an
expert immunologist but the parameters (i.e. conditional probabilities) were learned entirely
from readily available electronic health record (EHR) data. PI Prob may be embedded within
an EHR via an application programming interface (API) for the purposes of analyzing large-
scale data in real time; alternatively, it may be clinician facing for data entry at the point of care
to assess a given patient’s risk and guide diagnosis.

Methods
Ethics statement

This study was approved by the Baylor College of Medicine Institutional Review Board (H-
38501). All patient data remained confidential and was retained in the Texas Children’s Hospi-
tal system.

Cohort analysis

Patients from Texas Children’s Hospital (TCH) with immunodeficiency were identified by
having at least 2 ICD10 codes (ICDCs) entered at different time points (2008-2018) which
was consistent with a primary immunodeficiency as categorized by the American Academy
of Asthma, Allergy and Immunology (AAAAIL https://www.aaaai.org/Aaaai/media/
MediaLibrary/PDF%20Documents/Practice%20Management/finances-coding/ICD-
10-Codes-Immunodeficiencies.pdf). The PI cohort was comprised of 1762 individuals

(Table 1). In contrast, control data were specified by an age matched set of patients from TCH
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Table 1. Demographic features of the cohort.

PI Cohort (n = 1762) Control Cohort (n = 1698)
Mean Age (yrs) 8+4 7+5
Sex
Male 1001 (56.8%) 891 (52.5%)
Female 761 (43.2%) 807 (47.5%)
Ethnicity:
Caucasian 793 (45%) 552 (33%)
Hispanic 606 (35%) 601 (35%)
Black 199 (11%) 281 (17%)
Asian 89 (5%) 91 (5%)
Unknown 75 (4%) 173 (10%)

https://doi.org/10.1371/journal.pone.0237285.t001

who did not harbor one of the PI codes and consisted of 1698 individuals. This was termed the
“Control Cohort”. For each cohort, all ICDCs over 24 months were extracted from the TCH
EHR (Epic Clarity Database). Individual, unique ICDCs were compiled for each cohort,
counted, normalized and assessed for differences between groups. We focused on ICDCs
which had a significantly increased frequency among PI patients and associated relevance to
PI based upon domain expertise. Features for construction of the BN were derived from this
list of PI cohort enriched ICDCs based upon their relevance to human immunological disease
as determined by an expert clinical immunologist (NLR) (S1 Fig).

Prior probability calculations

We calculated prior probabilities for 36 different feature nodes for both the PI and Control
populations. Each feature had corresponding ICDCs as listed in Table 2 and was representative
of the node concept [25]. Prior probabilities were calculated by taking the total number of
occurrences for each ICDC of interest and dividing by the total number of patients in that spe-
cific cohort (either PI or Control). These conditional probabilities (i.e. fraction of individuals
with the condition given PI or given non-PI) were then used to create the Bayesian Network as
described below. When there were no occurrences of a given clinical entity among controls,
we arbitrarily set the conditional probability to be 0.0001% since a prior value of “0%” or
“100%” does not accurately reflect real-world uncertainty. Learning prior probabilities for the
“meningococcal disease” node general risk differed from the rest in that it was derived from lit-
erature rather than from data; additionally, data about patients receiving complement inhibi-
tor therapy were used as a surrogate for meningococcal disease risk in PI [26,27].

PI Prob network construction

Network structure was designed to facilitate clinical decision making derived from informa-
tion obtained from a thorough history/physical examination and complete blood count (CBC/
differential) without need for advanced immunological testing. The BN described was con-
structed using GeNIe Modeler from BayesFusion, LLC (http://www.baysefusion.com/). Fea-
ture nodes (i.e. infections, lab findings, historical features) were used to build the network and
were singly connected to the risk node since all features were deemed to be relevant for risk of
PI. In total 36 feature nodes were used (10 history/physical examination, 5 laboratory, 5 gen-
eral infections, 16 highly informative infection/condition) which corresponded to 79 distinct
ICDCs (Fig 1B, S1 Fig & Table 2). Contained within each node are the conditional probabili-
ties (i.e. prevalence) of finding that variable in the PI cohort (“med-high risk”) and within a
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Table 2. Top 20 network features ranked by weight.

