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In this study, we identified eight survival-related metabolic genes in differentially
expressed metabolic genes by univariate Cox regression analysis based on the
therapeutically applicable research to generate effective treatments (n = 84) data set
and genotype tissue expression data set (n = 396). We also constructed a six metabolic
gene signature to predict the overall survival of osteosarcoma (OS) patients using
least absolute shrinkage and selection operator (Lasso) Cox regression analysis. Our
results show that the six metabolic gene signature showed good performance in
predicting survival of OS patients and was also an independent prognostic factor.
Stratified correlation analysis showed that the metabolic gene signature accurately
predicted survival outcomes in high-risk and low-risk OS patients. The six metabolic
gene signature was also verified to perform well in predicting survival of OS patients in
an independent cohort (GSE21257). Then, using univariate Cox regression and Lasso
Cox regression analyses, we identified an eight metabolism-related long noncoding RNA
(lncRNA) signature that accurately predicts overall survival of OS patients. Gene set
variation analysis showed that the apical surface and bile acid metabolism, epithelial
mesenchymal transition, and P53 pathway were activated in the high-risk group based
on the eight metabolism-related lncRNA signature. Furthermore, we constructed a
competing endogenous RNA (ceRNA) network and conducted immunization score
analysis based on the eight metabolism-related lncRNA signature. These results showed
that the six metabolic gene signature and eight metabolism-related lncRNA signature
have good performance in predicting the survival outcomes of OS patients.

Keywords: metabolism, lncRNAs, osteosarcoma, signatures, prognostic

INTRODUCTION

Osteosarcoma (OS) is a primary malignant bone cancer and commonly occurs in adolescents and
children. The overall annual incidence of OS is 3.4 million worldwide (Mirabello et al., 2009;
Pingping et al., 2019; Czarnecka et al., 2020; Mirabello et al., 2020). As a malignant tumor, OS
typically occurs in the metaphysis of the long bones, such as the distal femur (43%), proximal tibia
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(23%), or humerus (10%) (Isakoff et al., 2015). Previous
reports suggest that the 5-year survival rate of patients with
nonmetastatic OS is 70–75%, but the long-term survival rate
of metastatic OS patients is only 30% (Anwar et al., 2020).
In addition, multidrug resistance is a major challenge in OS
treatment (Strauss et al., 2010). Hence, there is an urgent need
to identify novel targets and biomarkers for the diagnosis and
prognosis of OS to improve the survival rate of OS patients.

Cancer metabolism is one of the oldest areas of research in
cancer biology, and targeting metabolism has been an effective
cancer treatment modality for decades (Cairns et al., 2011;
Luengo et al., 2017). An increasing amount of evidence shows
that changes in cell metabolism contribute to cancer development
and progression (Vander Heiden and DeBerardinis, 2017;
Kreuzaler et al., 2020). Additionally, several studies show that the
tumor suppressor p53, MYC oncogene, pyruvate kinase isozymes
M2 (PKM2), and hypoxia-inducible factor 1(HIF1) regulate
cancer metabolism and are involved in the prognosis of cancers
(Denko, 2008; Dayton et al., 2016; Gomes et al., 2018; Khan et al.,
2020). Long noncoding RNAs (lncRNAs) are noncoding RNAs
more than 200 nucleotides in length and play important roles
in transcriptional regulation, epigenetic gene regulation, and
disease (Mercer et al., 2009; Kumar and Goyal, 2017). The main
difference between lncRNAs and mRNAs is that lncRNAs lack
reading frames encoding proteins (Dinger et al., 2011). However,
investigations using advanced molecular techniques suggest that
some lncRNAs contain short open reading frames (sORFs) and
can interact with ribosomes to encode proteins (Chen et al.,
2020; Vergara et al., 2020). Recent studies show that lncRNAs
play important roles in glucose, protein, lipid, and nucleic acid
metabolism by directly or indirectly targeting enzymes and
oncogenic signaling pathways (Fan et al., 2017; Zeng et al., 2018;
Lu et al., 2019). Tang et al. (2019) found that lncRNA GLCC1
promotes carcinogenesis and glucose metabolism by stabilizing
c-Myc, resulting in poor prognosis in colorectal cancer. Another
study showed that lncRNA ANRIL is involved in regulating AML
development by modulating the glucose metabolism pathway
of AdipoR1/AMPK/SIRT1 (Sun et al., 2018). Although many
metabolic biomarkers have been identified for the diagnosis and
prognosis of human cancers, research on metabolic biomarkers
for the prognosis of OS is limited. Therefore, in this study, we
sought to identify novel metabolic signatures that are related to
the diagnosis and prognosis of OS patients.

