
1 

Title: Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood 
Collaborative Research Program on Executive Dysfunction and Functional Outcomes in 
Outpatients Seeking Treatment for Addiction 

Proposed Authors: Yuliya S. Nikolova,1,2,3* Anthony C. Ruocco,1,2,3,4* Daniel Felsky,1,2,5* 
Shannon Lange,1,2,6,7* Thomas D. Prevot,1,2,8* Erica Vieira,1,2* Daphne Voineskos,1,2* Jeffrey D. 
Wardell,1,2,9* Daniel M. Blumberger,1,2 Kevan Clifford,1,2 Ravinder Naik Dharavath,1 Philip 
Gerretsen,1,2 Ahmed N. Hassan,1,2 Sheila K. Jennings,10,11 Bernard LeFoll,1,2 Osnat Melamed,1,12 
Joshua Orson,10 Peter Pangarov,1 Leanne Quigley,13 Cayley Russell,14 Kevin Shield,1,2,15 
Matthew E. Sloan,1,2,3,7,8 Ashley Smoke,10,16 Victor Tang,1,2,7 Diana Valdes Cabrera,1,17 Wei 
Wang,1 Samantha Wells,1,2,18 Rajith Wickramatunga,1 Etienne Sibille,1,2,8* Lena C. Quilty, 1,2* 
and CDiA Program Study Group 

*Lead investigators who contributed equally to the study. 

Affiliations: 

1 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 
Toronto, Ontario, Canada 
2 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada 
3 Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, 
Canada 
4 Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada 
5 Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, 
Ontario, Canada 
6 Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, 
Ontario, Canada 
7 Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, 
Ontario, Canada 
8 Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of 
Toronto, Toronto, Ontario, Canada 
9 Department of Psychology, York University, Toronto, Ontario, Canada 
10 Centre for Addiction & Mental Health, Toronto, Ontario, Canada 
11 Moms Stop the Harm, Victoria, British Columbia,  
12 Department of Family and Community Medicine, University of Toronto 
13 Ferkauf Graduate School of Psychology, Yeshiva University, New York, USA 
14 Ontario CRISM Node Team, Institute for Mental Health Policy Research, Centre for 
Addiction and Mental Health, Toronto, Ontario, Canada 
15 Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada 
16 The Ontario Network of People Who Use Drugs, Toronto, Ontario, Canada 
17 Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada 
18 Western University, London, Ontario, Canada  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2024. ; https://doi.org/10.1101/2024.08.30.24312806doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.08.30.24312806
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2024. ; https://doi.org/10.1101/2024.08.30.24312806doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.30.24312806
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 Scope statement (200 Words):  

Substance use disorders (SUDs) are a leading contributor to psychiatric morbidity, mortality, and 
functional impairment. Cognitive dysfunction contributes substantially to this impairment, and 
plays a prominent role in causal models of addiction. Executive dysfunction in particular is 
linked to the onset and persistence of SUDs. Large-scale, multidisciplinary efforts are necessary 
to elucidate the nature and course of cognitive deficits and associated functional outcomes in 
SUDs. The Cognitive Dysfunction in the Addictions (CDiA) integrative, translational research 
program undertakes to advance the study of cognitive dysfunction in SUDs, with a focus on 
impairments in executive function. The Program incorporates preclinical, clinical, and health 
systems level investigation. The proposed investigations are well positioned to determine how 
experimental findings translate from humans to animals (reverse translational approach), as well 
as how preclinical findings will translate into the development of novel treatment avenues. 

 

 

Running title (max 5 words recommended): Cognitive Dysfunction in the Addictions Program 

 

Keywords (min 5, max 8): alcohol use disorder, substance use disorder, addiction, cognition, 
executive function, preclinical, translational, protocol 
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Abstract 

Background: Substance use disorders (SUDs) are pressing global public health problems. 
Executive functions (EFs) are prominently featured in mechanistic models of addiction. 
However, there remain significant gaps in our understanding of EFs in SUDs, including the 
dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder 
heterogeneity, and functional ability. To improve health outcomes for people with SUDs, 
interdisciplinary clinical, preclinical and health services research is needed to inform policies and 
interventions aligned with biopsychosocial models of addiction. Here, we introduce Cognitive 
Dysfunction in the Addictions (CDiA), an integrative team-science and translational research 
program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance 
treatments for people living with SUDs.  

Methods: The CDiA Program comprises seven complementary interdisciplinary projects that 
aim to progress understanding of EF in SUDs and investigate new biological treatment 
approaches. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking 
treatment for addiction, who are followed prospectively over one year to identify EF domains 
crucial to recovery. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers 
and their associations with both EF domains (inhibition, working memory, and set-shifting) and 
functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for 
addiction and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation 
and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links 
EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related 
barriers to treatment engagement for those with substance use concerns. Project 7 uses 
innovative whole-person modeling to integrate the multi-modal data generated across projects, 
applying clustering and deep learning methods to identify patient subtypes and drive future 
cross-disciplinary initiatives. 

Discussion: The CDiA program has promise to bring scientific domains together to uncover the 
diverse ways in which EFs are linked to SUD severity and functional recovery. These findings, 
supported by emerging clinical, preclinical, health service, and whole-person modeling 
investigations, will facilitate future discoveries about cognitive dysfunction in addiction and 
could enhance the future clinical care of individuals seeking treatment for SUDs. 
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Background 

Substance use disorders (SUD)1 affect 162 million people worldwide and are associated with 
substantial morbidity, mortality, and disability (1–4). The socioeconomic and health impacts 
associated with the use of alcohol, cannabis, and illicit drugs, substantially contribute to the 
global burden in years living with a disability and lost to premature death (5,6). In 2020, the 
World Health Organization heightened their calls for enhanced actions to curb the harmful 
effects of alcohol use, underscoring the global public health priority of the damaging 
consequences of alcohol use (7). In the US, 140,000 people die annually from excessive alcohol 
consumption (i.e., consuming more than 25 grams of ethanol per day) and another 70,000 from 
drug-related causes, costing the U.S. economy 191.6 billion dollars related to alcohol and 151.4 
billion dollars due to use of other substances (8–10). Similarly, in Canada, alcohol and drug use 
causes almost 20,000 deaths, and costs the Canadian economy nearly 40 billion dollars annually 
(3). Treatments for SUDs have evidence supporting their efficacy but their availability is limited, 
highlighting the critical need to increase access to treatments and develop novel and improved 
interventions for SUD (11). 

To advance the understanding of addiction, research on the cognitive and neurobiological factors 
involved in the development and maintenance of SUD is crucial (12). Contemporary models 
underscore the centrality of cognition to different phases of SUD development, with a strong 
emphasis on executive functions (EF) such as response inhibition and decision-making, in 
conjunction with motivational (e.g., incentive salience, cue reactivity/craving) and affective (e.g., 
negative emotionality) factors (13,14). While there is ongoing debate about the precise number 
of “core” processes that define EF, converging evidence suggests that EF comprises at least three 
factors that are related but distinct on a behavioural and neurobiological level (15–19): 1) 
inhibition, or the ability to prevent the processing of irrelevant information in working memory 
and/or inhibit a context-inappropriate behavioural response; 2) working memory (updating), or 
the ability to monitor the contents of working memory for relevance to the current task and to 
remove from or add information to working memory; and 3) set shifting, reflecting the ability to 
switch between multiple operations or task sets. These processes are supported by common and 
dissociable neural substrates within a distributed network of frontoparietal brain regions (20), 
subserved by known biological and neurotransmitter systems (21,22), and may be partially 
genetically influenced (23). EF “deficits” refer to impaired functioning in one or more of these 
domains, whereas EF “biases” reflect the specific or selective influences of motivational or 
emotional contexts or materials on EF performance (24). 

SUDs can be associated with both deficits and biases in EF accompanied by structural and 
functional alterations in underlying neural circuitry (25). Problems with EF lead to functional 
impairment across all stages of addiction. Interventions that bolster EF may mitigate the 
influence of attentional and behavioural control on drug-seeking or relapse. For example, 
computerized cognitive retraining may improve working memory capacity (26–28) and reduce 
impulsive choice and valuation of specific rewards in addiction (29). Further, non-invasive brain 
stimulation has exhibited promise across a range of SUDs and appears to impact both craving 
and decision-making processes (30–32). However, executive dysfunction in addiction has been 

                                                       
1  SUD refers to alcohol, cannabis, hallucinogen, opioid, stimulant, and tobacco use disorders. 
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under-investigated (33). Furthermore, the deficits and biases of EF most linked to functional 
outcomes remain to be identified and targeted for maximal therapeutic benefit. 

Studies to date have most commonly used relatively “pure” or homogeneous patient groups (e.g., 
adults with a specific SUD and with no psychiatric comorbidities), with more limited attention to 
individual differences or within-group variability (34–36). Yet, adults seeking treatment for 
addiction represent a highly heterogeneous group, with complex substance use histories and a 
high prevalence of psychiatric comorbidities (37–39).  Since “pure” group studies have limited 
generalizability to patient populations, there is a critical need to characterize heterogeneity of 
executive dysfunction in a large inclusive cohort study involving a complex patient population 
that is characteristic of large tertiary care facilities.  

Here, we introduce the Cognitive Dysfunction in the Addictions (CDiA) Program, an integrative, 
team-science and translational research program focused on EF deficits and biases related to 
SUDs, which will aid the discovery of shared versus uniquely affected EF domains (40,41). 
Parallel biomarker studies in human participants and translational mechanistic studies in relevant 
preclinical models will link domains of EF to putative biological underpinnings, together paving 
the way for the rational design of targeted and individualized therapeutics for treatment and 
recovery from SUDs. Linkages to health care administrative databases could further mobilize 
knowledge to help shape public health policy and effect change at the societal level. 

The CDiA Program benefits from the full participation of a Lived Expertise Research Advisory 
(LERA) committee, which is composed of members of the community who self-identify as 
having lived experience with SUD. Incorporating the perspectives of individuals with 
lived/living experience helps to increase the impacts of the research on the communities 
expected to benefit from the findings (42). In conjunction with the scientists leading the program, 
the LERA committee contributed to the formulation of the program and has offered ongoing 
insights into its public-facing materials and study procedures. The LERA committee will play a 
central role in interpreting the CDiA findings and sharing the results with knowledge users in the 
community. The CDiA Program also consults with an International Scientific Advisory 
Committee composed of SUD experts who provide ongoing guidance. 

