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Abstract

Resting functional MRI studies of the infant brain are increasingly becoming an important tool in 

developmental neuroscience. Whereas the test-retest reliability of functional connectivity (FC) 

measures derived from resting fMRI data have been characterized in the adult and child brain, 

similar assessments have not been conducted in infants. In this study, we examined the intra-

session test-retest reliability of FC measures from 119 infant brain MRI scans from four 

neurodevelopmental studies. We investigated edge-level and subject-level reliability within one 

MRI session (between and within runs) measured by the Intraclass correlation coefficient (ICC). 

First, using an atlas-based approach, we examined whole-brain connectivity as well as 

connectivity within two common resting fMRI networks - the default mode network (DMN) and 

the sensorimotor network (SMN). Second, we examined the influence of run duration, study site, 

and scanning manufacturer (e.g., Philips and General Electric) on ICCs. Lastly, we tested spatial 

similarity using the Jaccard Index from networks derived from independent component analysis 

(ICA). Consistent with resting fMRI studies from adults, our findings indicated poor edge-level 

reliability (ICC = 0.14–0.18), but moderate-to-good subject-level intra-session reliability for 

whole-brain, DMN, and SMN connectivity (ICC = 0.40–0.78). We also found significant effects of 

run duration, site, and scanning manufacturer on reliability estimates. Some ICA-derived networks 

showed strong spatial reproducibility (e.g., DMN, SMN, and Visual Network), and were labelled 

based on their spatial similarity to analogous networks measured in adults. These networks were 

reproducibly found across different study sites. However, other ICA-networks (e.g. Executive 

Control Network) did not show strong spatial reproducibility, suggesting that the reliability and/or 

maturational course of functional connectivity may vary by network. In sum, our findings suggest 

that developmental scientists may be on safe ground examining the functional organization of 

some major neural networks (e.g. DMN and SMN), but judicious interpretation of functional 

connectivity is essential to its ongoing success.
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1. Introduction

Providing a window into early brain development with limited influence of the post-natal 

environment, resting functional MRI (fMRI) studies of the infant brain have become an 

important tool for advancing developmental neuroscience (Duarte et al., 2020; Posner et al., 

2016). Subtle changes in brain function early in development may, for example, confer 

lifelong implications on cognition, behavior, and psychopathology. Resting fMRI studies 

detail the organization of neural circuits based on functional connectivity, or the coherence 

of neural activity across disparate brain regions. In infant research, this approach may help 

identify early brain-based biomarkers, providing, for example, indicators of aberrant 

neurodevelopment, prenatal exposure effects, or neurobiological correlates of early cognitive 

functions, and may thereby facilitate early identification of at-risk individuals (Lugo-

Candelas et al., 2018; Posner et al., 2016; Rudolph et al., 2018). Despite this promise and the 

growing use of resting fMRI studies in infant research, the reliability of functional 
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connectivity measures in the infant brain remains largely unexamined. Establishing test-

retest reliability is critical to solidifying the methodological rigor and basis for including 

resting fMRI techniques within the armamentarium of neurodevelopmental researchers.

Prior studies have examined the intra-session (so-called short-term) and between-session 

test-retest reliability of functional connectivity measures in the adult and child brain 

(Marchitelli et al., 2016; Noble et al., 2019; Somandepalli et al., 2015). Most studies have 

used the Intraclass correlation coefficient (ICC) as the primary measure of test-retest 

reliability for functional connections due to the flexibility of the ICC to explicitly model 

known sources of measurement variance (Shrout and Fleiss, 1979; Somandepalli et al., 

2015). Across a wide range of approaches, these studies have typically found poor reliability 

for edge-level ICCs (Noble et al,, 2019), yet moderate-to-good reliability for subject-level 

ICCs (Mejia et al., 2018; Mejia et al., 2015; Somandepalli et al., 2015). In the context of 

functional connectivity, an “edge-level” ICC refers to the test-retest reliability of a single 

functional connection (an edge). For every pairwise set of edges between regions-of-interest 

(ROIs) across the brain, an ICC can be calculated resulting in thousands of ICCs per brain 

scan. In contrast, a “subject-level” ICC is calculated across a connectivity matrix - that is, 

multiple connections within one brain scan, or within one brain network, are considered 

collectively. The test-retest reliability of both edge- and subject-level ICCs merit 

consideration because: 1) edge-level connectivity is the most basic element in functional 

connectivity analysis, and not surprisingly, is often used in fMRI research; and 2) subject-

level connectivity is increasingly used to index patterns of brain connectivity, for instance in 

graph theory and fingerprinting (Finn et al., 2015; Gordon et al., 2017).