In this study, we identified a six metabolic gene signature
using bioinformatics that shows good performance in predicting
survival of OS patients. Stratified correlation analysis shows
that the metabolic gene signature accurately predicted survival
outcomes in both high- and low-risk OS patients. The six
metabolic gene signature was also verified to perform well
in predicting survival of OS patients in an independent data
set (GSE21257). Furthermore, we also identified an eight
metabolism-related lncRNA signature that is related to overall
survival in OS and shows good performance in predicting overall
survival of OS. Gene set variation analysis (GSVA) revealed
that multiple metabolic processes and signaling pathways were
significantly enriched in the high-risk groups. Finally, we
constructed a competing endogenous RNA (ceRNA) network

based on the eight metabolism-related lncRNA signature
and analyzed the immunization scores in high- and low-
risk OS patients. Our results suggest that the six metabolic
gene signature and eight metabolism-related lncRNA signature
identified show robust performance in predicting the survival
outcomes of OS patients.

MATERIALS AND METHODS

Data Downloading and Processing
A total of 944 metabolic genes were extracted from metabolism-
related Kyoto encyclopedia of genes and genomes (KEGG)
pathways. RNA sequence data and clinical information on
the OS patients were downloaded from the therapeutically
applicable research to generate effective treatments (TARGET1).
Transcriptome data of normal human tissues were downloaded
from the genotype tissue expression (GTEx2) database.
Expression profiling and clinical information on a test
independent data set (GSE21257) was downloaded from the
Gene Expression Omnibus (GEO3). The clinical characteristics
of all OS patients in the two data sets are listed in Table 1. The R
software4 sva (Li et al., 2018) package was used to merge the raw
data of the two sets (TARGET OS n = 84 and GTEx OS n = 396)
and eliminate batch-to-batch differences.

Function Annotation
A total of 2,282 differentially expressed genes were selected based
on a cutoff value of | log2FC | > 1 and a P value less than
0.05 in OS tissue and normal muscle tissue using the Limma
(Ritchie et al., 2015) package, and 64 differentially expressed
genes were screened from the 2,282 differentially expressed genes.
Next, we conducted gene ontology (GO) and KEGG enrichment
analysis of the 64 differentially expressed metabolic genes using
the clusterProfiler (Kanehisa et al., 2017) package, established
a protein–protein interaction (PPI) network, and identified 10
hub metabolic genes using the Search Tool for the Retrieval
of Interacting Genes online tool (STRING5) and Cytoscape
(Shannon et al., 2003).

Identification and Construction of
Prognostic Signature
Univariate Cox regression analysis was used to identify
differentially expressed metabolic genes whose expression levels
were significantly associated (P < 0.05) with overall survival of
OS patients in the training data set (TARGET OS). Next, we
conducted least absolute shrinkage and selection operator (Lasso)
Cox regression analysis to identify metabolic genes related to
OS prognosis using the glmnet (Friedman et al., 2010) package,
and the OS patients were divided into high- (n = 42) and low-
risk (n = 42) groups based on the median risk score. Finally,

1https://ocg.cancer.gov/programs/target
2https://www.gtexportal.org/home/
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.r-project.org/
5https://www.string-db.org/
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TABLE 1 | Clinical data for all patients.

Variables Groups Training set (TARGET) (n = 84) Test set1 (GSE21257) (n = 53)

Patients no. (%) Patients no. (%)

Age ≤18 68 (81.0) 39 (73.6)

>18 16 (19.0) 14 (26.4)

Gender Female 36 (42.9) 19 (35.8)

Male 48 (57.1) 34 (64.2)

Metastatic Metastatic 21 (25.0) 34 (64.2)

Non-metastatic 63 (75.0) 19 (35.8)

Histologic response Stage 1/2 18 (21.4) 29 (54.7)

Stage 3/4 16 (19.0) 18 (34.0)

Vital status Alive 55 (65.5) 30 (56.6)

Dead 29 (34.5) 23 (43.4)

we constructed a six metabolic gene signature. To identify the
metabolism-related lncRNAs, we performed Pearson correlation
analysis between the lncRNAs and metabolic genes related to
OS prognosis using | R| ≥ 0.4 and P < 0.05 as the selection
criteria. Thereafter, we used the same method to screen a
metabolism-related lncRNA signature from 147 metabolism-
related lncRNAs.