CDiA consists of seven interconnected projects (P1-7) with the following main objectives: 

1. To identify domains of EF linked to functional outcomes in adults seeking treatment for 
AUD or SUD (P1).  

2. To identify imaging biomarkers (MRI, fMRI) associated with domains of EF and those 
most predictive of functional outcomes in adult outpatients seeking treatment for 
AUD/SUD (P2).  

3. To identify biomarkers mechanistically associated with EF and functional outcomes in 
adult outpatients seeking treatment for addiction (P3). 

4. To assess the impact of repetitive transcranial magnetic stimulation (rTMS) on EF deficits 
in adult outpatients seeking treatment for comorbid alcohol use disorder (AUD) and 
major depressive disorder (P4). 
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5. A preclinical study of the impact of alcohol on EF deficits and their reversal by novel 
therapeutic interventions (P5). 

6. To assess links between EF, treatment seeking for SUDs, and healthcare utilization and 
costs (P6). 

7. To identify subtypes of individuals seeking addiction treatment using cross-disciplinary 
data types from all projects to map the biopsychosocial drivers of cognitive dysfunction 
in SUDs (P7). 

  An overview of the CDiA Program is presented in Figure 1. With the exception of the preclinical 
project (P5), all projects draw on a novel sample of SUD patients at the Centre for Addiction and 
Mental Health, allowing for the triangulation of evidence within the same pool of participants. A 
detailed description of each project, including the background, methods, and analytical approach, 
is described below. 
 

Insert Figure 1. 

 

P1: Identifying domains of EF linked to functional outcomes in adult outpatients seeking 
treatment for addiction.  

Background 

Dual Process models of addiction suggest that addiction can result from an imbalance between a 
controlled process that is more intentional (for which EF are central), and an automatic process 
that is more implicit or involuntary (for which affective states are influential) (43,44). EFs 
modulating either appetitive (desirable) or aversive (unpleasant) motivational states are 
compromised in those with SUDs ((45); also see the Addiction Neuroclinical Assessment 
(13,46,47)). Although many studies have investigated how deficits in EFs relate to outcomes 
among people with SUDs (48), the existing studies are often limited by small samples, very brief 
(3-6 month) follow up periods, narrow focus on a single substance in the absence of mental 
health comorbidities, and limited attention to functional outcomes (48). Further, most studies 
examine either EF deficits (i.e., general impairments in EF performance) or biases (i.e., EF 
impairments in the context of emotional or motivational material), without examining their 
relative importance for SUD outcomes. Thus, there is a need for integrative research 
incorporating all of these factors, and carefully evaluating links with both clinical and functional 
outcomes in a heterogeneous clinical sample followed prospectively over time. 

Objectives 

The primary goals of P1 are to characterize EF deficits and biases and to determine which 
domains of EF are most predictive of functional and treatment outcomes in a complex population 
of adults seeking treatment for AUD/SUD in order to test the following hypotheses (H1a-e):  
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H1a: Deficits and biases in the three EF domains will exhibit stronger baseline associations with 
indicators of functioning, such as disability and quality of life, relative to other components of 
cognitive functioning. 

H1b: EF deficits across all three domains will be most prominent in those with greater (i) 
severity, (ii) duration of AUD/SUD, whereas EF biases will be most prominent in those with 
concurrent mood disorders and elevated suicidality. 

H1c: EF deficits and biases can be used to identify clusters of participants that are associated 
with distinct clinical features. 

H1d: Relatively more severe EF deficits and biases at baseline will predict slower improvements 
in functional outcomes over and above substance use, treatment engagement, and healthcare 
utilization. 

H1e: EF domains will show improvements from baseline to the one-year follow-up. 
Improvements in EF will be positively associated with improvements in AUD/SUD symptoms 
and in functional outcomes. 

Methods and Planned Analyses 

Design and Participants. The CDiA Program aims to recruit a total sample of 400 adults seeking 
treatment for AUD and/or SUD to participate in this observational, longitudinal study involving 
clinical and cognitive assessments at baseline and over a one-year follow-up period (see Table 1 
for schedule of assessments). Inclusion criteria are: (1) 18 - 60 years of age; (2) meeting 
diagnostic criteria for a current (past year) AUD or SUD (not counting nicotine- or caffeine-
related disorders); and (3) seeking support for substance use concerns. Exclusion criteria include: 
(1) acute intoxication or withdrawal; (2) active psychosis; (3) acute suicidality; and (4) history of 
severe head injury, dementia, severe neurodevelopmental disorders, and other medical conditions 
or medications that could severely impair cognition.  

Measures. Interview measures include the Diagnostic Assessment Research Tool (DART; (49)) 
to characterize AUD/SUD and comorbid diagnoses, and the Timeline Follow-Back (TFLB; (50)) 
to characterize alcohol and substance use over the past 60 days. Self-report items assessing 
lifetime history of alcohol and substance use are also administered, along with measures of 
severity of alcohol- and substance-related harms. Other factors relevant to understanding 
substance use patterns are also assessed, including demographic factors, readiness to change, 
substance use motives, SUD insight and SUD treatment history (see Table 1 for a full list of 
measures).  

Table 1. 

A comprehensive assessment of global cognitive functioning is conducted with the Central 
Nervous System Vital Signs (CNS-VS; (51)) computerized assessment, which has been 
validated for use in addiction. CNS-VS contains 10 tests that yield 15 individual domain scores, 
including composite scores assessing Neurocognitive Index, Composite Memory, Psychomotor 
Speed, Complex Attention, and Cognitive Flexibility scores. Scores are standardized based on an 
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age-matched normative sample. Further, tasks assessing risk taking and decision-making (Iowa 
Gambling Task (52)), and probabilistic and delay discounting (53–55) are also administered. 

EF assessment: To achieve our goal of measuring both (a) general executive function deficits 
and (b) biases in these functions associated with emotional and motivational states, both neutral 
and emotional stimuli are used in our executive functioning tasks. The stimuli for the executive 
functioning tasks are a pool of happy, neutral, and sad faces from the Karolinska Emotional 
Directed Faces database (KEDF; (56)). Each task is administered with trial blocks with 
emotional stimuli (i.e., to measure executive function biases) and trial blocks with neutral stimuli 
(i.e., to measure executive function deficits). A flanker task (57–60) is used to assess 
inhibition, an n-back task (61,62) is used to assess working memory updating, and a switch 
task (63) is used to assess set shifting.  

Power Analysis and Data Analytic Plan 

Multiple regression will be used with the clinical, functional, and demographic factors entered as 
simultaneous predictors of each EF domain to test hypotheses about which factors are most 
strongly associated with specific EF domains (H1a and H1b). 

For H1c, we will conduct latent profile analyses using domains of EF as indicators of discrete 
latent profiles of relative deficits and biases. We will then examine the prediction of membership 
in these latent profiles from substance use profiles. 

For H1d, latent growth curve modeling will be used to model changes in substance use 
frequency, AUD/SUD severity, and functional outcomes over the follow up time points. Next, 
rate of change will be examined as a function of baseline EF (H1a) by regressing variability in 
the slopes for the growth factors on baseline EF deficits and biases. These will be included as 
simultaneous predictors in the model to examine the specific EF domains and biases that are 
most predictive of change in the clinical and functional outcomes. 

For H1e, we will use a generalized linear mixed effects modelling approach. EF deficits and 
biases will be modelled as dependent variables and time will be entered as a within-subjects 
factor to determine if there is significant within-person change from baseline to one year follow 
up. Changes over time in AUD/SUD symptoms and functional outcomes will be modelled using 
the same approach, with changes in EFs included in the models as a time-varying predictor of 
changes in these outcomes. 

P2: To identify neuroimaging biomarkers associated with domains of EF and addiction 
symptoms and most predictive of functional outcomes 

Background 

Functional magnetic resonance imaging (fMRI) studies in healthy adults suggest that the three 
dimensions of EF rely on overlapping nodes within a broader frontoparietal circuit, but may also 
have at least partially dissociable neural substrates within and beyond this circuit (64–67). The 
ability to maintain a task goal stably, shared across all EF domains, relies on areas of the lateral 
prefrontal cortex (PFC), which extend from frontopolar regions through the mid-dorsolateral 
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prefrontal cortex (dlPFC)(15,68,69), potentially also including the anterior cingulate cortex 
(ACC) and frontal operculum (70). Additional studies investigating the three EF domains side by 
side show overlapping activation in the inferior frontal gyrus, anterior cingulate cortex and 
bilateral parietal cortices (66). In contrast, behavioural inhibition is associated with more 
extensive recruitment of temporal regions and may engage the cortico-striatal circuit (71). Set 
shifting may, in turn, involve more posterior dlPFC regions (e.g., inferior frontal junction) and 
more extensive parietal areas (e.g., intraparietal sulcus) (72,73). Working memory updating has 
been additionally mapped onto fronto-striatal connections and requires input from the basal 
ganglia and cerebellum (74–76). Similar partially dissociable signatures of the three distinct EF 
dimensions have been identified in studies using resting-state (i.e., task-free) fMRI (64,65), 
structural MRI (77,78), and diffusion-weighted imaging (DWI)(77).  

Meta-analyses of task-based fMRI across SUDs highlight the heterogeneity of paradigms used to 
evaluate EF, but show altered activation in fronto-parietal and striatal regions across studies (79). 
Importantly, however, prior studies in SUDs have almost universally focused on a single EF 
domain, providing relatively limited insight into the complex cognitive architecture that may 
underlie functional impairment in addiction (80–82). Clinically relevant insight is further limited 
by a predominance of cross-sectional studies, which do not investigate how neural features 
supporting EF may contribute to symptom change and functional recovery over time. 
Characterizing executive dysfunction heterogeneities and underlying neural circuits 
longitudinally across large naturalistic cohorts of patients seeking treatment for SUDs is likely to 
provide novel insight into the pathophysiology of addiction and help identify novel targets for 
intervention. 

Objectives 

The primary goals of CDiA Project 2 (P2) are to identify imaging biomarkers (MRI, fMRI) 
associated with domains of EF, their associations with addiction symptoms and day-to-day 
functioning, and prospective relationships with symptom changes and functional outcomes in 
adult outpatients seeking treatment for SUDs. These imaging biomarkers may help guide future 
development and individualization of biologically informed treatments for naturalistic clinical 
populations with SUDs.  

H2a: Behavioural performance along the three EF domains will map onto partially dissociable 
neural substrates overlapping with frontoparietal and corticostriatal circuits. The extent of 
activation and pattern of brain activity associated with each of the three EFs will be associated 
with greater addiction severity and lower general functioning at baseline.  