Rank

w

O [0 | |\ [ |

10
11
12

13
14
15
16

17
18
19
20

Node Description (ICD Code(s))

Systemic Lupus Erythematosus
Eosinophilia (D72.1)

Auto-Immune Hemolytic Anemia
(D59.1)

Meningococcal Disease (A39.xx)*
Lymphopenia (D72.810)
Hypocalcemia (E83.51)
Superficial Mycosis

Neutropenia (D70)

Opportunistic Infections (A02, A31,B39,
B55, B40, B59)

Polyarthritis (M00, M13)
Sepsis (A40, A41, 085, P36)

Lymphoma (C81, C82, C83, C84, C85,
C86, C88)

Thrombocytopenia (D69.59, T45.1X5A)
Septic Shock (A41.9, R65.21)
Recurrent Fever (A68)

Herpes Infections (A60, B00, B02, B10,
B27)

Encephalitis (A83, A84, A85, A86, G04)
Fibrosis (K74)

Organomegaly (R16)

Mycobacterial Disease (A31.9)

* Denotes data learned from literature.
** Ratio of PI/Control Conditional Probability.

https://doi.org/10.1371/journal.pone.0237285.t1002

Count PI Cohort | Conditional Probability PI Count Control Conditional Probability Weight**
(No.) Cohort (%) Cohort (No.) Control Cohort (%)
39 2.2 0 0.0001 22000
35 2.0 0 0.0001 19875
32 1.8 0 0.0001 18171
N/A 0.0001 N/A 0.0 1000
113 6.4 3 0.2 36
49 2.8 3 0.2 16
16 0.9 1 0.06 15
246 14.0 18 1.1 13
26 1.5 2 0.1 13
13 0.7 1 0.06 12
104 5.9 9 0.5 11
23 1.3 2 0.1 11
75 4.3 7 0.4 10
95 5.4 9 0.5 10
30 1.7 3 0.2 9
100 5.7 15 0.9 6
10 0.6 2 0.1 6
6 0.3 1 0.06 6
50 2.80 8 0.5 6
10 0.6 2 0.1 5

general pediatric population (“low risk”). At baseline, the network displays the background
prevalence of each node condition within the general population but selecting its presence for
a given patient results in the instantiation of the prevalence we calculated from within our PI
cohort. For example, abscess has a conditional probability of 1.5% in the control population
and 3.7% in the PI cohort. The former represents the contribution to baseline risk in any
patient a priori; whereas, presence of an abscess in the clinical history of a patient would con-
tribute the corresponding conditional probability learned from the PI cohort (i.e. 3.7%). We
assumed the general population overall risk to be 1% for PI. This threshold was determined
experimentally from our prior work where 2188 of 185,892 individuals (1.2%) were deemed at
medium-high risk for PI [4].

The PI Prob structure was designed such that all 36 diagnostic variables/features are con-
nected to the risk node. Risk is then calculated by employing Bayes’ Theorem (Eq 1; P(A|B) =
probability of A given B, P(B|A) = probability of B given A, P(A = the probability of A occurring,
P(B) = the probability of B occurring) for single or multiple conditions as features are instanti-
ated for a given patient. All features instantiated as “present” for a given patient, result in calcu-
lation of a joint probability across the entire distribution of present features according to Eq 2
(similar to Eq 1 but here multiple independent events “B” are included enabling a calculation of
the probability of A occurring given B; to B,,) with the assumption of conditional independence.
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Feature nodes were also connected via arrows (edges) to each of 8 IUIS disorder categories
described as: Tcell/Combined (T/CID), Predominantly Antibody (PAD), Immune Dysregula-
tory (PIRD), Phagocyte (PD), Innate (ID), Autoinflammatory (AID) and Complement (CD).
We combined IUIS tables 1 & 2 from the Expert Committee report into one category and did
not include bone marrow failure syndromes or PI phenocopies. This resulted in 7 IUIS disor-
der network nodes. Node connections were created based upon their contribution to a pheno-
type for that category as expected by domain expertise or as described in Tangye et al [3] (S1
Fig). Arrow directions indicate dependency (e.g. moving in the direction of the arrow one can
say “this is dependent upon that”). For a given patient, [UIS category likelihood ranking was
calculated by summing individual conditional probabilities among the present feature nodes.
The output IUIS categories with the highest “yes” probability suggest the most appropriate
starting point in the diagnostic workup for an individual patient. The probability output
shown is compared to the general population; therefore, magnitude change from baseline is
more important than the absolute percentage shown.