Because of the temporally correlated nature of time series fMRI data, the time interval 

between scanning sessions (i.e., short-term versus long-term) is an important consideration 

when assessing reliability. Several studies, for example, have found repeated measures taken 

over shorter intervals (e.g. intra-session or within days) are more reliable than those taken 

over longer intervals (e.g. weeks to years). Herein, we examine intra-session test-retest 

reliability for two primary reasons. First, intra-session reliability has not yet been established 

in infants. Second, long-term reliability in infants may be confounded by 

neurodevelopmental changes that occur rapidly in infancy.

Resting fMRI reliability estimates may be influenced by MRI acquisition and processing 

procedures. For example, studies have reported differences in connectivity depending on the 

MRI scanning site (Biswal et al., 2010; Jovicich et al., 2016). These effects are detected even 

after harmonization techniques are conducted (Noble et al., 2017). Also, reliability improves 

with the acquisition of more frames of fMRI data per subject either by increasing the 

duration of the scanning sessions or by increasing the number of runs (Birn et al., 2013). 

Lastly, several studies have found that pre-processing procedures designed to reduce the 

contribution of noise, such as motion, global signal, white matter, and cerebrospinal fluid, to 

fMRI signal can have unexpected effects on reliability estimation (Guo et al., 2012; Parkes 

et al., 2018; Shirer et al., 2015). For example, motion correction, a technique used to reduce 

the influence of head motion on fMRI signal, can, somewhat counterintuitively, reduce test-

retest reliability when the motion itself is consistent over time (Parkes et al., 2018). Of note, 
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ROIs from different atlases can vary substantially(Salehi et al., 2020), resulting in different 

ICCs.

Despite the numerous test-retest reliability studies that have been conducted in adults and 

children, prior studies have not reported reliability estimates in infants, nor have they 

examined test-retest reliability across infant studies conducted at different scanning sites. 

The moderate-to-good reliability for subject-level ICCs reported in studies of children and 

adults (Marchitelli et al., 2016; Noble et al., 2017; Somandepalli et al., 2015) is not 

sufficient to assume similar reliability will also be present in infants. First, significant 

neurovascular changes occur throughout infancy, even over days, and these changes may 

influence neurovascular coupling, introducing noise, and potentially diminishing the 

reliability of functional connectivity estimates (Kozberg and Hillman, 2016). Second, resting 

fMRI studies of infants are conducted during sleep (without sedation), whereas studies in 

adults and children are more commonly done while participants are awake. Different sleep 

states may be associated with distinct connectivity patterns, yet sleep state is seldom 

assessed or controlled for in infant fMRI research (Lee et al., 2020). Third, the increased 

water content of the infant brain, relative to a more mature brain, alters tissue contrast (e.g., 

T2-weighted images in infants provide clearer grey-white matter demarcation) and may 

make image processing more challenging, eroding measurement reliability. Fourth, 

functional networks in infants may be in a premature state, and potentially less stable, 

rendering their measurement less reliable.

Our primary objective in this paper is to investigate the short-term (within one MRI scanning 

session) test-retest reliability of functional connectivity measures in the newborn infant brain 

across four different studies, each conducted at a different site (Table 1). First, we investigate 

edge-level and subject-level test-retest reliability measured by ICCs from ROI-based whole-

brain connectivity, as well as from two resting fMRI networks commonly investigated by 

ROI analysis - the default mode network (DMN) and the sensorimotor network (SMN). 

Second, we examine the influence on ICCs of run duration, study site, and scanner 

manufacturer (e.g., Philips and General Electric). Lastly, we test the spatial reproducibility 

from networks derived from independent component analysis (ICA), a data-driven method to 

assess functional connectivity that is distinct from ROI-based approaches. For these ICA-

based analyses, we compare the ICA-derived network across runs (and term this, spatial 
reproducibility), as well as with canonical ICA-derived networks from adults (and termed 

this, spatial similarity).

2. Method

2.1. Datasets and infant preparation protocol

We conducted this secondary data analysis from a sample of 239 infants acquired as part of 

four neurodevelopmental studies. All study procedures were approved by their respective 

Institutional Review Boards. In each of these studies, infants were scanned during natural 

sleep, without sedation using an infant preparation protocol developed at the New York State 

Psychiatric Institute (NYSPI) over a decade ago for unsedated infant research MRI scans. 

With this "natural rhythm" approach, we prepare the infant for the MRI scan using the 

infant’s normal pre-nap routine (feeding, changing, rocking, swaddle), and the family is 
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encouraged to align the infant’s schedule to the scan time in the days before the scan. Infants 

are also attenuated to the MRI scanner noises either at home, or during the preparation 

process on the scan day, or both. The MRI pulse/scanning sequences and inclusion/exclusion 

criteria for each study are described in the Supplementary Materials 1.1 and 1.2; 

respectively.