H2b: Greater disturbances in EF-associated neural circuits at baseline will be associated with 
lower improvement in addiction severity and functional outcomes on follow-up, above and 
beyond impairments in other neural circuits. 

Methods and Planned Analyses 

Participants. All participants included in the total sample are eligible to participate in a 1.5-hour 
MRI protocol. P2-specific exclusion criteria include the presence of MRI-incompatible metal 
implants, history of stroke, and claustrophobia. We anticipate approximately 50% of the entire 
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sample (n=200) will be eligible and consent to MRI. Participants are eligible for a longitudinal 
scan at one-year follow-up; we anticipate 25% (n=50) being available and consenting to the 
repeat scan to assess longitudinal stability of our main measures. 

MRI methods. Our research imaging protocol uses state-of-the-art imaging sequences fully 
harmonized with MRI acquisition protocols used by large-scale population-representative studies 
(83) and other ongoing CAMH-based cohort studies (84,85) (see Table 2), which will allow us to 
leverage our data for comparison or transdiagnostic analyses. To support new research studies, a 
portion of the scanning time is secured for pilot sequences. 

Structural measures. A standard T1-weighted structural scan is acquired to obtain detailed 
measures of cortical morphology (e.g., thickness, surface area, and volume). Diffusion-weighted 
imaging (DWI) is acquired to measure white matter tract integrity and tissue microstructure. 
Neuromelanin-sensitive (NM-MRI) scans are acquired to quantify the integrity of the substantia 
nigra (86,87), with partial coverage of the locus coeruleus (88). NM-MRI scans were included to 
capture metrics related to catecholamine signaling implicated in addiction based on molecular 
imaging and preclinical models (89). 

Resting-state BOLD. Participants are asked to remain awake with their eyes open for 10 minutes 
while lying restfully in the scanner. 

Cognitive fMRI paradigms. We administer three EF tasks for a total duration of ~30 minutes. 
The tasks assess the same EF domains as in P1 but were specifically selected to be distinct from 
the paradigms used in P1 to reduce practice effects, which may alter in-scanner performance and 
brain activation patterns (90,91). The EF cognitive paradigms were adapted from Rieck et al (66) 
and are presented in a pseudorandom order counterbalanced across participants. To minimize 
visual distraction and permit joint analysis across all EF dimensions, the tasks were designed to 
be visually simple and consistent across EF domains, using white or light-colored letter stimuli 
against a dark grey background.  

Insert Figure 2. 

 

Proposed Analysis. At baseline, task-based brain activation and brain structure will be 
investigated in association with SUD symptom severity and functional ability. Multivariate 
approaches (e.g., Partial Least Squares regression) will be used to investigate relationships 
between microstructure, function, and performance across the three EF tasks by identifying latent 
variables (LV) that capture covariance between the set of predictors (microstructure, 
performance) and outcome variables (functional activation). Individual brain scores reflecting 
the degree to which participants expressed the LV activation pattern will be correlated with 
addiction severity and functional ability at baseline and on follow-up, uncovering neural factors 
crucial for recovery. Age, sex, and primary substance of concern will be used as covariates. 
Although it is challenging to provide a power estimate for studies involving complex 
multivariate analytic approaches in neuroimaging, our proposed sample size is consistent with 
recent empirically derived recommendations to enhance reproducibility in task-based fMRI 
research (92). These studies suggest that a sample size of n=120 is sufficient to obtain a test-
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retest voxel-wise correlation >0.80 across most paradigms. Thus, our proposed sample size of 
n=200 cross-sectionally and n=100 longitudinally, is in line with these recommendations and, to 
the best of our knowledge, larger than any prior fMRI study in SUDs. Further, based on standard 
power analysis tools, a sample size of 200 allows power of >0.80 to detect small effect sizes on 
the order of r=0.2 or Cohen’s d=0.2.  

Table 2. 

 

P3: To identify biomarkers mechanistically associated with EF and functional outcomes in 
adult outpatients seeking treatment for addiction. 

Background  

The analysis of peripheral biomarkers has emerged as a promising approach to probe potential 
mechanisms or inform prognosis for SUDs (93,94). These markers are easily accessible and 
relatively inexpensive when compared to other methods (e.g., MRI or PET) (95,96), which 
highlights their potential utility in clinical settings. Establishing the relationship between 
peripheral biomarkers and cognitive dysfunction in SUDs  can help to unravel mechanisms that 
contribute to SUDs, including domains of executive dysfunction, and to understand associated 
risk and mediating factors. 
Substance use can trigger the activation of microglia and astrocytes in the brain, driving their 
function to a neuroinflammatory response and inducing the production of pro-inflammatory 
biomarkers (97,98). Several of these molecules can cross the blood-brain barrier, promoting 
immune activation in peripheral tissues. The persistence of this pro-inflammatory feedback loop 
between the brain and periphery can lead to reduced neuroplasticity, structural and functional 
changes in key neural circuits underlying cognitive and emotional processing, leading to 
executive dysfunction, physical disability, and a higher risk of SUD relapse (99). 

Consistent with this, prior work supports the relationship between SUDs and peripheral markers 
of pro-inflammatory biological processes. For example, individuals with AUD exhibit an 
activation pattern characteristic of a pro-inflammatory response that persists even after alcohol 
withdrawal (100–102). Cocaine abstinence was also associated with higher levels of pro-
inflammatory cytokines (IL-2, IL-6, and IL-17) in a sex-specific manner (103). Importantly, 
higher IL-6 levels have been correlated with worse EF performance (104). In individuals with 
opioid use disorder, higher levels of pro-inflammatory cytokines (IL-1β, IL-6) were associated 
with worse episodic memory performance and worse treatment response to methadone 
(105,106). A similar pattern of increased pro-inflammatory activation is also observed in patients 
with cannabis use disorder (107). 
 
 

Insert Figure 3 

The pro-inflammatory activation observed in SUDs happens in the absence of antigens and is 
considered sterile inflammation. Sterile inflammation often occurs as a response against 
damaged cells and molecules. A key player of sterile inflammation is the activation of the 
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inflammasome. The inflammasome is an intracellular multiprotein complex (e.g., the NALP3 
complex) that functions as a sensor of Damage-Associated Molecule Pattern (DAMPs). It leads 
to the activation of proinflammatory caspases and the cleavage and release of proinflammatory 
cytokines, such as IL-1β and IL-18, and caspase-1. 

Inflammasome activation is frequently reported in different neuropsychiatric conditions (108–
110). More recently, studies have linked cytokines related to inflammasome activation, in 
particular IL-1β, with cognitive dysfunction in different neuropsychiatric disorders (111–117). 
However, there is no information about whether inflammasome activation is a potential trigger 
and/or contributor of cognitive impairment in general, and EFs more specifically, among adults 
with SUDs. The overarching goals of P3 are to investigate pro-inflammatory changes and 
inflammasome activation as a mechanism associated with executive dysfunction in SUDs. We 
will focus our analysis on peripheral biomarkers in plasma. Blood samples and extracted DNA 
are banked for potential future integrative analyses (see P7). 

Objectives 

P3 will mainly focus on the investigation of the inflammasome in SUDs and correlate it with 
executive dysfunction and brain structural and functional parameters. The first objective is to 
investigate the impact of inflammasome activation on EF domains in SUDs. Second, we will 
investigate the impact of inflammasome activation on structural and functional brain parameters 
in SUDs (integration with P2). Results will provide insight into potentially targetable molecular 
mechanisms underlying EF in this naturalistic sample.  

 
H1: Higher inflammasome activation (i.e., high expression of NALP3) will be associated with: 
(a) worse inhibition (b) lower working memory updating, and (c) reduced set shifting ability.  

 
H2: Higher inflammasome activation will be associated with: (a) lower gray matter in the 
prefrontal cortex; (b) reduced activation of the default brain network; (c) less connectivity in 
neural circuits underlying EFs.  
 

Methods and Planned Analyses 

Blood collection, sample preparation, and storage. P3 draws on the same participant pool 
recruited for P1. Following consent, blood is collected into two EDTA (8 cc) and one citrate (4.5 
cc) tubes. After processing, the plasma and buffy coat aliquots are immediately stored at -80°C 
until analysis.  

Laboratory analysis for plasma biomarkers. We will measure the phosphorylated and non-
phosphorylated proteins isoform levels of the NALP3 complex using Western Blot. The ratio 
between non-phosphorylated and phosphorylated isoforms of NALP3 will be used as a proxy 
measure of the activation of the inflammasome pathway. Additionally, we will measure the 
plasma levels of the pro-inflammatory cytokines IL-1β, IL-18, and Caspase-1 using a multiplex 
immunoassay (bead-based multiparametric assay). 
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The immunoassays will be analyzed using the Luminex xMAP technology® (Luminex 200). The 
assay has very low cross-reactivity, and this technology has a higher sensitivity to detect very 
low concentrations of different analytes. The intra- and inter-assay coefficient of variance for the 
assay is below 10% for most of the analytes measured. 

Proposed analysis: To test the association of the biomarkers with the three EF domains and 
neuroimaging outcomes, we will use Pearson correlation and linear multiple regression models. 
The linear models can be expanded to include potential covariates, if necessary. The total sample 
size of 400 subjects will be sufficiently powered to detect small effect sizes of correlation 
coefficients of 0.11 (α=0.05, statistical power of 80%) to 0.14 (α=0.05, statistical power of 95%). 

 

P4: To assess the role of repetitive transcranial magnetic stimulation (rTMS) on aberrant 
executive function in the context of major depressive disorder in adult outpatients seeking 
treatment for SUD (NCT06299787) 

Background 

The prefrontal cortex, although well established as an efficacious target for the treatment of 
major depressive disorder (MDD), has recently come into favour as a therapeutic target for AUD 
(118). Depressive symptoms are also highly prevalent in individuals with AUD (119–123). A 
number of cognitive and psychological processes stemming from the prefrontal cortex, a 
common treatment target for repetitive transcranial magnetic stimulation, are disrupted in both 
MDD and AUD. In a study by Marzuk et al (124), individuals with MDD, demonstrated poorer 
performance in several EF assessments. Although numerous other frontal cortical and subcortical 
regions are involved in MDD, the DLPFC appears to focus on executive and cognitive control of 
negative emotion through reappraisal and suppression strategies (125).Treatment of SUDs with 
repetitive transcranial magnetic stimulation (rTMS) is an extremely promising frontier (126).  It 
has been posited that there are underlying neurobiological mechanisms shared across SUDs that 
involve dysfunctional cortico-striatal circuits which can be modulated with rTMS applied to the 
DLPFC (127). Given the role of executive dysfunction in SUD, activation of the DLPFC via 
rTMS may aid in modulating inhibitory behavior, salience attribution and decision-making 
(128). A comprehensive investigation of the domains of EF (inhibition, updating, and set 
shifting) associated with both MDD and AUD, has yet to be conducted and will be a major 
contribution of the CDiA (see P1). 
  