Evaluation and Verification of the
Prognostic Signature
The OS patients were classified into high-risk and low-risk
groups based on their prognostic risk score using the median
risk score in the metabolic gene signature and metabolism-
related lncRNA signature. First, we compared the overall survival
of the high-risk and low-risk groups of patients in the two
kinds of signatures using the Kaplan–Meier survival curve.
According to receiver operating characteristic (ROC) curves,
we evaluated the diagnostic efficacy of each clinicopathological
characteristic and the prognostic signature for OS patients.
Furthermore, univariate and multivariate Cox regression analyses
were performed to evaluate whether the risk score was
independent of other clinical variables, such as age, gender,
and metastasis, in the prognostic signature. We constructed
a nomogram by integrating the traditional clinical variables,
such as age, gender, and metastasis as well as the risk score
derived from the prognostic signature of metabolic genes to
analyze the probable 1, 3, and 5-year overall survival of the
OS patients. To test whether the prognostic signature of the
metabolic genes has a robust ability to predict patient survival
in an independent data set, we verified it with an independent
data set (GSE21257).

Gene Set Enrichment Analysis (GSEA)
and GSVA
To assess the important functional phenotypes between the
high- and low-risk groups based on the eight metabolism-
related lncRNA signature, we performed GSEA and GSVA. We
used “c5.all.v7.0.symbols.gmt” as the reference gene sets and
performed GSEA enrichment analysis using GSEA software
(version: 4.0.3). We used “h.all.v7.0.symbols.gmt” as the reference

gene set for the GSVA analysis, and the adjusted p-value <0.05
was considered statistically significant.

ceRNA Network and Immunization
Scores Analysis
Using startbase databases, three of eight metabolism-related
lncRNAs were extracted to construct the ceRNA network. We
then used three databases (miRTarBase, miRDB, and TargetScan)
to search target mRNAs based on the 39 miRNAs. Next, we
extracted 88 target mRNAs from the differentially expressed
genes. Then, we obtained the immunization scores of immune
cells and immune-related functions in the high- and low-risk
groups using ssGSEA based on the eight metabolism-related
lncRNA signature.

RESULTS

Functional Annotation of Differentially
Expressed Metabolic Genes
First, we used TARGET (n = 84) and GTEx (n = 396)
data sets to compare OS and normal muscle tissues and
identified 2,282 differentially expressed genes. We then identified
64 differentially expressed metabolic genes in the 2,282
differentially expressed genes, of which 12 metabolic genes
were upregulated in normal tissues, and 52 metabolic genes
were upregulated in OS tissues (Figures 1A,B). GO annotation
showed that the 64 differentially expressed metabolic genes were
involved in various biological functions, including the carboxylic
acid biosynthetic process, organic acid biosynthetic process,
DNA polymerase complex, ficolin-1-rich granule, coenzyme
binding, and transferase activity. KEGG annotation revealed
that the 64 differentially expressed metabolic genes were
related to signaling pathways, including biosynthesis of amino
acids, carbon metabolism, pentose phosphate pathway, and
glycolysis/gluconeogenesis (Figure 1C). Last, we constructed
a PPI network (Figure 1D) and obtained 10 differentially
expressed metabolic genes using Cytoscape: PHGDH, GLUD2,
PYGM, ALDOA, ALDOC, PFKM, FBP2, FBP1, GPD1, and
GLUL (Figure 1E).
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FIGURE 1 | Functional annotation of differentially expressed metabolic genes. (A) Heat map of 64 differentially expressed metabolic genes. (B) Volcano plot of 944
metabolic genes. (C) GO and KEGG analysis of 64 differentially expressed metabolic genes. (D) PPI of 64 differentially expressed metabolic genes. (E) Ten hub
differentially expressed metabolic genes.