After quality checking (see 2.2 for details), we included 119 infants in our analyses. Table 1 

summarizes the demographics for these 119 infants, including sex and postmenstrual age 

(PMA) at scan, as well as the scanning parameters used for each study. It is worth noting 

that the infant age range/variability within each study was limited, yet statistically significant 

differences in age across studies were detected. Therefore, we adjusted for age in the linear 

regression analysis (see Section 2.4.2).

2.2. Data analytic plan

As outlined in Fig. 1, our data analytic plan consisted of four components: data curation, 

data processing, connectivity estimates, and test-retest reliability.

2.2.1. Data curation—We aggregated infant MRI datasets across the four 

neurodevelopmental studies yielding 239 infant scans. We conducted an initial quality 

assessment of the T2-weighted and resting fMRI scans by trained technicians who visually 

inspected the scans and removed those with incomplete data (e.g., no T2w scan and/or 

severe imaging artifacts, such as ghosting). A total of 90 out of 239 scans (~37.6%) were 

excluded on this basis. Supplementary Table 1 indicates the number of scans excluded for 

each study.

2.2.2. Data processing

2.2.2.1. Scrubbing.: For the resting fMRI scans, frames (or volumes) corrupted by head 

motion were marked as outliers and removed - a process called “scrubbing” (Mongerson et 

al., 2017). We adopted a common criterion for identifying outlier frames - a combination of 

frame-wise displacement (FD) and blood-oxygen level dependent (BOLD) data variance 

(DVARS). DVARS is an estimate of framewise changes in BOLD signal intensity and is 

calculated as the root-mean-squared variance of the temporal derivative of all brain voxel 

time series (Power et al., 2012). As suggested elsewhere (Power et al., 2013), frames were 

marked as outliers and removed if either of the following were true: FD > 0.2 mm or 

DVARS >3%.

We excluded entire functional runs if 1) there was only one run per subject, and the total 

scanning length after scrubbing was less than 5 min; OR 2) there was more than one run per 

subject, but the run length after scrubbing was less than 2.5 min. These criteria translated 

approximately to a combination of 2.5 min minimum per run after scrubbing and no more 

than 30–40% of scrubbed frames per run. Thirty scans were removed based on these criteria, 

leaving 119 usable scans for our analyses (see Supplementary Table 1). The percentage of 

outlier frames within these 119 usable scans is summarized in Supplementary Figure 1. We 

also compared head motion after scrubbing, based on frame-wise displacement (FD), across 
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our four study sites and did not detect significant site differences (see Supplementary Figure 

2).

2.2.2.2. Pre-processing functional data.: After visual inspection and scrubbing, the 

functional scans were motion-corrected using MCFLIRT (Jenkinson et al., 2002), which 

transforms functional frames via rigid alignment and outputs an estimate of the six rigid 

motion parameters. We then implemented brain extractions (Smith, 2002), used a high-pass 

filter with a 100-second period cutoff value, and a low-pass spatial filter using FSL’s 

SUSAN, and a kernel of 4.5 millimeters for spatial smoothing (Smith and Brady, 1997). 

Finally, we scaled the mean signal intensity to 10,000.

2.2.2.3. Nuisance regression.: To reduce physiological noise due, for example, to cardiac 

and respiratory rhythms, and to minimize the influence of head motion, we regressed the 

whole-brain time course against the mean global signal, signal extracted from white matter 

(WM) and ventricular masks, as well as motion parameters (see Sect 2.2.2.b) and their 

derivatives. This approach to signal correction has been shown to provide a good trade-off 

between maintaining degrees of freedom and removing noise contamination (Ciric et al., 

2017).

2.2.2.4. T2-weighted segmentation and normalization.: First, we used the 

Developmental Human Connectome Project (dHCP) automated pipeline for segmentation of 

T2w scans (Makropoulos et al., 2018). Second, for finer anatomical segmentation by lobe, 

we then further subdivided grey matter from the frontal, parietal, and occipital lobes with a 

custom algorithm that utilizes a warped segmentation from the individual subject to the 

University of North Caroline (UNC) AAL neonatal atlas (Shi et al., 2011). The estimated 

warp, or “normalization,” was carried out with Advanced Normalization Tools (ANTs). All 

normalization results were visually inspected to confirm accuracy.

Our hybrid structural atlas combined dHCP segmentations (87 regions) with the UNC AAL 

neonatal atlas (90 regions). Whereas the dHCP pipeline generates individualized 

segmentations, it does not define subregions of the frontal, parietal, or occipital lobes. 

Conversely, the UNC AAL neonatal atlas provides finer parcellation of frontal, parietal and 

occipital lobes, but defines regions at the group level which may obscure individual 

anatomical characteristics. Taken together, we created a hybrid atlas using the dHCP 

segmentations and then further subdivided the frontal, parietal, or occipital lobes based on 

the AAL neonatal atlas. This hybrid atlas generated 101 ROIs with whole-brain coverage, as 

listed in Supplementary Table 2. Our hybrid atlas and the related code are publicly available 

at GitHub: https://github.com/wangyuncolumbia/Infant_finer_segmentation.