Repetitive Transcranial Magnetic Stimulation (rTMS) is FDA approved for the treatment of 
MDD and a large body of evidence supports its safety and antidepressant efficacy (118,129,130). 
Theta Burst Stimulation (TBS) is an efficient form of rTMS  associated with both antidepressant 
effects (131) and alterations in plasticity in the cortex (132). TBS involves stimulation of the 
cortex with triplet pulses of rTMS applied at 50 Hz (burst) and delivered every 200 msec (5Hz). 
TBS can be applied as continuous TBS (cTBS) as a 40 second uninterrupted burst (i.e., 600 
pulses) or intermittent TBS (iTBS) as a 2 second train of bursts repeated every 8 seconds for a 
total of 600 pulses. Importantly, TBS takes about 1/6th the time of standard rTMS, translating to 
a higher impact and consequently more efficient treatment at a population level.  
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MDD is linked to hopelessness, negative affect, and attentional biases (133,134). These features 
are connected with aberrant DLPFC function and are part of the negative valence domain, which 
includes constructs of loss, sustained threat, and frustrative non-reward (135). Rodent studies 
have shown that TMS-mediated increase in cortical inhibition occurs through the recruitment of 
dendrite-targeting GABAergic inhibitory neurons, putatively implicating Somatostatin (SST)-
positive GABAergic neurons, α5-GABAA and GABAB receptors (to be investigated in CDiA 
Project 5), since these are the main inhibitory cells targeting pyramidal cell dendrites, and their 
function in targeted pyramidal cells is mediated by these two GABA receptor subtypes (136). 
The role of activating this pathway on executive function domains will be investigated in P5. 
 
TMS combined with EEG (TMS-EEG) is a powerful method to assess GABA receptor mediated 
inhibition, excitability, connectivity and plasticity in non-motor cortical regions including the 
DLPFC. Single and paired pulse TMS-EEG studies have identified several TMS-EEG indices 
associated with cortical inhibitory mechanisms associated with GABA receptor mediated 
inhibition (137–141).  
  
Previous studies have demonstrated that rTMS acts through mechanisms linked to GABAergic 
inhibitory neurotransmission in the cortex. For example, we have previously reported that rTMS 
increased GABA receptor mediated inhibition through rTMS and that higher frequencies (i.e., 10 
and 20 Hz) produced greater inhibitory change compared to lower frequencies (i.e., 1 and 5 Hz) 
(142). More specifically, iTBS over the prefrontal cortex alters the N100 (143,144), which is 
closely associated with GABA receptor mediated inhibition (139). 
 
We have recently demonstrated that in MDD, there are abnormalities in TMS-EEG markers of 
GABAA and GABAB receptor mediated inhibition (i.e., N45 and N100, respectively) in the 
DLPFC. Specifically, we reported that the N45 waveform predicted depression illness state with 
80% sensitivity, 73.3% specificity, and 76.6% accuracy (area under the curve = 0.829, p < .001) 
(145). More recent pilot data from our group in patients with depression undergoing a 6-week 
rTMS course demonstrated that active rTMS changed the N45 and N100 waveforms and this 
change was related to HRSD-17 symptom improvement. Sham rTMS, by contrast, had no effect 
on either the N45 or N100 waveforms. Collectively, these results suggest that both rTMS and 
iTBS target neurophysiological markers of GABA receptor mediated inhibition and this 
mechanism may be related to MDD treatment response. However, there have not been specific 
neurophysiological investigations into executive functions and depressive symptomatology in the 
context of MDD comorbid with AUD. This proposal serves as a unique window into the 
neurophysiology of this at-risk population, and will further investigate the correlation among 
rTMS treatments, indices of GABAergic inhibition and mode defined domains of executive 
function (inhibition, updating, and set shifting). 
  
An emerging neurophysiological index of prefrontal cortical activity underlying executive 
functioning is theta-gamma coupling (TGC), which measures the degree to which high-
frequency gamma oscillations are modulated by low-frequency theta oscillations (146) TGC is 
thought to underlie working memory, the brain’s ability to select, maintain, and manipulate 
information in the short-term. In a group of patients with MDD, Noda et al. (147) showed that 
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resting state TGC levels correlated with executive function and was enhanced after 10 sessions 
of DLPFC rTMS, suggesting that it may be a biomarker for intervention in treatments that target 
brain regions underlying executive dysfunction. To further investigate TGC as a biological 
mechanism in MDD, the present project adds an investigation of TGC coupled with the N-back 
working memory task before and after rTMS treatment. The project bridges gaps in previous 
studies (147) by including a sham control group, measurement of TGC that is coupled with a 
working memory task, investigating effects in comorbid AUD, and delivering a full 20 session 
course of rTMS. 

Objectives 

P4 will enhance the development of TBS as a new intervention for AUD in the context of 
depressive symptoms and uses integrated TMS-EEG to identify neurophysiological targets of 
executive dysfunction in this disorder. The study aims to conduct a double-blind randomized 
pilot study, consisting of two arms (bilateral TBS and sham) to investigate the effect of bilateral 
TBS on deficits in executive function in the context of comorbid AUD and MDD.  We will 
leverage our expertise in neurophysiological investigations of the cortex through TMS-EEG to 
index GABA inhibition in the cortex of individuals with a diagnosis of AUD, who have not used 
substances within the past month (ie. meeting criteria for early remission), in the context of a 
current depressive episode and MDD, and index alterations in TMS-EEG indexed GABA 
receptor mediated inhibition induced by bilateral TBS or sham applied to the DLPFC.  We will 
also determine whether bilateral rTMS to the DLPFC changes TGC and is associated with 
changes in executive dysfunction in patients with MDD and AUD. We will also assess the direct 
associations between improvement in executive function domains after bilateral TBS, with 
improvement in MDD symptoms and conduct exploratory subanalyses by biological sex and age 
categories.  Finally, we will aggregate data from other CDiA projects (including imaging, 
genetics, inflammatory models, preclinical biomarkers and more) to further examine the role of 
GABA receptor mediated inhibition in the cognitive dysfunction found in SUD. Specific 
baseline cross-analyses will be performed between executive function tasks, imaging variables, 
inflammatory markers and TMS-EEG indices of GABA receptor mediated inhibition. 

H1: 4 weeks of daily bilateral DLPFC TBS will lead to greater improvement in executive 
function tasks, compared to sham TBS. 
H2: 4 weeks of daily active bilateral DLPFC TBS will lead to a greater proportion of individuals 
remaining abstinent from substance use compared to sham rTMS. 
H3: 4 weeks of daily active bilateral DLPFC TBS will lead to greater amelioration of depressive 
symptoms (as indexed by decrease in HRSD-17 score) and suicidal ideation (as indexed by a 
decrease in Columbia-Suicide Severity Rating Scale score), compared to sham rTMS. 
H4: Active bilateral TBS DLPFC stimulation (compared to sham) will lead to an increase in 
GABA receptor mediated inhibition indices after the course of TBS. 
H5: Active bilateral DLPFC rTMS (compared to sham) will lead to a significantly greater 
increase in TGC and correlate with improvements in executive dysfunction. 
H6 (exploratory): 4 weeks of daily active bilateral DLPFC TBS (compared to sham) will lead to 
improvement in all executive function domains (inhibition, updating, and set shifting) in 
conjunction with improvement in MDD symptoms (ie. more amelioration of MDD symptoms 
will be associated with improved executive function). 
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Methods and Planned Analyses 

A total of 40 participants will be recruited from the CDiA pooled sample within 6 to 12 weeks of 
the baseline assessment for P1. Participants will be randomized in a 1:1 ratio to one of two 
different rTMS arms. The first arm will include bilateral TBS, applied as cTBS over the right 
DLPFC followed by iTBS applied over the left DLPFC. The second arm will be sham TBS. All 
participants will be asked to participate in 4 weeks of treatment, 5 days/week (i.e. weekdays). 
TMS-EEG will occur at treatment initiation (week 0) and treatment end (week 4). Baseline and 
post-treatment clinical measures will be administered to characterize each AUD patient. TBS 
will be administered using the MagPro X100 stimulator equipped with a Cool-B70 coil and 
Qooler fluid-cooling device (MagVenture, Farum, Denmark) positioned under MRI guidance 
using the Brainsight neuronavigation system. With a sample size of 20 participants per group and 
assumed large effect sizes, we will have 80% of statistical power to detect a significant 
difference between the active treatment arm and sham at a significance level of 0.05. 

Randomization and Blinding 

We will randomize participants based on a stratified randomization scheme using a permuted 
block method with a random number generator, in fixed random sizes. 

Active/Sham rTMS Apparatus/Blinding Procedure 

We will use an R30 or X100 with a cool A/P B70-type coil (Magventure Inc.) to ensure blinding 
of both patient and technician. As such, the clinician, researcher, patient and technician will all 
be blinded. For both active and sham stimulation, the coil is positioned under MRI guidance 
using real-time neuronavigation, thus providing technician and participant with visual feedback 
throughout stimulation.  

TBS Treatment Procedure 

TBS will be delivered to the DLPFC bilaterally, with neuronavigation determined through 
structural MRI. The structural MRI utilized to derive the brain target will have been completed 
as part of P2. Should participants not have had imaging performed as yet when they are screened 
for this project, they will be redirected through Project 3 after baseline assessments of this 
project prior to the start of rTMS treatment. The coil position selection will start by identifying 
MNI152 stereotaxic coordinates (x, y, z) of (–38, +44, +26) and (38, 44, 26) in the left and right 
DLPFC, respectively, which we have shown to be effective targets for rTMS in alleviating 
symptoms of MDD (148). Bilateral TBS will be delivered as follows: R-DLPFC cTBS: 40s 
uninterrupted bursts (triplet 50 Hz bursts, repeated at 5 Hz, 40s on, 600 pulses total) followed 
immediately by L-DLPFC iTBS: (triplet 50 Hz bursts, repeated at 5 Hz, 2s on and 8s off, 600 
pulses total). For intensity of stimulation we will use 120% RMT. Our work in over 200 people 
stimulating PFC suggests that 120% RMT is the maximum that should be used for negligible risk 
of seizure and other serious adverse effects beyond the expected scalp pain and headache during 
early treatment sessions (149,150). 