Identification of Prognostically
Significant Metabolic Genes in OS
Patients
First, based on the 64 differentially expressed metabolic genes that
were screened, we obtained clinical information for the 84 OS
samples from the TARGET data set. Then, using univariate Cox
regression analysis, we found that eight of the 64 differentially
expressed metabolic genes were significantly correlated with
overall survival of OS patients (P < 0.05; Figure 2A). These genes
are the following: PYGM, CKMT2, NAT1, AADAT, FADS2, GPX7,
PHOSPHO1, and CHST13.

Construction and Evaluation of the
Metabolic Genes Signature
To identify a metabolic gene signature for predicting overall
survival of OS patients, we conducted Lasso Cox regression
for the eight metabolic genes that correlated with the overall
survival of OS patients. Lasso Cox regression analysis showed
that six of the eight metabolic genes were good candidates for
constructing a prognostic signature (Figures 2B–D). Next, we
used iterative Lasso Cox regression analysis to construct an
optimal prognostic signature of six metabolic genes composed of
PYGM, CKMT2, NAT1, AADAT, GPX7, and CHST13 (Figure 2E).

ROC analysis indicated that prediction efficiency of the 6
metabolic genes signature was pretty good (1-year AUC = 0.759,
3-year AUC = 0.775, and 5-year AUC = 0.755) and was robust in
predicting OS prognosis (Figure 2F).

Based on the risk score of each OS patient in the TARGET
data set, the patients were divided into high-risk (n = 42) and
low-risk (n = 42) groups. Kaplan–Meier survival curve analysis
showed that the overall survival of OS patients with high-risk
scores was significantly shorter than those of patients with low-
risk scores (Figure 3A). Then, based on the metabolic gene
signature, we obtained the risk score distribution, survival status,
and a heat map of the six metabolic genes (Figure 3B). Principal
component analysis (PCA) based on the six metabolic genes
showed two markedly different distribution patterns between
high-risk and low-risk groups (Figure 3C). Next, using univariate
Cox analyses, we found that the metastatic and metabolic gene
prognostic risk scores were significantly associated with overall
survival (P < 0.001, Figure 3D). Multivariate Cox analyses
showed that the prognostic risk score for metabolic genes
was significantly associated with overall survival (P < 0.001,
Figure 3E). As shown in Figure 3F, the ROC curve analysis
demonstrated that the AUC values of age, gender, and metastatis
were less than the prognostic signature of the metabolic genes
(AUC = 0.755). We further performed a stratification analysis
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FIGURE 2 | Construction of metabolic gene signature. (A) Univariate Cox regression analysis showed that eight out of the 64 differentially expressed metabolic
genes significantly correlated with the overall survival of OS patients (P < 0.05). (B,C) Lasso Cox regression analysis showing that six out of the eight metabolic
genes were good candidates for constructing the prognostic signature. (D) Coefficients of six out of the eight metabolic genes. (E) Six metabolic genes signature
constructed by iterative Lasso cox regression analysis. (F) ROC curve to evaluate 1, 3, and 5-year prediction efficiency of the six metabolic genes signature.
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FIGURE 3 | Evaluation of the metabolic gene signature. (A) Kaplan–Meier curves of patients in the low-risk and high-risk groups based on the six metabolic genes
signature. (B) Risk score distribution and survival status of OS patients based on the six metabolic genes signature and heat map of the 6 metabolic genes signature
expression pattern. (C) PCA based on the confirmed six metabolic genes signature. (D) Univariate Cox regression analysis showing that the metastatic and metabolic
genes signature risk scores are significantly associated with overall survival. (E) Multivariate Cox regression analysis showing that the metabolic genes signature risk
score is an independent prognostic indicator for overall survival of OS patients. (F) ROC curve analysis with the prognostic accuracy of age, gender, and metastatis.

to investigate the prognostic value of the metabolic genes
(Figure 4A). Finally, we constructed a nomogram and calibration
curve analysis to accurately estimate the 1, 3, and 5-year survival
probabilities using the risk scores calculated from the metabolic
gene prognostic signature and other clinicopathological factors,
including age, gender, and metastatis (Figure 4B). These results
suggest that the prognosis signature could accurately determine
the prognosis of patients with OS.