2.2.2.5. Co-registration and normalization.: We calculated a mean functional volume 

and used this as the moving volume in an affine registration with the segmented structural 

scan, based on a normalized mutual-information (NMI) cost function in FLIRT (Smith et al., 

2004). We then used this initial registration to guide a subsequent, and more accurate, 

boundary-based registration (BBR), also implemented with FLIRT, which utilizes the grey-

white boundary to calculate the cost function (Greve and Fischl, 2009). Because averaging 

functional data can blur the grey-white boundary, we used an exemplar volume from the 
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middle of the functional run for this BBR step. Lastly, we normalized the functional scans 

by applying the individual’s structural-to-template warp. To reduce the number of data 

interpolations to a single instance, we applied all linear transformations and the non-linear 

warp simultaneously through antsApplyTransforms (ANTs v2.1.0) using Lanczos 

interpolation.

2.3. Connectivity estimates

2.3.1. Connectivity matrix based on a structural atlas—We derived a whole-brain 

ROI-to-ROI connectivity matrix based on our individualized segmentation of 101 ROIs - that 

is, we calculated a 101×101 connectivity matrix based on the Pearson correlation of the 

averaged time series fMRI data from each ROIs (Supplementary Table 2). Pairwise 

connections were then normalized by Fisher’s r-to-z transformation. formation. We also 

generated ROI-to-ROI connectivity matrices for two resting fMRI networks - the DMN, the 

SMN, each with 10 ROIs (see Supplementary Table 2 colored labels).

2.3.2. Connectivity matrix based on a functional atlas—To explore whether the 

reliability of connectivity estimates was affected by the approach used to parcellate the 

brain, we also derived a whole-brain ROI-to-ROI connectivity matrix based on a predefined 

functional atlas, a.k.a. the Power atlas (Power et al., 2011), in parallel with our approach 

using a structural atlas (see 2.3.1). We excluded from the Power atlas nodes from domains 

not relevant to our reliability analyses, including nodes in the “Uncertain” or “Cerebral 

White Matter” categories (Power et al., 2011). In total, 216 ROIs were included. We then 

warped and co-registered these 216 spherical ROIs (radius=3mm) to our infant structural 

and functional MRI scans. Registration from the adult template to the infant space were 

visually inspected. If these were of poor quality, we used the following procedures: first, we 

used ITK-SNAP (Yushkevich et al., 2006) to visually guide manual alignment and optimize 

the initial transformation matrix; then we ran antsRegistration and antsApplyTransforms to 

register the images again with this improved initial transformation matrix. The final 

registration was again visually inspected. Finally, we derived a whole-brain 216×216 

connectivity matrix, and normalized pairwise connections using Fisher’s r-to-z 

transformation to allow for comparisons.

2.3.2.a. Hierarchical cluster analysis.: Whereas the Power Atlas denotes several 

functional networks, prior infant research suggests that only a few functional networks (e.g. 

the sensorimotor and auditory networks) are formed by infancy (Gao et al., 2015). To test 

this in our data, we conducted a hierarchical cluster analysis from our group-average 

functional atlas-based connectivity map. The resultant cluster map suggested that the default 

mode network (DMN), sensorimotor, and auditory networks grouped together (see 

Supplementary Figure 3). Other networks, e.g., salience, and dorsal attention network, failed 

to form continuous clusters. Therefore, in our functional atlas-based analysis, we limited our 

analyses to the DMN, sensorimotor, and auditory networks.

2.3.3. Independent component analysis (ICA)-based connectivity—We used 

MELODIC to perform group-level independent component analysis (ICA) separately for 

each run and for each study (Smith et al., 2004). The number of components was set at 20 
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for our main analysis but varying the number of components from 15~75 yielded similar 

results (see Supplementary Figure 5). To accurately identify and label resting fMRI 

networks extracted from the group ICA, we compared the components to well-defined 

resting fMRI networks obtained using similar ICA procedures in adults (Smith et al., 2009). 

Using ITK-SNAP (Yushkevich et al., 2006) and Advanced Normalization Tools (ANTS) 

(Avants et al., 2009), we registered and warped the 20 components derived from our infant 

group-ICA to a template infant atlas (Shi et al., 2011), and then similarly registered 20 

components from an adult group-ICA (Smith et al., 2009) to the same template space. We 

then calculated the Jaccard index (see 2.4 for explanation of Jaccard index) between the 

infant and adult components and labeled the infant components based on their highest 

Jaccard index with a corresponding adult component (e.g., the infant ICA component 

showing the highest Jaccard index with the adult DMN was labeled the infant DMN 

component). In addition, to examine spatial reproducibility across runs, we performed dual 

regression (Nickerson et al., 2017) to obtain subject-specific sets of spatial maps for each 

run and each subject. To binarize the data, we thresholded the spatial maps at |z|>2.3. Lastly, 

to compare the spatial similarity of the networks identified across our study sites, we 

aggregated the functional data across runs from each study site and conducted a separate 

group ICA for each of the four study sites, then compared them using the Jaccard index.