Participants 

Patients will be included if they meet general inclusion criteria for CDiA and in addition, if they: 
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(1) have a Diagnostic and Statistical Manual for Mental Disorders, 5th edition (DSM–5) diagnosis 
of AUD based on the MINI; (2) do not exhibit problematic use of any substances (excluding 
nicotine and caffeine), including alcohol, for >1 month; (3) screened positive for an MDE based 
on the MINI without psychotic symptoms (4) are agreeable to keeping their current 
antidepressant medications and medications for AUD constant during the study; (5) are reliably 
taking SUD agonist therapies if appropriate and managed by their clinical team; (6) are able to 
adhere to the study schedule (7) meet the TMS safety criteria (151). 
 
Participants are excluded if they meet general exclusion criteria for CDiA, and in addition, if 
they: (1) have a concomitant major unstable medical illness or any significant neurological 
disorder; (2) are pregnant or intend to get pregnant during the study; (3) have failed a course of 
ECT, due to the lower likelihood of response to rTMS; (4) have an intracranial implant (e.g., 
aneurysm clips, shunts, cochlear implants) or any other metal object within or near the head, 
excluding the mouth, that cannot be safely removed; (5) require a benzodiazepine with a dose 
equivalent to lorazepam 2 mg/day or higher (152). 

Participants will be discontinued from the study if they cannot safely continue the study based on 
any of the following criteria: (1) experience clinically significant worsening of suicidality that 
requires an involuntary inpatient hospitalization; (2) develop clinically significant hypomanic or 
manic symptoms; (3) relapse into substance use in the month prior to rTMS treatment or during 
the rTMS treatment (4) miss four rTMS treatments (i.e., 20%); or (5) withdraw consent. 

If relapse into substance use is suspected during the course of rTMS treatment, for safety 
purposes, a physician will be called to assess the participant prior to the initiation of rTMS 
treatment for the day or as soon as substance use is suspected. Investigations (e.g., urine drug 
screen or blood draw) will be ordered at the physician’s discretion, with the consent of the 
participant. The decision to continue with or discontinue rTMS treatment for that day or going 
forward will be at the discretion of the assessing physician and the participant’s SUD clinical 
team. 

Clinical Assessments 

Participants will be initially screened with the MINI and C-SSRS as part of P1. Interested and 
potentially eligible participants will complete a subsequent interview to address all criteria 
outlined above to confirm eligibility..  

The 17-item Hamilton Rating Scale for Depression (HRSD-17) (153) will be our tertiary 
clinical outcome measure. The tertiary clinical outcome criteria will be a decrease in HRSD-17 
score at treatment end compared to baseline (129,148). The HRSD-17 will be performed at 
baseline, weekly and at the end of the rTMS treatment course. 

The Columbia-Suicide Severity Rating Scale (C-SSRS) will be used to evaluate suicidality. 
This reliable and valid scale has been used in randomized clinical trials and is able to predict 
completed suicide (154). The C-SSRS has been reported as an effective measure for diagnosis 
and treatment across several diagnoses (155–157) with high internal consistency, and interrater 
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reliability (157–161). The C-SSRS will be performed at baseline, weekly and at the end of the 
rTMS treatment course. 

TMS Adult Safety Screen (TASS) (151) will be used at recruitment and baseline to ensure that 
participants are safe to participate in rTMS treatment trials. 

Executive Function Battery To enhance integration of each project, we will re-administer the 
EF cognitive assessments within one week prior to the start of rTMS and at the end of the 4 week 
course of rTMS.  

Neurophysiological Indices (TMS-EEG) of GABA Receptor Mediated Inhibition in the 
DLPFC 

To evaluate GABA receptor mediated inhibition indices in the DLPFC, TMS will be 
administered to the left DLPFC using two Magstim-200 stimulators (Magstim Company Ltd., 
UK) connected via a Bistim module and electrophysiological data will be collected using 
dedicated hardware and software (Neuroscan, Compumedics, USA). Each TMS session will 
include the establishment of the individual threshold for stimulation, followed by GABA 
receptor mediated inhibition paradigms in the DLPFC according to our published methods (139). 
Recordings will be acquired through a 64-channel EEG. GABA receptor mediated inhibition 
indices from the DLPFC will be the dependent variables of interest and derived according to 
published recommendations (139,162). Our neurophysiological measures have been established 
in several of our previous reports and have a high test-retest reliability (i.e., ICC > than 0.9) 
(163,164). Data analysis will take place using semi-automated methods developed and validated 
by our group (139,163). TMS-EEG will be conducted prior to the start of the course of rTMS 
and within 48 hours after the last rTMS treatment. 

To evaluate TGC, participants will undergo the N-back task during a 10 minute EEG recording 
at baseline and after the treatment course as part of the TMS-EEG sessions. The N-back task 
assesses working memory updating by asking participants to determine whether the stimulus (a 
letter) presented to them is the same as, or different than, the stimulus that was presented to them 
N trials previously. Participants indicate whether the stimulus presented on the monitor is a 
similar match, or different, from the stimulus presented 2 trials back. EEG signals of TGC are 
recorded using DC and a low pass filter of 100 Hz at 20-kHz sampling rate, and data processed 
offline using MATLAB and EEGLAB toolbox, following previously published protocols 
(146,165). Theta-Gamma Coupling: The measure of TGC is indexed by the modulation index 
(MI), calculated for each electrode, followed by an average across the right and left frontal 
electrodes. The MI for all target trials is analyzed as a weighted average based on the number of 
correct and incorrect responses, as previously described (146,165). 
 

 

P5: A preclinical study of the impact of alcohol on executive dysfunctions (ED) and their 
reversal by novel therapeutic interventions. 

Background  
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Preclinical research on substance administration played a critical role in understanding the nature 
of substance-related cognitive dysfunction. However, studies focused on single cognitive 
domains, and relatively little is known about the dynamic trajectories of executive dysfunction 
(i.e. emergence, dependence and potential reversal (166,167)). This study employs a reverse-
translational approach, using homologous behavioral tests applied to human participants, but 
here in rats, to measure executive dysfunction in three domains affected by chronic alcohol 
consumption (Objective 1), potential reversal via pharmacological intervention (Objective 2), 
and identification of peripheral and central biomarkers for translation to humans (Objective 3). 

The investigation targets specific biological pathways implicated in executive dysfunction in 
AUD, focusing on GABAergic neurotransmission, the inflammasome system, the noradrenergic 
system, and the opioid system. The GABAergic system plays a critical role in cognitive 
functions (168), and is being investigated in P4. Here, we will enhance its activity 
pharmacologically in rats to investigate its impact on executive functions. The activity of the 
inflammasome, a multiprotein intracellular complex that detects internal biological stressors and 
activates pro-inflammatory cytokines, is implicated in brain disorders (169) and alcohol 
consumption (170), and will be measured in P3 for its translational biomarker value. Here, we 
will block its activity pharmacologically to assess the impact on executive functions. The 
integrity of the noradrenergic system, to be measured in P2, plays a critical modulatory role in 
AUDs (171), with complex effects depending on activity at various receptor subtypes (α1 versus 
α2). Here we propose to target the α2-receptor, using guanfacine, an α2-receptor agonist that 
demonstrated efficacy at reducing alcohol consumption in rats (172) and is used for the treatment 
of attention-deficit/hyperactivity disorder (173). Finally, naltrexone is a prescribed medication 
used to manage alcohol dependence, especially consumption, although it appears to have reduced 
efficacy in certain patients, depending on gender and genetic differences (174). Naltrexone is 
predicted to be prescribed in a significant proportion of P1 participants. Its effects on executive 
functions are not fully characterized and tend to vary from study to study (175,176). Here, we 
propose to systematically investigate the relationship between its known clinical efficacy on 
consumption and potential improvement of executive functions in rats, providing a clinically-
relevant comparison to the other interventions.  

Objectives 

The primary objective of P5 will be to characterize the impact of alcohol on three cognitive 
domains in rats, identify the impact of novel therapeutic approaches, and delineate novel 
biomarkers predictive of cognitive deficit emergence or treatment efficacy. We will test the 
following hypotheses:  

H1: Alcohol withdrawal increases working memory deficits, impulsivity and cognitive flexibility 
deficits in adult rats.  

H2: Cognitive dysfunctions observed are linked to changes in central biomarker of synaptic 
functions, changes in various neurotransmitter related activity (glutamate, GABA, dopamine) 
and peripheral signs of neuroinflammation.  

H3a: Pharmacological interventions targeting the GABAergic system will contribute to better 
working memory function, cognitive flexibility and reduced impulsivity during withdrawal.  
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H3b: Pharmacological interventions targeting the dopaminergic system will contribute to better 
cognitive functions and reduced alcohol seeking behaviors.  

H3c: Pharmacological interventions targeting the inflammasome will reduce signs of 
neuroinflammation, indirectly contributing to better cognitive health.  

This project will also generate a sample repository (brain, blood, plasma) for investigation and 
discovery of peripheral and central biomarkers indexing putative mechanisms involved in AUD 
and executive dysfunction, that could be used for follow-up biomarker analyses. 

Methods and Planned Analyses 

Male and female Long Evans rats, 3 months old at study initiation, will be utilized in this study. 
Rats will be habituated to consume a liquid diet (Nestlé®  Chocolate Protein Boost) in which 
ethanol can be diluted. After baseline assessment of executive functions, half of each cohort will 
be exposed to a diet supplemented with 10% w/v alcohol 5 days per week. Removal on 2 
consecutive days per week will induce a withdrawal period. Such cycle will be repeated 4 times, 
with assessment of cognitive functions during withdrawal after 4 cycles (Figure 4; top panel, 
orange box)  

Insert Figure 4 

Measures. Three domains of EF (inhibition, working memory, set-shifting) will be assessed to 
match assessment in P1. Inhibition will be measured using the 5-Choice Serial Reaction Time 
Task (5-CSRTT). This test is conducted in operant conditioning boxes with 5 apertures featuring 
integrated light stimuli (177), and a reward dispenser on the opposite wall. Rats are trained to 
respond to a stimulus among the 5 apertures, earning a reward on a fixed intertrial interval. 
Lengthening this interval challenges rats to wait longer before responding, with premature 
responses during the intertrial interval serving as a reliable measure of response inhibition (or 
impulsivity). In alcohol-exposed rats, premature responses are expected to increase, especially 
when the intertrial interval is extended. Working memory will be assessed using a T-maze 
spontaneous alternation task (178). After 2 days of habituation, rats explore the maze starting in 
the maze's initial arm and then choosing between the two goal arms. The chosen arm is closed 
off, and the rat returns to the start arm for the next trial. This process is repeated for seven trials. 
Rats naturally alternate between arms, relying on working memory for novel environment 
exploration. Alcohol-exposed rats tested during withdrawal are expected to show diminished 
working memory functions Set-shifting will be evaluated following Floresco et al.'s protocol 
(179), in which rats undergo initial training in standard operant conditioning chambers with a 
house light, two retractable levers, and stimulus lights. Training involves a fixed ratio 1 schedule 
on each lever, reaching a criterion of 50 rewards or 30 minutes per lever. The second phase 
introduces a 90-trial session where rats must press a lever within 10 seconds to receive a reward. 
Visual cue discrimination training follows, with stimulus lights above the levers. Rats respond 
within 10 seconds to the lit lever for a sucrose reward, while responses on the non-lit lever are 
punished. Criterion: 10 consecutive correct responses for 30 trials over 4 days. After visual 
discrimination is learned, rats are tested in a “shift to response discrimination” task, where the 
rewarded lever is consistent, irrespective of the light stimulus. The number of trials needed to 
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learn this new set serves as a proxy for set-shifting. Rules are modified after each testing session 
to ensure continual adaptation.  