Verification of Metabolic Genes
Signature in an Independent Cohort
To further examine the prognostic value of the six metabolic
genes, we verified the six metabolic genes signature in an
independent cohort (GSE21257). First, based on the risk score
for each OS patient in the GSE21257 data set, OS patients were
divided into high-risk (n = 26) and low-risk (n = 27) groups.

Kaplan–Meier survival curve analysis showed that the overall
survival of OS patients with high-risk scores was significantly
shorter than that of patients with low-risk scores (p = 1.469e-03,
Figure 5A). Next, we obtained the risk score distribution, survival
status, and a heat map of the six metabolic genes (Figure 5B)
based on the metabolic gene prognosis signature. ROC revealed
that the AUCs for 1-, 3-, and 5-year survival were 0.745, 0.781,
and 0.819, respectively, in the independent cohort (GSE21257;
Figure 5C). These results demonstrate that the six metabolic
genes signature can also predict the survival of OS patients in
other independent cohorts.

Identification of Metabolism-Related
lncRNAs
To explore metabolism-related lncRNAs, we first identified 148
metabolism-related lncRNAs by performing Pearson correlation
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FIGURE 4 | Analysis of prognosis signature with other clinical characteristics. (A) Stratification analysis to investigate the prognostic value of the six metabolic genes
signature (age, metastatis, gender, histologic response). (B) Nomogram for predicting 1, 3, and 5-year survival rates of OS patients based on the six metabolic genes
signature risk score and other clinical characteristics, such as age, gender, and metastatis. Calibration curve of the nomogram for 5-year survival rates.

FIGURE 5 | Verification of metabolic gene signature in an independent cohort. (A) Risk score distribution and survival status of OS patients based on the six
metabolic genes signature and a heat map of the six metabolic genes signature expression pattern in one independent cohort (GSE21257). (B) Kaplan–Meier curves
of patients in the low- and high-risk groups based on the 6 metabolic genes signature in an independent cohort (GSE21257). (C) ROC curve to evaluate 1, 3, and
5-year prediction efficiency of the six metabolic genes signature in an independent cohort (GSE21257).
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analysis between the lncRNAs and the metabolism-related genes
using | R| ≥ 0.4 and P < 0.05 as the selection criteria.
Univariate Cox regression analysis showed that expression of 17
metabolism-related lncRNAs were significantly correlated with
the overall survival of OS patients (P < 0.05; Table 2).

Construction and Evaluation of the
Metabolism-Related lncRNA Signature
First, we performed Lasso Cox regression analysis for 17
metabolism-related lncRNAs correlated with the overall survival
of OS patients. The analysis showed that eight of the
17 metabolism-related lncRNAs were good candidates for
constructing the prognostic signature, including JMJD1C-AS1,
FLJ45513, FAM155A-IT1, LINC00837, MANCR, LINC00506,
CACNA1C-AS1, and IL10RB-DT (Figures 6A–D). ROC analysis
suggested that the metabolism-related lncRNA signature has
good performance in predicting overall survival of OS patients,
and the AUCs for 1, 3, and 5-year survival were 0.813, 0.814, and
0.802, respectively (Figure 6E).

Based on the risk score of each OS patient in the TARGET data
set, OS patients were divided into high-risk (n = 42) and low-risk
(n = 42) groups. Kaplan–Meier survival curve analysis showed
that overall survival of OS patients with high-risk scores was
significantly shorter than those with low-risk scores (p = 1.113e-
04, Figure 6F). Based on the eight metabolism-related lncRNAs
prognosis signature, we obtained the risk score distribution,
survival status, and a heat map of the eight metabolism-related
lncRNAs (Figure 7A). Using univariate Cox analyses revealed
that the metastatic and metabolism-related lncRNA prognostic
risk scores was significantly associated with overall survival
(P < 0.001; Figure 7B). Multivariate Cox analyses showed that
the prognostic risk score of the metabolism-related lncRNAs
was significantly associated with overall survival (P < 0.001;
Figure 7C). Finally, Kaplan–Meier curves showed that patients

TABLE 2 | The 17 metabolism-related prognostic lncRNAs.