PI Prob training and validation

From our immunodeficient and control cohorts, 250 patients (125 disease, 125 control) were
randomly selected to train and validate the network. There was no overlap between PI and
control data; similarly, patient data used for training was distinct from that used to validate the
network. For the training and validation cohorts, each patient’s clinical and relevant laboratory
history was confirmed by medical record chart review. Additionally, we assessed SDOH via
analysis of insurance type as a proxy to normalize for health care access across the cohorts.
Features were determined and entered into the BN for calculation of risk and IUIS category
ranking (Fig 2). For PI cohort training and validation, we excluded patients with a diagnosis of
severe combined immunodeficiency (SCID) since they should have been detected asymptom-
atically via newborn screening. Similarly, patients with secondary immunodeficiency were
excluded from the PI group but not from the control group.

After initial model build (i.e. node selection, probability embedding and arc-setting), we
trained our BN with 50 PI patients and 50 controls (“training data”; Fig 2). This allowed for
tuning of the BN, adding additional relevant features and provided insights about node con-
nections. Once the network was restructured, we performed validation testing with 75 previ-
ously unseen patients from each cohort (“validation data”; Fig 3). Members of the validation
cohorts had similar ages (mean control age = 8 + 5yrs; mean PI age = 8 + 3 years). Network
performance was assessed by receiver operator characteristic (ROC) curve analysis on the vali-
dation cohort.

Comparison to other machine learning models

Using the same PI and Control cohorts as described above, we trained three additional models
(logistic regression, Naive Bayes and support vector machine (SVM) classifiers) using scikit-
learn (v 0.23; https://scikit-learn.org/stable/). The models were then serialized and validated
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using the identical 75 PI patients and 75 controls as described above for PI Prob validation
(https://github.com/nlrider/PI-Prob).

Statistical methods

Descriptive statistics for the PI and control cohorts were determined using Microsoft Excel
and are shown in Table 1. Significance testing and the ROC curve analyses were conducted in
Prism GraphPad version 8 (https://www.graphpad.com). Comparison machine learning
model validation performance was performed in scikit-learn to calculate receiver operator
area under curve (AUROC), F1 scores, precision and recall.

A. *% % B.
100 T — 100 L
>
o .
- 8 75
g 3
5 £
= [)
8 50 550
n o o
o 9 AUC = 0.9450
o 3 p <0.0001
x é 251
L] o
2
Sl =
° = 2 &5 r =
® Pl Cohort O Control
(n=75) ((::_h_,"s’)t False Positive Rate(100-%Specificity)

Fig 3. Network validation. Validity testing of our BN for individual patients from the PI and Control cohorts. A. Mean risk scores between
the two populations were significantly different (53% vs. 7%; p <0.000001). B. Network performance as calculated by AUROC (Area under
Receiver Operator Characteristic Curve) where an AUROC of 1.0 represents the ability of a model to discriminate between classes 100% of
the time.

httpsz//doi.org/10.1371/journal. pone.0237285.003
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Table 3. Model performance comparisons.
Model

PI Prob (Bayesian Network)

Logistic Regression Classifier (LogReg)
Naive Bayes Classifier (NBC)

Support Vector Machine (SVM)

AUC = Receiver Operator Area Under Curve.

https://doi.org/10.1371/journal.pone.0237285.t003

Results
PI cohort vs. control cohort

Demographic statistics for the PI and control populations are shown in Table 1. The proxy
SDOH and healthcare access via assessment of insurance coverage and type was similar
between groups (PI Cohort: 52% Private, 45% Public, 3% Unknown; Control Cohort: 48% Pri-
vate, 50% Public, 2% Unknown). Network feature nodes are shown in Table 2 and were all sig-
nificantly different in the PI vs. control cohorts (p-value <0.0001). Table 2 shows the top 20
features in our network ranked by relative conditional probability comparison between the PI
and Control cohorts.