2.4. Test-retest reliability

2.4.1. Test-retest reliability from ROI-based analysis—We calculated the edge 

level and network level Intraclass correlation coefficient (ICC [2,1]) (Chen et al., 2018; 

Noble et al., 2019) using the following formula:

ICC =
MSR − MSE

MSR + (k − 1)MSE

MSR = mean square for rows; MSE = mean square for error; k = number of raters/

measurements. Rows for ICC calculation represent the number of subjects or observations.

For Studies 1 and 2, which both included two or more runs, we compared pared the 

functional connectivity estimates between the two runs (Study 1) and between earlier runs to 

sequentially subsequent runs (Study 2), henceforth, referred to as “between-run reliability” 

(Fig. 2A). Because Studies 3 and 4 included only one run, we could not calculate between-

run reliability. Instead we compared functional connectivity estimates from the first half of 

the run with those from the second half - henceforth, referred to as “within-run reliability” 

(Fig. 2B).

For between-run and within-run reliability, we examined both edge-level and subject-level 

ICCs. To allow for site comparisons, we also calculated culated within-run reliability for 

Study 1. (We did not do this for Study 2 because the runs were only 75 frames, too short to 

estimate within-run reliability). The interpretation of the ICC is commonly categorized as 

follows: poor <0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥0.75 (Noble et al., 2019).
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2.4.2. Effects of run duration, site, and MRI manufacturer—We next examined 

the influence of run duration, study site, and MRI manufacturer on test-retest reliability. 

Because of collinearity between study site and MRI manufacturer, we examined the effect of 

study site and MRI manufacturer on “within-run reliability” in separate linear regression 

models, adjusting for age, sex, and head motion (as index by FD, see Sect 2.2). Furthermore, 

we conducted multiple linear regression to test for effects of run duration and study site 

(Studies 1 and 2 used the same type of MRI scanner) on “between-run reliability,” adjusting 

for age, sex, and head motion.

To construct different lengths of run duration, we used Study 1 because this study provided 

scans with two resting fMRI runs, each over 7 minutes in duration, which of our four studies 

provided the longest run duration. After scrubbing, we binned each scanning run into 

batches of frames, ranging from 75 frames to 150 frames in increments of 15 (Fig. 2C). For 

example, for a scan with 150 frames or more in each of two runs, the data were binned into 

two sets of 75 frames, two sets of 90 frames, etc., up to two sets of 150 frames. The frames 

used were the initial frames for each run - for instance, in the previous example, the two sets 

of 75 frames were comprised of the first 75 frames from the first run, and the first 75 frames 

from the second run.

2.4.3. Spatial reproducibility of ICA-derived networks—For our ICA-based 

analysis, we used the Jaccard index to calculate the spatial reproducibility of the derived 

networks across runs. The Jaccard index measures the similarity between two spatial 

network maps by computing the normalized amount of overlap; that is, the ratio of 

intersection relative to union of two spatial network maps. Jaccard Index ranges from 0 to 1; 

a high Jaccard index denotes high similarity of two spatial maps.

We limited our ICA-based analysis of spatial reproducibility to Study 1 because this study 

contained two runs allowing for comparison of the ICA-derived networks from the first run 

with those from the second. ICA estimates are not recommended for shorter runs (Glasser et 

al., 2018) and thus we excluded Study 2. Studies 3 and 4 were excluded because they 

contained only one run per infant.

2.4.4. Spatial similarity of ICA-based networks with adult networks—We used 

the Jaccard index to evaluate the spatial similarity of ICA-derived networks from our infant 

studies with well-defined resting fMRI networks obtained using similar ICA procedures in 

adults (Smith et al., 2009). We conducted these comparisons for five resting fMRI networks: 

the default mode network (DMN), the sensorimotor network (SMN), the visual network 

(VN), and the left and right executive control network (ECN) and conducted these 

comparisons for each of our four study sites separately. Comparisons with the additional 

components reported by Smith et al. (Smith et al., 2009) are provided in Supplementary 

Figure 7.
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3. Results

3.1. Test-retest reliability from ROI-based analysis

Below we present the reliability results obtained from the structural atlas. The results from 

the functional atlas (the Power atlas) were similar and are presented in Fig. 3 with the related 

statistics provided in the Supplemental Material 1.3.