Due to the complexity of the inhibition and set-shifting task, these cannot be run in the same 
animals. Therefore, different animals will be used to run inhibition+working memory, and set-
shifting. 

Following the assessment of alcohol-induced cognitive function changes, interventions will 
commence (Objective #2). Treatments involve intraperitoneal administration of drugs targeting 
α5-GABAA receptors (GL-II-73), the inflammasome (MCC950), the α2-noradrenergic receptor 
(guanfacine), and the opioid system (naltrexone). 

Initially, acute dosing will be explored using a Latin square design to test multiple doses (Table 
3). Conducting multiple doses in the same animal necessitates several testing sessions, and all 
employed tests, such as the Y maze and 5-CSRTT, are stable and unaffected by practice and 
repetition (177,180–182). The set-shifting task (179) can be adapted to establish new rules at 
each testing session, enabling regular assessment of set-shifting abilities in the same animals 
while mitigating the impact of practice on repeated testing. 

Table 3 

Blood samples will be drawn weekly and 24 hours after discontinuation of the liquid diet (Figure 
4) to verify 1) blood alcohol levels (BALs) exceeding 100mg% during exposure and 2) the 
absence of alcohol 24 hours after cessation when behavioral testing begins. BALs will be 
assessed using an ANALOX machine. Serum samples will also be utilized for measuring 
peripheral inflammasome biomarkers. Inflammasome activity will be determined by the 
phosphorylated/non-phosphorylated NALP3 ratio in peripheral blood mononuclear cells, along 
with investigating inflammatory markers (NF-ΚB, ERK, p38MAPK) and cytokines (IL-1β, IL-
18, Caspase-1). Luminex xMAP technology® will be employed for biomarker analyses.  

After behavioral assessments, rats will be euthanized, and brains dissected for 
immunofluorescence staining and molecular analyses on regions of interest (prefrontal cortex, 
VTA, nucleus accumbens and hippocampus). Rostro-caudal coronal sections will be stored at -
20°C for neuroinflammation, noradrenergic, and GABAergic marker analysis. RNA and proteins 
will be extracted from homogenized tissue, allowing for cDNA conversion, quantitative PCR, 
and Western Blot analyses. The markers examined include, but are not limited to,  SST, PV, α5-
GABRA, α1 GABRA, BDNF, and other GABAergic markers. Similarly, qPCR, 
immunostaining, and Western Blot analyses against sterile inflammation biomarkers (NALP3, 
NF-ΚB, ERK, p38MAPK, IL-1β, IL-18, Caspase-1) will validate the correlation of peripheral 
and central biomarkers in a region-specific manner. Investigation of changes in noradrenergic 
system markers (NET, α1 receptor, α2 receptor) will complement NM-MRI work outlined in P2. 

The blood and brain samples collected will form a repository for subsequent biomarker analyses 
related to executive dysfunction in AUD. As Objective #3 establishes this repository, the 
analysis of these samples (peripheral or central) will be influenced by findings from other 
projects. Consequently, additional exploratory investigations of biomarkers will be conducted in 
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these samples when other projects identify relevant pathways or markers in the clinical 
population. 

Proposed Analysis: Behavioral data will be examined to assess the impact of alcohol exposure 
on executive functions, utilizing ANOVA (or relevant non-parametric alternatives) followed by 
Tukey's post hoc comparisons for statistical significance. In the alcohol-exposed groups, it is 
possible to observe subgroups of animals with higher susceptibility to alcohol than the others, 
suggesting existence of high-responders and low-responders. For data collected weekly, data will 
be analyzed with repeated measures to identify animals that are more than 50% of the time over 
the mean, and animals that are more than 50% of the time under the mean to segregate high-
responders and low-responders respectively. If such separation does not exist consistently, then 
analyses will focus on overall alcohol effect. For the second objective involving drug 
interactions, separate 2-way ANOVA with diet and treatment as factors will be applied, followed 
by Dunnett's post-hoc comparisons (182). In Objective #3, blood sample data will be analyzed 
using Student’s t-test (Objective #1) or 2-way ANOVA (Objective #2) with diet and treatment as 
factors, followed by Dunnett’s post-hoc test. Brain analyses with qPCR and Western Blot will 
use 2-way ANOVA with diet and treatment as factors, followed by Dunnett’s post-hoc 
comparisons. Pearson or Spearman analyses will evaluate correlations between executive 
dysfunction and peripheral/central biomarker levels, with p-values adjusted for multiple 
comparisons using the Bonferroni method due to the potential high number of pairwise analyses. 

 

P6: To assess links between EF and treatment seeking for addiction and healthcare 
utilization and costs. 

Background  

Among individuals with a SUD, EF can affect retention (183–185) and engagement in treatment 
as well as treatment outcomes (37,186), including the ability to achieve and maintain abstinence 
(183–185,187). Given that SUDs are strongly associated with health care utilization (39), it is 
also likely that EF, which impacts the success of SUD treatment, is a key factor affecting the 
extent of health care utilization. In particular, among those with EF deficits, a diminished ability 
to achieve abstinence or low-risk alcohol use may lead to a higher use of emergency services for 
the acute consequences associated with SUDs (188). This could result in increased health care 
costs (189), which is problematic when existing resources dedicated to emergency services are 
limited (189,190). Furthermore, a diminished ability to achieve abstinence or low-risk substance 
use may also lead to a higher use of non-emergency health care services, including primary care 
visits and hospitalizations, due to acute and chronic health effects associated with substance use 
(191,192). 

Furthermore, previous research has shown that EF is a factor in engagement in SUD treatment, 
including more treatment episodes and longer durations of abstinence among those without 
executive function deficits (187). EF deficits lead to worse recognition of problem use (193–
195). Therefore, people with executive function deficits are more likely to view their symptoms 
as temporary or not serious, and consequently do not seek treatment (38). These factors may also 
affect whether patients stay in treatment or remain abstinent after treatment. Accordingly, it is 
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likely that executive function deficits affect treatment seeking behaviours, experiences, and 
barriers among people with SUDs. 

Objectives 

P6 has two objectives. The first is to qualitatively assess the potential impact of EF on treatment-
seeking behaviors, experiences, and barriers, specifically among individuals with AUD. The 
second objective is to quantitatively assess the association of executive function with health care 
utilization among individuals with SUD, and to estimate the costs of this utilization. 

H1: EF deficits will negatively impact treatment seeking and the treatment process as expressed 
by participants in treatment for AUD. 

H2: Emergency and non-emergency health care utilization and related costs will be higher 
among participants in treatment for SUD with more severe EF deficits than among those with 
less severe EF deficits. 

Methods and Planned Analyses 

Objective 1 (Qualitative component): A semi-structured, one-on-one 90-minute interview with a 
subset of participants recruited from the pooled CDiA sample will be conducted by a research 
coordinator trained in qualitative methods including interviewing and analysis, shortly after their 
baseline data are collected. Given differences in treatment pathways and trajectories and their 
potential impacts on treatment experiences, this analysis will be limited to participants with 
AUD. Interview questions will be related to treatment-seeking behaviors and executive 
functioning. Participants will be asked about their experiences seeking help for substance use, 
perceived facilitators and barriers to treatment, perceptions and expectations regarding treatment, 
past health care utilization, and questions related to how executive function (e.g., memory, 
attention, impulsivity, etc.) may have played a potential role in their treatment-seeking behavior 
and experiences. 

This study will undertake a thematic analysis of the data obtained, examining and identifying 
common themes that emerge related to the perceived impact of executive function on treatment-
seeking behaviors, experiences, and barriers across the sample. We expect that thematic data 
saturation will be met with a sample size of approximately 30 participants. 

All interview transcripts will be manually reviewed by a member of the research team, and an 
initial codebook will be prepared based on preliminary analyses. All transcripts will be coded for 
the initial set of codebook themes using NVivo software. As we anticipate both inductive and 
deductive themes to emerge from the data, the codebook will be subject to further development 
and revision based on ongoing analyses and discussion of emergent themes among members of 
the research team. Data analysis will be finalized once we have met data saturation, and no new 
themes emerge. Final results will be informed by common themes that emerged and were 
expressed by multiple participants. To increase data analysis credibility, a secondary independent 
coder will code a sub-sample of transcripts using the coding framework to assess inter-coder 
reliability, and any discrepancies between codes or themes will be discussed. 
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Subsequent to the interview, participants will be asked to complete the Behavior Rating 
Inventory for Executive Functioning in Adults (BRIEF-A), a standardized validated assessment 
that captures self-reported perceptions of an individual’s executive functions and self-regulation 
(196). The results of the BRIEF-A assessment tool will be used to better understand the 
participants’ executive functioning from their perspective, which will further inform our 
qualitative analysis. 

Objective 2 (Quantitative component). A health systems evaluation will be conducted to assess 
the association between EF (as measured in P1) and health care utilization, as well as the costs of 
this utilization. For this analysis, the database constructed in P1 will be linked with data on health 
care utilization and the associated costs obtained from the Institute for Clinical Evaluative 
Sciences (ICES). ICES will provide data on the use of publicly-funded health services in Ontario. 
Participant data will be linked through ICES to the Hospital Discharge Abstract Database 
(DAD), National Ambulatory Care Reporting System (NACRS), Continuing Care Reporting 
System (CCRS), Ontario Health Insurance Plan Claims Database (OHIP), and Ontario Drug 
Benefit Claims (ODB) database. Records-level ICES data linkages will be performed using each 
participant’s unique Ontario Health Insurance Program health card number; the resulting 
database will be stripped of all direct personal identifiers and each entry will be assigned a 
confidential code number. All data linkages will be performed by an ICES data analyst. A 
subanalysis will be performed stratifying by conditions fully attributable and those not fully 
attributable to SUD. 