Risk calculation (PI cohort vs. controls)

Performance of the BN on our validation cohort is shown in Fig 3. Individual risk calculation
is displayed for the immunodeficient and control patients (Fig 3A) as a single assessment for a
given patient at the time of chart review. Classification performance is shown in Fig 3B and
displayed as a receiver operator characteristic curve (ROC). The ROC analysis predicted best
model performance at a risk cutoff of >5.5% (Sensitivity = 87%; CI (77%-93%) and Specific-
ity = 91%; CI (82%-96%)). The corresponding BN performance measures were subsequently
calculated as reported in Table 3 for risk calculation >5.5%.

Comparison of models

Three classic machine-learning (ML) models were trained and validated for comparison to PI
Prob. The performance testing is shown in Table 3. Model performance was similar across all
4 models validated. PI Prob displayed the greatest AUC and the Naive Bayes Classifier dis-
played overfitting with an inability to discriminate true negatives; thus, an AUC was not
calculable.

Prescriptive output—Directing clinical management

Individuals within the PI validation cohort (n = 75) had 20 distinct PI disorders spanning the
first 8 IUIS category tables (Fig 4A). Within the validation cohort, most had an IUIS table 1/
table 2 (T/CID) related disorder (n = 32; 43%) or an IUIS table 3 (PAD) related disorder

(n = 26; 35%). Of the remaining disease categories, IUIS table 4 (PIRD) comprised 1% (n = 1),
IUIS table 5 (PD) comprised 8% (n = 6), IUIS table 6 (ID) comprised 3% (n = 2), IUIS table 7
(AID) comprised 4% (n = 3) and IUIS table 8 (CD) comprised 1% (n = 1).

PI Prob performance for predicting each patient’s top 2 most likely IUIS disease categories
is shown in Fig 4B. The BN was most successful in diagnosing patients with T/CID and phago-
cytic disorders. It was moderately effective in classifying antibody deficient patients appropri-
ately. Additionally, the BN accurately classified patients with immune dysregulation, innate

Precision Recall F1 Score AUC
0.90 0.87 0.88 0.95
0.99 0.81 0.89 0.90
1.00 0.80 0.89 N/A
0.99 0.81 0.89 0.90
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Fig 4. Cohort features & network outcomes. A. Validation cohort disorder spectrum. The IUIS groupings are clustered according to color (i.e. Blue = T/CID;
Red = PAD; Yellow = PIRD; Purple = PD; Green = ID; Orange = AID and Pink = CD. B. BN performance for classifying each IUIS category and overall
outcome. The legend displays category number and accuracy for our BN prediction. NOTE- 3 patients were not included here since insufficient input data
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of Function; POMP-Proteasome Maturation Protein; NOMID-Neonatal Onset Multisystem Inflammatory Disease).

https://doi.org/10.1371/journal.pone.0237285.9004

disease and autoinflammatory disease, but failed to classify the one complement disorder
patient in our cohort. Overall BN model accuracy for determining patients across any studied
IUIS category was 89%. It was 86% accurate if patients with TUIS table 1-3 disorders were
omitted (n = 17).

Bayesian network functionality and usability

Data flow though the BN occurs once patient information is instantiated by an end-user or by
analyzing diagnostic codes by EHR automatic feed via an API (S1B & S1C Fig). The native
structure is shown in Panel A; however, one can see the outputs for “Risk” and IUIS Category
change depending upon data input. As displayed in S1B.1 & S1B.2 Fig a patient’s data with X-
linked agammaglobulinemia (XLA) and associated clinical features are instantiated. The BN
then provides an updated risk prediction and a prescription about the most likely diagnostic
category (i.e. PAD) which can then inform the initial immunological workup S1C.1 & S1C.2
Fig shows information flow for a patient with chronic granulomatous disease (CGD) whose
clinical findings are instantiated. Here risk is again updated from baseline and the prescriptive
component selected PD as the top predicted IUIS category. A schematic of the proposed work-
flow is shown in Fig 5.