lncRNAs HR HR.95L HR.95H p-value

FLJ45513 1.572151 1.107278 2.232194 0.011415

IL10RB-DT 0.554251 0.395923 0.775893 0.000585

TEX41 1.550473 1.0179 2.361693 0.041092

FAM155A-IT1 1.398182 1.04583 1.869246 0.02367

MANCR 0.708946 0.520693 0.965259 0.028924

LINC01517 1.531645 1.239607 1.892485 7.82E-05

LINC02596 1.339465 1.012205 1.772535 0.040871

MSC-AS1 0.651997 0.515729 0.82427 0.00035

LINC00837 1.483295 1.218967 1.804941 8.24E-05

PCED1B-AS1 0.711717 0.530271 0.95525 0.023521

LINC01060 1.381973 1.050937 1.817284 0.020582

CACNA1C-AS1 0.554828 0.383622 0.802442 0.001754

TMEM92-AS1 0.753791 0.602294 0.943395 0.01355

LINC01094 0.676373 0.478496 0.956080 0.026807

LINC02298 2.090637 1.268109 3.446679 0.003838

JMJD1C-AS1 2.090789 1.203725 3.631559 0.00884

LINC00506 0.622487 0.4341 0.89263 0.00995

with different expression levels of the eight metabolism-related
lncRNAs had different overall survival (Figure 7D).

GSEA and GSVA
To examine the potential biological processes involved, we
carried out GSEA based on the eight metabolism-related lncRNA
signature. The top five biological processes in the high- and low-
risk groups are shown in Figures 8A,B. GSVA results show that
apical surface and bile acid metabolism, epithelial mesenchymal
transition, and P53 pathway were activated in the high-risk OS
patients (Figure 8C).

Construction of the ceRNA Network and
Immunization Score Analysis
To explore the functions of the eight metabolism-related
lncRNAs, we constructed a ceRNA network based on the eight
metabolism-related lncRNAs (Figure 8D). First, one of the eight
metabolism-related lncRNAs were extracted to construct the
ceRNA network. We then used three databases (miRTarBase,
miRDB, and TargetScan) to search for target mRNAs based on the
11 miRNAs and extracted 44 target mRNAs from differentially
expressed genes. Next, we performed immunization scores of
immune cells and immune-related functions in the high-risk and
low-risk groups using ssGSEA. Results of immunization score
analysis show that the immunization scores of B cells, CD8+
T cells, Mast cells, and Th1 cells were significant in the high-
risk and low-risk groups (Figure 8E). Furthermore, results of
immunization score analysis show that the immunization scores
of type II IFN response were significant in the high-risk and
low-risk groups (Figure 8F).

DISCUSSION

In this study, eight metabolic genes were found to be significantly
correlated with OS based on univariate Cox regression analysis.
Then, 6 metabolic genes (PYGM, CKMT2, NAT1, AADAT, GPX7,
and CHST13) were selected to construct a prognostic signature
based on their performance using the Lasso Cox regression
analysis. OS patients with high-risk scores showed shorter
survival times compared with those with low-risk scores based
on the six metabolic genes signature. Univariate and multivariate
Cox analyses suggest that the risk score based on the six metabolic
gene prognostic signature was an independent prognostic factor.
Stratified correlation analysis shows that the metabolic gene
signature accurately predicted survival outcomes in high- and
low-risk OS patients. In addition, we constructed a nomogram
that was good at predicting the 1, 3, and 5-year survival
probabilities using the risk score and other clinicopathological
factors, including age, gender, and metastatis. Taken together,
these results confirm that the six metabolic genes prognostic
signature has good performance in predicting the survival
outcomes of OS patients in our study.

In recent years, a mounting body of evidence suggests that
reprogramming of metabolism in cancer cells has an important
effect on cancer development and progression (Hanahan and
Weinberg, 2011). Moreover, an increasing number of studies
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FIGURE 6 | Construction of metabolism-related lncRNA signature. (A) Heat map of the correlations between metabolic genes and the 17 prognostic
metabolism-related lncRNAs (**p < 0.01 and ***p < 0.001). (B,C) Lasso Cox regression analysis showed that eight of the 17 prognostic metabolism-related
lncRNAs were good candidates for constructing the prognostic signature. (D) Coefficients of the eight metabolism-related lncRNA signature. (E) Eight
metabolism-related lncRNA signature constructed using iterative Lasso Cox regression analysis. (F) ROC curve to evaluate 1, 3, and 5-year prediction efficiency of
the eight metabolism-related lncRNA signature.