Analyses will focus on the occurrence of service utilization, stratified by the type of service (i.e., 
non-emergency services and emergency services). The occurrence of health care service use 
among the cohort (recurrent time-to-event data) will be analyzed using multiple models, 
including covariates across multi-disciplinary domains. These models will include the Andersen 
and Gill model (i.e., generalizes the Cox model), Prentice, Williams and Peterson (PWP) model, 
marginal means/rates model, and frailty model (i.e., random effects model) (197–200). The final 
model to be used will be chosen based upon which of the previously used models best describes 
the data and which model assumptions are upheld. Model assumptions include the occurrence of 
an event being dependent upon the prior number of events during the follow-up period (PWP), 
there being no time-dependent covariates (marginal means/rates model), and the occurrence of an 
event cannot be explained by observed covariates alone (frailty model). Each statistical model 
will include covariates for the domains of EF, demographics, substance use, and health service 
utilization prior to study participation.  

 

P7: To identify subtypes of individuals seeking addiction treatment using cross-disciplinary 
data types from all projects to and map the biopsychosocial all-cause drivers of cognitive 
dysfunction in adult outpatients seeking treatment for AUD/SUD 

Background  

In SUDs, heterogeneity is the rule rather than the exception (201). This heterogeneity is largely 
driven by extremely high rates of comorbid psychiatric conditions (202–204) and compounded 
challenges in the diagnostic process, as emergent cognitive syndromes may be temporary, drug 
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induced, or chronic (205,206). Even when considering the same SUD, symptoms and prognoses 
vary wildly between patients due to complex combinations of life experience (207), biology 
(208), and socio-demographic factors (209,210). Given this heterogeneity, it is likely that there 
exist subpopulations, or subtypes (211–213), of individuals with similar diagnostic 
classifications but different underlying disease mechanisms and degrees of cognitive impairment. 
Due to these mechanistic differences, interventions aimed at improving deficits in executive 
function (214) would not be expected to work equally well in different subtypes, meaning their 
identification is a priority for future applications of precision medicine in SUDs. 

Attempts to define subgroups within and across diagnoses with relatively homogeneous 
symptom profiles and outcomes have met with limited success; for example, a five-biotype 
model of alcohol dependence has been proposed using latent class modeling of family history, 
age at onset, DSM-IV criteria, and data on comorbid illnesses (215). Others have proposed four- 
and two-group subtyping schemes based on psychiatric co-morbidity, family history, 
psychopathy, temperament, and other clinical health measures  (216). Despite the strong links 
between symptom dimensions and executive dysfunction (see P1), subtypes have not been 
formally evaluated for differences in domains of inhibition, set shifting, or working memory 
updating, leaving a major gap in the field. To their detriment, most efforts have focused on 
relatively few domains of interest, not examined changes in cognitive performance (specifically 
executive function) over time, and yielded varying, unstable results. Therefore, it is important to 
approach the problem from a data-inclusive perspective (217). Using insights from unimodal 
investigations, such as those proposed in the preceding CDiA projects, it is also possible to 
assemble optimal parsimonious predictive models at the individual level which could aid in 
screening efforts and clinical decision making. 

Objectives 

In this project, we propose to integrate data collected from each of the proceeding projects – 
including use of insights from animal experiments in P5 – to (1) perform multi-modal subtyping 
on SUD individuals, (2) evaluate subtypes against known biological risk profiles for cognitive 
dysfunction and psychiatric illness (such as exploring polygenic risk scores) and other 
longitudinal outcomes (e.g. TMS treatment outcome, specified in P4), and (3) use machine 
learning approaches to optimize predictors of cognitive dysfunction over time and to understand 
the structure of modifiable risk and resilience factors that may present opportunities for 
intervention. No additional data will be collected for this project; it will be computational in 
nature. 

H1: Multi-modal unsupervised and semi-supervised clustering of SUD patients at baseline will 
reveal transdiagnostic subtypes of SUD with unique risk factor profiles and levels of executive 
functioning. 

H2: Subtypes from Aim 1 will be predictive of changes in executive function over one year of 
follow-up and individuals with evidence for subgroup transition will experience different 
treatment response rates. 
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H3: Multivariate predictive models of changes in executive function over time, incorporating the 
available multi-modal feature space of CDiA, will offer better performance than models based on 
individual modalities. 

Methods and Planned Analyses 

Cross-sectional data-driven subtyping. This will involve using subject clustering algorithms to 
identify relatively homogeneous subgroups of patients. Primary measurements from each of P1-6 
will be used as input for clustering (see Table 4 for domain definitions). The similarity network 
fusion (SNF) method will then be used to combine more fine-detailed, high-dimensional input 
variables across multiple modalities. To address the key overarching theme of this proposal, 
subgroups based on executive function domains (including and excluding other measures) will 
be of particular interest, and will be tested for distributional differences in primary prognostic 
outcomes of functional recovery and sustained health. The semi-supervised association-boosted 
SNF (abSNF) method will be used to identify subgroups with most significance to executive 
function performance at baseline. Internal validation of group membership will be performed 
using bootstrap procedures. Socio-demographic, educational, and life experiential characteristics 
of each subgroup will be described and placed within the context of existing cross-sectional 
work. 

Longitudinal stability of baseline subgroups and subgroup transitions. Within- and across-
data type clustering will be performed independently at multiple time points and evaluate the 
frequencies of individual-level membership transitions. This aim is similar in nature to Aim 2 of 
Project 1. However, the methods are adapted to account for the increased diversity and 
dimensionality of input data that will be used to identify latent subgroups. In project 1, latent 
growth curve modelling will be used to determine if individual trajectories of substance use and 
functional outcomes are predicted by baseline executive functions. Here in P7, we will extend 
the foundational work of P1 by examining patient trajectories based on data collected across 
projects 1-6 and determined using different, network-based methodologies. Critically, we will 
also identify socio-demographic, educational, and life experiential factors determining 
inconsistency in group membership over time. Subtypes based on integrative data analyses will 
be evaluated against more traditional clinical subtypes (such as those from P1) to determine if 
distributions of key demographics and outcomes are modified by the inclusion of multi-
disciplinary input features. 

Supervised Machine Learning for prognostication. We will apply machine learning methods 
on features identified by each project across domains to build optimally predictive models of: (1) 
executive function, (2) social function, (3) suicidality and self-harm, and (4) healthcare system 
burden (218). Modelling will proceed iteratively, using processes developed by our group (219–
221) 

Table 4. 
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Discussion 

 
There is widespread recognition of the need for integrative and longitudinal research 
incorporating cognitive, biological, and clinical measures of vulnerability and resilience in 
SUDs. Within the CDiA Program structure, detailed clinical and cognitive characteristics of a 
treatment-seeking sample will be integrated with biological markers closely linked to both 
cognitive dysfunction and SUDs, permitting the identification of critical mechanisms and 
therapeutic targets. Linkages to healthcare utilization and innovative whole-person modeling 
approaches will further take this initiative from “neuron-to-neighborhood” and foster integrative 
and translational research consistent with recent calls to action in this field. 
 
A main strength and innovation of the CDiA Program consists of its translational team and 
unique collaborative research approach on executive dysfunction for functional recovery and 
sustained health in outpatients seeking treatment for SUDs (Figure 1). Other conceptual 
advantages of the Program are the adoption of an individual differences approach, and the 
recognition that transformation of care can only occur when combining expertise from clinical 
neuroscience, clinical care, clinical research, and epidemiology/health science research 
perspectives. As depicted in Figure 1, P1-4 are closely linked investigations with a focus on 
collecting deep data in complex patients seeking treatment for SUDs; these human subjects 
research projects emphasize ecological validity and will occur in parallel with P5, which offers 
the opportunity to investigate associations between EFs, proposed biological underpinnings, and 
associated pharmacological therapeutics in a highly controlled and efficient design. P6 and P7 
extend the generativity of this work, with a focus on healthcare utilization and costs, as well as 
lived experience perspectives, and the application of highly sophisticated, advanced 
computational modeling to integrate data across all other projects. To further demonstrate the 
intended integrated approach across projects, we provide here selected examples of potential for 
individual projects benefiting and feeding back on strategy, approach and deliverables of other 
projects (see Table 5).   
 

Table 5 

 
Our inclusive approach to participant recruitment will allow us to recruit a large sample 
representative of the complex clinical populations typically seen in tertiary care settings. We 
recognize this will also pose analytical challenges related to sample heterogeneity. Our reliance 
on multi-level measures of transdiagnostic relevance (e.g., EF, functioning, neural circuit 
function, inflammatory markers) and our state-of-the-art data integrative approaches outlined in 
P7 place the CDiA Program in a strong position to harness this heterogeneity to improve 
understanding of “real-world” presentations of SUDs and their cognitive features. This can in 
turn accelerate impactful discovery science, clinical translation, and societal/policy changes 
needed to improve outcomes in this population.   
 
It is anticipated that following the recruitment of this initial cohort, subsequent research will 
investigate the impact of specific interventions (33,222) on impaired EFs and functional 
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recovery. Thus, it is the vision to use these results to support an “experimental medicine” 
approach aimed at remediating cognitive dysfunction. Although both psychosocial (e.g., 
cognitive training) and biological (e.g., pharmacotherapy, noninvasive brain stimulation) 
interventions are forecasted, the first planned intervention will investigate the efficacy of rTMS 
on outcomes in SUDs. Peripheral and imaging biomarkers identified in our initial cohort will 
permit such a nuanced investigation of mediators of clinical outcomes, and in conjunction with 
preclinical investigations, will inform the development of novel therapeutics (223,224). As an 
early testament to the generativity of CDiA, two substudies have already been launched: the first 
aims to assess links between lab-based cognitive and biological measures, and real-world metrics 
of activity measured by wearable technology, and the second seeks to evaluate the impact of a 
novel rTMS intervention for treatment of cannabis use disorder (NCT05859347). 
 
Taken together, through its core and embedded projects, the CDiA Program aims to improve 
precision medicine by understanding the heterogeneity of SUDs, subtyping patients with diverse 
SUD presentations, discovering underlying neurobiological mechanisms, and identifying targets 
for novel therapies and therapeutics. 