Discussion

Knowledge about the biology of PI is expanding rapidly; however, overall diagnostic rates have
not appreciably improved [2,3,5]. Therefore, novel disease-detection methods are needed such
as digitizing relevant phenotypes and leveraging health information technology functionality.
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Fig 5. Workflow model. The proposed workflow for our model. Here, an end-user or EHR data feed can provide inputs via clinical impressions or
diagnostic codes. The BN calculates a risk score which can subsequently be acted upon. It is important to note that it is the risk score and clinical
impression should be taken together, which guide subsequent evaluation and management.

https://doi.org/10.1371/journal.pone.0237285.9005

Here we demonstrate that concepts related to PI can be learned from readily available, EHR-
mined, structured data and embedded within a transparent (Fig 1B) machine learning model
that accurately provides both risk assessment and clinical guidance (i.e. ICDCs; Table 2, Fig 2).
The model, a BN, allows for concept linking driven by domain expertise thereby enabling
information flow in a rational manner for disease detection [6,14,28,29]. This model can be
deployed in almost any clinical setting and may learn over time as population specific condi-
tional probabilities are accumulated with ongoing accuracy refinement [30,31].

PI Prob performed well on an unseen validation cohort of 75 patients with PI possessing a
diverse range of diseases across the IUIS spectrum with similar performance to the other ML
models built (Table 3, Figs 3 and 4). The AUROC (0.945; p < 0.0001, Fig 3B) suggests robust
model classification of PI patients vs. control individuals and less susceptibility to overfitting.
Training of the model consisted of analyzing only 50 PI patients and 50 controls to assess per-
formance which allowed us to identify gaps in concept relationships (Fig 2). The small training
set suggests utility of probabilistic graphical models in the rare disease space. Fig 3A shows
considerable scatter across risk scores for the PI validation cohort; however, the mean group
score was significantly different from that of the controls (53.1+38.1 vs. 6.9£20; p < 0.000001)
providing evidence that our model’s inference about PI is sound. Importantly, our age-
matched and SDOH-similar control group consisted of patients with varying medical com-
plexity themselves but not PI. Diagnoses among this group included cystic fibrosis, trisomy 21,
acute lymphoblastic leukemia, solid organ cancers, asthma, complex congenital heart disease
and complex genetic disease. Therefore, accurately distinguishing PI from our controls is likely
amore challenging task than classification against the general pediatric population. We take
this as evidence of real-world model fitness and utility for our BN.

In addition to risk prediction, PI Prob provides a prescriptive outcome to facilitate appro-
priate diagnostic evaluations and initiate referral if needed (Figs 4 and 5). The BN’s ability to
direct a diagnostic approach is two-fold (Fig 5). First, a clinician’s threshold for testing should
be triggered by their clinical impression and a risk score >6%. The next question, “what do I
do now?”, can be answered via guidance about the most likely IUIS category. Given noted
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phenotypic heterogeneity among PI disorders, we assumed the initial predicted IUIS category
would not be sufficiently inclusive; thus, we built our BN to predict the top 2 IUIS categories
for each PI patient [32]. Using this strategy, our model was able to accurately define this class
89% of the time for the PI validation cohort (Fig 4). In 3 cases, the BN was unable to provide
clinical guidance owing to lack of sufficient information. This scenario results in an equal
probability prediction across IUIS categories and underscores the diagnostic uncertainty when
scant patient information is available.

The prescriptive output of PI Prob has utility for the primary care provider and clinical
immunologist. Our expectation is that the provided decision guidance will inform clinical
encounters by expediting appropriate testing and accurate diagnosis, assuming availability of
recommended immune-diagnostic testing [33]. For the generalist or clinicians who are not
generally focused on PI patients, we envision enabling early initial testing and referral to
improve diagnostic rates. For the expert clinical immunologist, having relevant results in hand
at the time of initial encounter should facilitate early implementation of best treatment prac-
tices and drive optimal outcomes for patients.