3.1.1. Edge-level ICCs—We analyzed the reliability of all possible pairwise 

combinations of 101 ROIs across the whole brain, yielding 5,050 ICCs per scan. Between-

run reliability was poor for runs of 75 frames (mean ICC = .146, 95% CI [.142, .151]) and 

poor for runs of 150 frames (mean ICC = .179, 95% CI [.175, .184]; see Fig. 3). Within-run 

reliability was fair (mean ICCs = .41, 95% CI [.403, .410]; see Supplementary Figure 4).

Regression analysis of between-run reliability showed a significant effect (F=81.95, p< 

10−10) of run duration (t =12.64, p<10−10) and study site (t =−3.27, p=10−3). Linear 

regression on within-run reliability also confirmed a significant effect of study site (F 

=137.4, p< 10−10) and MRI scanner (F = 7.79, p< .005).

3.1.2. Subject-level ICCs

3.1.2.1. Subject-level ICCs - Whole-brain analysis.:  Across the whole brain, between-

run reliability was fair for runs of 75 frames (mean ICC = .43, 95% CI [.40, .47]) and fair-to-

good for runs of 150 frames (mean ICC= .51, 95% CI [.46, .55]). Within-run reliability was 

good (mean ICCs=.63, 95% CI [.61, .65]). Regression analysis of between-run reliability 

showed a significant effect (F=10.32, p<10−5) of run duration (t=3.354, p=10−3) and study 

site (t =−3.17, p=.002). Neither significant effect of study site {F= 0.25, p=0.62) nor MRI 

scanner (F=1.78, p=0.19) was found for within-run reliability.

3.1.2.2. Subject-level ICCs - Network-based analysis.: For the DMN, between-run 

reliability was good for runs of 75 frames (mean ICC = .63, 95% CI [.59, .68]) and good-to-

excellent for runs of 150 frames (mean ICC = .73, 95% CI [.69, .78]). Within-run reliability 

was also excellent (mean ICCs=.76, 95% CI [.73, .78]). Regression analysis of between-run 

reliability showed a significant effect (F=19.52,p< 10−5) of run duration (t=4.24, p< 10−3) 

and study site (t=−4.72, p< 10−3). Regression analysis of within-run reliability showed a 

significant effect of MRI scanner (F=14.50, p< 10−3) but not study site.

For the SMN, between-run reliability was fair-to-good for runs of 75 frames (mean ICC 

= .60, 95% CI [.55, .66]) and good for runs of 150 frames (mean ICCs ranges from .69, 95% 

CI [.63, .74]). Within-run reliability was good-to-excellent (mean ICCs = .72, 95% CI 

[.69, .74]). Regression analysis on between-run reliability showed a significant effect 

(F=11.93, p< 10−5) of run duration (t =3.22, p< 0.002), and study site (t=−3.77, p< 10−3). 

Regression analysis of within-run reliability showed a significant effect of MRI scanner 

(F=12.62, p< 10−3) but not study site.
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3.2. Spatial reproducibility of ICA-derived networks

Using dual regression, we obtained subject-specific spatial maps for each of the two runs in 

Study 1 and identified five networks for comparison: DMN, SMN, VN, and the left and right 

executive control network (ECN). Based on the Jaccard index between runs, we found high 

spatial reproducibility of the DMN, SMN, and VN, but worse reliability for the left and right 

ECN (Jaccard indices: DMN=0.54, SMN=0.53, VN=0.54, left ECN=0.25, right ECN=0.23; 

Fig. 4B presents the distribution of Jaccard indices stratified by network). We then compared 

the ICA-derived networks in infants with those from adults and found moderate spatial 

similarity between infants and adults for the DMN, SMN, and VN, but not for the left or 

right ECN (Jaccard indices ranged from 0.43 to 0.65 for DMN, SMN, and VN; but from 

0.17 to 0.20 for left and right ECN; Fig. 4A). Moreover, the Jaccard indices between the 

infant versus adult networks varied across sites; for example, for the DMN, it ranged from 

0.64 for Study 1 to 0.39 for Study 2. As seen in Fig. 4C, the precuneus and posterior 

cingulate - posterior hubs of the DMN - were consistently observed within the infant DMN 

across all four studies, however, the medial prefrontal cortex - an anterior hub of the DMN - 

was only encompassed within the DMN component in Studies 1 and 3. In Supplementary 

Figure 5, we present comparisons of the SMN, VN, and the left and right executive control 

network (ECN) across our four study sites. In Supplementary Figure 6, we present 

comparisons of the SMN, VN, and the left and right executive control network (ECN).

4. Discussion

To our knowledge, this is the first study to investigate the short-term (intra-session) test-

retest reliability of functional connectivity in infants across multiple sites and run durations. 