Ethics Statement: 

The study was approved by the Research Ethics Board (REB) at the Centre for Addiction and 
Mental Health (CAMH), REB #: 010/2021. The participants will provide written informed 
consent to take part in the study. Animal procedures were reviewed and approved by CAMH 
Animal Care Committee, in accordance with the guidelines of the Canadian Council for Animal 
Care. 
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Table 1. Schedule of Clinical & Cognitive Assessments 

Procedure Duration 

(min) 
0 2 4 6 8 10 12 

Informed Consent 10 X             

Verbal confirmation of 12 hour 
abstinence 

5 X           X 

Urinalysis and Breathalyzer 5 X           X 

Interview Measures 90               

Assessment Session Last Drug 
Use Verification Form 

  X           X 

Timeline Follow Back (past 60 
day use) 

  X X X X X X X 

Contemplation ladder + 
Substance Use Goals 

  X X X X X X X 

Diagnostic Assessment 
Research Tool (DART) 

  X           X 

Columbia Suicide Severity 
Rating Scale 

  X           X 

HELPS Brain Injury Screening 
Tool 

  X             

Medical History   X           X 

Psychiatric Treatment History   X           X 

Psychological/Psychiatric 
Treatment 

  X           X 

Self-Report Measures 90               

Demographics   X             

Bem Sex Role Inventory (Short 
Form) 

  X             

Lifetime substance use history   X             

Alcohol Use Disorders 
Identification Test 

  X           X 

Drug Use Disorders 
Identification Test 

  X           X 

Fagerström Test for Nicotine 
Dependence 

  X           X 
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Alcohol Use Awareness and 
Insight Scale 

  X           X 

Substance Use Awareness and 
Insight Scale 

  X           X 

Severity of Dependence Scale   X X X X X X X 

Brief Substance Craving Scale   X           X 

Stages of Change Readiness and 
Treatment Eagerness Scale 

  X           X 

Substance Use Motives Measure   X           X 

Medicinal Cannabis Use And 
Motives 

  X           X 

WHO Disability Assessment 
Schedule 2.0 

  X X X X X X X 

WHO Quality of life - Brief   X X X X X X X 

Patient Health Questionnaire   X           X 

Generalized Anxiety Disorder   X           X 

Childhood Trauma 
Questionnaire 

  X             

List of Threatening Experiences 
Questionnaire 

  X           X 

PTSD Checklist for DSM-5   X           X 

Wender Utah Rating Scale   X           X 

Personality Inventory for DSM 
– Brief Form (PID-5-BF+) 

  X           X 

UPPS-P Impulsivity Scales-
Short Form 

  X            X 

Coping Orientation to Problems 
Experienced  Inventory, 

abbreviated 

  X           X 

Difficulties in Emotion 
Regulation Scale -Short Form 

  X           X 

Performance-Based Measures 100               

CNS-Vitals   X           X 

Executive Function Tasks:                 
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  Flanker Task   X           X 

  N-back Task   X           X 

  Switch Task   X           X 

  Iowa Gambling Task   X           X 

  Delay Discounting Task   X           X 

  Probability Discounting Task   X           X 
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Table 2. MRI Sequences 

 

Whole-brain MRI 
Sequence 

  Duration 
(minutes) 

Measure Technical Parameters 

3D T1 
Magnetization 

Prepared RApid 
Gradient Echo 
(MPRAGE) 

  6:11 Total, interhemispheric, 
and/or regional cortical 
thickness (mm), cortical 

surface area (mm2), 
total and regional brain 

volume (mm3) 

Field of view (FOV) 256 x 
256 mm2 

TR = 6.952 ms 

TE = 2.920 ms 

TI = 1060 ms 

1 mm isotropic voxel size 

Parallel imaging factor ARC = 
2 Slices per 3D slab = 208 

Axial resting state 
functional MRI 

(fMRI) 

  10:00 Resting-state 
connectivity 

FOV 216 x 216 mm2 

TR = 800 ms 

TE = 30 ms 

Number of slices = 60 (no 
gap) 

Flip angle = 52° 

Matrix 90 x 90 

2.4 mm isotropic voxel size 

Hyperband multi-slice 
acceleration factor = 6 

Run time time points 750 

Axial N-Back fMRI   9:40 Executive Functioning: 
working memory 

Same parameters as before 

Run time 725 
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Axial GoNoGo 
fMRI 

  7:16 Executive Functioning: 
inhibition 

545 

Axial Letter 
Judgement Task 

fMRI 

  7:36 Executive Functioning:  
set-shifting 

570 

Axial Diffusion 
MRI 

  7:11  Brain tissue 
microstructure 

FOV 240 x 240 mm2 

TR = 4100 ms 

TE = 81.7 ms 

Number of slices = 81 (no 
gap) 

Matrix 140 x 140 

b-values (directions):  b0 (8), 
b=500 s/mm2 (6), b=1000 
s/mm2 (15), b=2000 s/mm2 
(15), b=3000 s/mm2 (30) 

 Hyperband multi-slice 
acceleration factor = 3 

Oblique Axial 
Neuromelanin GRE  

 8:01 NeuroMelanin 
Sensitive MRI 

Partial brain coverage with 
FOV = 165 x 220  mm2 

TR = 284 ms 

TE = 4.1 ms 

Number of slices = 10 

Slice thickness = 2.5 mm 

Slice gap = 0 mm 

Flip angle = 50° 

Matrix = 320 × 512 
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Table 3.  

 

Mg/kg Low dose Medium dose High dose 

Naltrexone 0.1 0.3 1 

α5PAM 3 10 30 

MCC950 1 3 10 
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Table 4.  Summary of assessment domains and measurements across study projects. 

Project Domain (instrument/source) Measures 

1 Clinical (MINI, suic[1] idal 
ideation) + Substance use 
(TFLB, AUDIT, DUDIT, SDS) 

Psychiatric diagnoses, comorbidity, suicidal ideation, childhood 
adversity, medication, treatment engagement 

Recent and lifetime history of (poly)substance use 

Age of onset, average yearly use, heaviest period of use 

Cognition (CNS-VS, executive 
function tasks, other behaivoural 
tasks) 

Global cognitive function 

Executive function (Inhibition, updating, set shifting) deficits and 
biases 

Risk and reward behaviour 

Functional impairment and 
quality of life (WHOQOL-BREF, 
WHODAS) 

Physical, psychological, social, and environmental 

Cognition, mobility, self-care, getting along, life activities, and 
participation 

2 Genomics Assay-based genome-wide genotypes 

Assay-based genome-wide methylation profiles 

Plasma biomarkers Inflammasome proteins (NF-ΚB, ERK, and p38MAPK, NALP3) 

Pro-inflammatory cytokines (IL-1β, IL-18, and Caspase-1) 

3 

  

Neuroimaging (3T MRI) Task-based and resting state fMRI 

T1-weighted structural MRI 

Neuromelanin-sensitive MRI of SN/VTA and LC 

Diffusion MRI 

Functional near-infrared spectroscopy (for MRI-ineligible) 

4 Intervention (4 week TMS) 
clinical outcomes 

Suicidal ideation (SSI) 

Depressive symptoms (HRSD-17) 
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Intervention electrophysiological 
outcomes 

Electroencephalogram (EEG)-derived GABA receptor mediated 
inhibition 

6 General healthcare system 
utilization (ICES) 

Outpatient and inpatient visits, emergency room visits 

Maternal health service utilization 

Financial costs for hospitalization, procedures, services, drugs, 
and care 

Addiction and gambling agencies 
(DATIS) 

Demographics, health status, substance use/gambling, treatment 
intervention, and service utilization 

Note: This table does not list every measurement from every project and core, though it provides an overview of the 
types of measurements belonging to each general domain analyzed in P7. P5 is absent, as measures taken from 
rodent models will not be directly included as features in human sample statistical modeling. 
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Table 5: Cross Disciplinary Collaboration Across Projects  

 

 

  Table 5: Cross-Disciplinary Collaboration Across Projects 

  Clinical and cognitive measures collected within P1 will be linked to neuroimaging 
biomarkers collected within P2, peripheral biomarkers collected within P3, and 
healthcare utilization and costs indexed in P6. 

  Clinical and cognitive measures collected within P1 will further characterize 
participants with elevated suicidality who receive rTMS as part of P4, and 
contribute to the whole person modeling planned for P7. 

  Executive function tasks included in both P1 and P5 were carefully chosen to 
ensure consistency with current models of executive function and with each other. 
P1 will also track pharmacological treatments, and exploratory analyses of the 
effects of naltrexone on executive functioning in P1 will be informed by P5 
preclinical models of the effects of naltrexone and other medications on executive 
functioning. 

  Neuroimaging measures collected within P2 will be mapped onto peripheral 
molecular markers assessed in P3 

  The dopamine and norepinephrine systems, whose integrity will be indexed with 
NM-MRI, are conserved across species and can be manipulated in preclinical 
models, hence creating opportunities for collaboration between P2 and P5 

  Innovative therapeutic approaches targeting key mechanisms involved in AUDs 
and executive dysfunction, such as GABAergic deficits (P4) and inflammasome 
activation (P3), will be tested to characterize their efficacy at reducing domains of 
alcohol-related executive dysfunction in P5. 

  P5 will provide an experimental assay for AUD-related executive dysfunction and 
a repository of biological samples for future proof-of-concept studies aimed at 
novel biological pathways discovered in this project (i.e. P4) 

  Both P4 and P5 target the GABA system, permitting the evaluation of innovative 
treatment alternatives that may show promise in those with alcohol use difficulties 
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and associated cognitive dysfunction 

  P5 targets the inflammasome using innovative compounds as well and will 
synergize with P3 biomarker studies and P7 integration studies 

  
The clinical, imaging, and peripheral markers within P1, P2 and P3 can be utilized 
to predict health care utilization and the costs of this utilization within P6 

  
P6 will investigate which of the associations of executive function deficits with 
SUD treatment experiences and healthcare utilization differ across those with and 
without pervasive suicidality, and thus will inform and be informed by P4 

  
P6 will investigate whether the associations of executive function deficits and 
health care utilization and costs differ among those who used naltrexone versus 
those who did not, and will thus inform and be informed by P5 

  P7 is the end-cap of the analytical pipeline for the proposed study and the key point 
of integration across preceding projects. Knowledge generated in P1-6 will be 
essential for determining which of the measured variables across domains will be 
most informative in statistical modeling. 
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