From an epidemiologic standpoint, PI Prob’s best predicted risk score cutoff of >6% is
interesting in that it aligns well with our previous work in calculating a risk vital sign for PI
[4]. There, analyzing a different population, we found 1% of the general population to be at
medium-high risk for PI and subsequently ~5% of this group had PI or a concerning infectious
diagnosis in the following year [4]. These results suggest that the prior probability of disease
(prevalence) approaches 5% for individuals deemed to be of medium-high risk. Thus, all
healthcare providers may expect approximately 1% of their patients to be at risk for PI.

These individuals must then be distinguished from individuals with actual disease further rein-
forcing the importance of considering this vulnerable patient population amongst anyone with
infections.

Here, we hypothesize that clinical informatics and AI methods may inform the diagnostic
process by combining disease-specific features and epidemiologic data to enable diagnosis.
Such models require computational transparency, good performance and should extend opti-
mal digital health workflows to align with clinical decision support (CDS) best practices [34].
Predictive analytics allows for discrimination about what might happen in a given clinical sce-
nario; whereas, prescriptive analytics focuses on what one should do about the prediction [35].
This BN packages these attributes and presents a dual output for each patient to the user.
Given reported concerns about time pressure for healthcare providers, delays in diagnosis,
increased costs and poor outcomes we hoped to address these obstacles with our model en
route to lowering the bar for PI diagnosis [2,7,36]. Lastly, we wish to underscore that our view
of AT’s role in healthcare is that it should be rigorously validated but dutifully implemented to
augment clinical decision making and extend clinical efforts for making use of big data in a
way that serves the patient and provider [37,38]. With this perspective Al/machine learning
aids the clinician and makes health information technology more useful.

Limitations and future directions

While our model performed very well with the validation cohort, we need to test it prospec-
tively on larger numbers of patients. Also, it will be helpful to have a larger number of end-
users provide feedback via a web-interface to improve usability (S1 Fig). Future work in this
regard will focus on expanded testing and soliciting expert immunologist opinions broadly as
they use the BN for patient assessments.

Another limitation of our study was the somewhat biased PI cohort with a large number of
22q11.2 deletion syndrome patients (n = 24). The model was very accurate in predicting their
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IUIS class, but some of these individuals may have been detected via TREC-based newborn
screening. This bias is reflected in our overall PI population which contained many DiGeorge
Syndrome patients cared for at our center. Additionally, we had limited representation of
patients with disorders falling into the IUIS tables 4, 6, 7 and 8. Patients with these disorders
are less prevalent among PI as a whole; however, such information could be mined from regis-
tries or pooled from other centers and used to improve model fitness. Also, we decided to
exclude inference about marrow failure syndrome and PI phenocopies (IUIS tables 9 & 10)
here; thus, patients with these disorders might not be detected with the current version of our
network. We can track model performance prospectively about patients with such disorders
and easily modify the network as needed.

Lastly, we plan to investigate additional variables that can be added to further improve net-
work performance. Our BN performs very well in validation with only 36 nodes; however, it is
likely that additional informative features will drive further improvement.

Conclusions

Use of this BN and other machine learning approaches, may facilitate diagnosis of patients
with PI. Combining domain expertise and readily available EHR structured data with well-
defined machine learning models provides an effective tool for risk assessment of PI. PI Prob
is interoperable and demonstrates the utility of using probabilistic graphical models for
improving rare disease detection given their favorable performance when trained with rela-
tively small datasets.

Supporting information

S1 Fig. Network structure and example web interface. A.1 The native BN structure and low-
risk probabilities specified are shown. Users can see background probabilities for low/high
risk and select nodes here if desired. A.2 Native dashboard interface. Users can select features
along the right sidebar and see risk and top diagnosis prediction displayed on the left panels.
B.1 A case example of network information flow upon entering clinical data for a patient with
X-linked agammaglobulinemia (XLA). B.2 Dashboard output showing the most likely disease
category (antibody deficiency) promoted to the top and risk calculation for the XLA patient.
C.1 A case example of network information flow for a patient with chronic granulomatous dis-
ease (CGD) and associated findings. C.2 Dashboard output for the CGD patient displaying the
most likely disease category (phagocyte disorder) promoted to the top with associated risk cal-
culation. Note the arrows designating changes from the baseline probabilities as patient char-
acteristics are entered.
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