Three observations were noted. First, whereas individual connections (i.e. edge-level) 

exhibited poor reliability, subject-level reliability was moderate to high. Second, reliability 

improved as the number of frames increased, but reliability varied by study site and scanning 

manufacturer. Third, ICA-derived networks in infants exhibited moderate spatial 

reproducibility within scanning sessions and were spatially similar to adult networks; 

however, this was not true of all networks. Differences in spatial reproducibility across 

networks may indicate that networks differ in their maturational course with some 

developing earlier (e.g. DMN, SMN, and VN), and others later (e.g., left and right ECN). 

This developmental hypothesis could be more rigorously tested in subsequent longitudinal 

research. Similarly, the organization of networks, such as the DMN, may increase over the 

first few years of life (Grayson and Fair, 2017). For example, adult studies consistently 

demonstrate midline connections within the DMN with connectivity between posterior and 

anterior hubs including the posterior cingulate and medial prefrontal cortices, respectively. 

This posterior-anterior axis of the DMN was not consistently detected in our studies (Fig. 

4C) suggesting that this connection may emerge later in development.

Our reliability findings were largely in line with those reported in adult and child studies. 

For example, Pannunzi et al. examined the test-retest reliability of functional connectivity in 

50 healthy adults and reported low reliability for single connections with an average edge-

level ICC of 0.22 (Pannunzi et al., 2018). Even with long scan durations of 30 min (Birn et 

al., 2013), edge-level ICCs remained limited (~0.4). A recent meta-analysis of 25 resting 
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fMRI studies encompassing over 2,000 participants concluded that individual connections 

have an average ICC of 0.29 (Noble et al., 2019). Conversely, when functional connectivity 

is examined at the subject level, reliability generally improves (Mejia et al., 2018; Mejia et 

al., 2015), with longer scanning lengths improving these results even further (Mejia et al., 

2018). Recent advances, termed precision resting fMRI, suggest that high sampling rates 

coupled with extended scanning session (e.g. over 60 min), test-retest reliability can reach 

ICCs in the excellent range (0.8–0.9) (Gordon et al., 2017; Gratton et al., 2019). 

Additionally, the spatial reproducibility of ICA-derived networks have been consistently 

reported to be high in adults (Braun et al., 2012; Marchitelli et al., 2016). In sum, our 

reliability findings from infant resting fMRI data contrast poor edge-level reliability with 

good subject-level reliability and parallel the existing literature from adults.

Our reliability findings are simultaneously both reassuring and concerning and suggest the 

following guidelines when using resting fMRI techniques in infant neuroimaging research. 

First, developmental neuroscientists should take some measure of comfort in knowing that 

subject-level measures from infant resting fMRI data can be estimated reliably with 

relatively short scanning durations (e.g. 5–10 min). Second, our findings suggest caution 

against reliance upon measures of individual functional connections. This is unfortunate 

because an individual functional connection is the most basic unit of analysis in resting 

fMRI research, and its interpretation compared to subject-level measures is more 

straightforward. Nonetheless, several subject-level measures are available and can be used to 

conduct statistical comparisons or to test brain-behavior correlations - for example, higher-

order graph theory metrics (network density and clustering) (Braun et al., 2012; Cao et al., 

2014; Termenon et al., 2016; Wang et al., 2019), and dynamic functional measures (Choe et 

al., 2017). Third, we found that reliability varied across resting fMRI networks derived from 

ICA, scanning sites and by scanning manufacturer. These last two points underscore the 

importance of data harmonization for multi-site studies, although site differences may persist 

nonetheless (Noble et al., 2017). While an ideal approach to examine site effects would have 

been a travelling human phantom (Huynh et al., 2019), the feasibility of this approach would 

be limited in a sample of newborns. Fourth, we did not find significant associations between 

reliability and infant age at scan, suggesting for example, that connectivity measures can be 

compared across infancy, albeit within the limited age range examined in our studies 

(postmenstrual age 39 – 59 weeks). Fifth, our data quality procedures resulted in nearly 50% 

of scans being excluded. Less rigorous data quality procedures may impact reliability, and 

potentially reduce measurement validity. This high level of data loss underscores the 

difficulty in obtaining high quality infant MRI data. Allowing ample time to prepare infants 

for the MRI scan (e.g. feeding and swaddling) and to fall asleep is imperative for successful 

data collection.

Limitations of our study are important to consider. First, none of the four studies in our 

analysis used multiband imaging, which can significantly increase sampling rates. Increasing 

the rate of data acquisition, multiband imaging might improve the reliability of infant 

functional connectivity measures, although some research suggests that reliability is more 

affected by scan duration than sampling rate (Birn et al., 2013; Demetriou et al., 2018). 

Second, we used the Developmental Human Connectome Project automated pipeline 

(Makropoulos et al., 2018) to segment the infant brains in our study, and added additional 
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parcellations to subdivide the frontal, parietal, and occipital lobes (see 2.2.2). We also used a 

functional atlas (Power et al., 2011) that yielded similar reliability estimates (see 2.3.2). 

However, other approaches to infant brain segmentation are available (e.g. the newly 

released Infant FreeSurfer pipeline) and merit investigation. The approach used for 

segmentation can influence the reliability of functional connectivity estimates - for example, 

adult resting MRI research indicates that more accurate segmentation improves functional 

connectivity measures (Salehi et al., 2020). To date, however, comparisons of tools for infant 

brain segmentation are scarce (Hashempour et al., 2019). Moreover, the infant brain is 

highly dynamic, increasing substantially in size and organization over development. As a 

result, for any given segmentation tool, its accuracy may exceed others at one time point in 

infancy, and yet become less accurate at subsequent time points. Brain segmentation with 

artificial intelligence (AI), by affording accuracy, speed, and flexibility, may offer a path 

forward, maintaining precision despite the dynamism of the infant brain. AI-based tools are 

still under development and will require validation (Wang, 2020). Third, we adopted a 

standard procedure to scrub motion outliers and further corrected motion with MCFLIRT in 

FSL. However, other types of motion correction techniques such as ICA-FIX or ICA-

AROMA might change the reliability (Marchitelli et al., 2016; Parkes et al., 2018). 

Preprocessing procedures such as spatial smoothing could influence reliability, particularly 

given the small volume of the infant brain. Likewise, criteria for identifying head motion 

outliers, such as thresholds for DVARS and FD, need to be validated in infants.

Three additional methodological factors merit further consideration. First, while we detected 

site differences in our reliability estimates, there were demographic differences across our 

samples, including race, ethnicity, and other maternal characteristics, as well as differences 

in the MRI pulse sequences (see Supplementary Material 1.1). We therefore cannot 

determine the cause of these site differences in reliability estimates. At the same time, it is 

important to bear in mind that the diversity of our sample (e.g. four sites, two continents, 

two countries, and one commonwealth) should also be considered a strength - a more 

homogeneous sample would raise concerns of generalizability. For example, if our study 

included only one site with one relatively homogenous population, then it would remain 

unclear whether our findings generalize to other populations. Second, we used 8-channel 

head coils across the four study sites in this work. Although no study has directly compared 

FC reliability across head coils that differ in their number of channels (e.g., 8 vs. 32 

channels), we speculate that reliability may increase with higher-quality fMRI data (Panman 

et al., 2019). Yet, data suggest that as the number of channels increases, inhomogeneous 

distribution of signal-to-noise ratios across the whole brain also increases with disparate 

effects on regional FC reliability estimates (Wiggins et al., 2006). Future studies are needed 

to further investigate this issue. Third, we did not assess infant sleep state during scanning 

which could impact functional networks and their reliability, especially for networks 

involving frontal areas, e.g., ECN and DMN. In adult studies, researchers have shown sleep 

state reduces the involvement of the frontal cortex in relation to the DMN (Horovitz et al., 

2009); and recent infant work has shown that higher-level cognition and related brain 

networks are particularly affected by sleep state (Eyre et al., 2021; Linke et al., 2018; Raz 

and Saxe, 2020). Although we found inconsistent integration of frontal areas with the DMN 

across sites, our study cannot answer whether this variable integration is related to infant 
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sleep state or to incomplete maturation of the DMN. Future studies might elucidate this 

question by collecting infant fMRI data with simultaneous sleep state data (e.g., EEG). 

Similarly, it is possible that in addition to brain maturation, sleep state could help explain the 

lower reproducibility that we found for the ECN.

In sum, our study may offer useful parameters for the use of infant resting fMRI as a 

methodology for neurodevelopmental research. For example, whereas caution should be 

taken against interpreting behavioral associations, or the predictive validity, of specific 

functional connections, developmental scientist may be on firmer ground when associating 

the functional organization of networks (e.g. DMN and SMN) with neurodevelopmental 

outcomes. Infant resting fMRI research is rapidly advancing, and judicious interpretation of 

its measures is essential to its ongoing success.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Data Analytic Plan in this study.

Wang et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Schematics to estimate A) between-run test-retest reliability estimates, B) within-run 

reliability across study sites, C) the effect of run duration on between-run reliability.
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Fig. 3. 
Test-retest reliability defined with a structural atlas approaches: A) edge level, and subject 

level for B) whole brain, C) DMN, and D) SMN

Reliability defined with a functional atlas approach: E) edge level, and subject level for F) 

whole brain, G) DMN, and H) SMN
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Fig. 4. 
A) Spatial similarity(measured by Jaccard Index) between five ICA-derived networks 

(DMN, SMN, VN, ECN-L and ECN-R) in infants and corresponding ones in adults (Smith 

2009) across runs. B) Spatial reproducibility of five networks across two runs in study 1. C) 

Group-averaged DMN for four study sites as well as their pairwise similarities with DMN in 

adults.
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