suggests that protein, lipid, and nucleic acid govern cell
growth and are activated in cancer cells via tumorigenic
mutations, resulting in cancer development and progression
(DeBerardinis and Chandel, 2016; Merino Salvador et al.,
2017). However, the association between metabolism and OS
progression remains unclear. In our study, we identified the six
metabolic genes (PYGM, CKMT2, NAT1, AADAT, GPX7, and

CHST13) prognostic signature that showed good performance in
predicting survival outcomes of OS patients. However, there are
few reports on the role of these genes in OS. PYGM is significantly
downregulated in head and neck squamous cell carcinoma
(HNSCC) and correlates with worse prognosis of HNSCC (Jin
and Yang, 2019). In hepatocellular carcinoma, downregulation
of CHST13 regulates the metastasis and chemosensitivity of
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FIGURE 7 | Evaluation of metabolism-related lncRNA signature. (A) Risk score distribution and survival status of OS patients based on the eight metabolism-related
lncRNAs and a heat map of the eight metabolism-related lncRNAs expression pattern. (B) Univariate Cox regression analysis showing the metastatic and the eight
metabolism-related lncRNA signature risk score were significantly associated with overall survival. (C) Multivariate Cox regression analysis showing that the eight
metabolism-related lncRNA signature risk score was an independent prognostic indicator for overall survival of OS patients. (D) Kaplan–Meier curves showing that
the expression of the eight metabolism-related lncRNA had different overall survival for OS patients.

human hepatocellular carcinoma cells via the mitogen-activated
protein kinase (MAPK) pathway (Zhou et al., 2016). Epigenetic
inactivation of GPX7 may be an important mechanism of
esophageal cancer (Peng et al., 2009; Peppelenbosch et al.,
2014). In Barrett’s esophagus, GPX7 suppresses bile salt-induced
expression of pro-inflammatory cytokines to inhibit Barrett’s
carcinogenesis and is also related to gastroesophageal reflux
disease–associated Barrett’s carcinogenesis (Peng et al., 2014a,b).
From these data, we know that the six metabolic genes identified
in our study play different roles in human cancers. However,
research regarding the role of these genes is limited in OS.
It is, therefore, worth exploring the functions of these six
metabolic genes in OS.

Additionally, 17 metabolism-related lncRNAs were found
to be significantly correlated with the overall survival of
OS patients in this study. Lasso Cox regression analysis

showed that eight metabolism-related lncRNAs (JMJD1C-AS1,
FLJ45513, FAM155A-IT1, LINC00837, MANCR, LINC00506,
CACNA1C-AS1, and IL10RB-DT) were found to be good
candidates for the construction of a prognostic signature.
Based on the eight metabolism-related lncRNA signature,
the clinical outcome of OS patients with high-risk scores
were significantly worse than that for patients with low-
risk scores. Like the six metabolic genes signature, the eight
metabolism-related lncRNAs signature was also independent
of other clinical variables, such as age, gender and metastatis.
GSVA results showed that bile acid metabolism, epithelial
mesenchymal transition, and P53 pathway were activated
in high-risk OS patients. Immunization scores analysis
suggests that there was a lower score in the high-risk group
than in the low-risk group, and high immunity correlated
with good prognosis.
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FIGURE 8 | Pathway enrichment, ceRNA network, and immunization scores based on metabolism-related lncRNA signature. (A,B) Top five biological processes in
the high- and low-risk groups based on GSEA results. (C) GSVA results showing that apical surface and bile acid metabolism, epithelial mesenchymal transition, and
P53 pathway were activated in high-risk OS patients. (D) ceRNA network. (E,F) Immunization scores of immune cells and immune-related functions based on the
eight metabolism-related lncRNA signature. *p < 0.05, **p < 0.01, nsp > 0.05.

Dysregulation of lncRNAs is known to be involved in tumor
growth, metabolism, and metastasis (Lin, 2020). Increasing
numbers of studies show that dysregulated lncRNAs have an
important effect on glucose, lipid, and cholesterol metabolism
by regulating mitochondrial function and oxidative stress (van
Solingen et al., 2018; Zeng et al., 2018; Lu et al., 2020). Research

on the prognostic potential of metabolism-related lncRNAs is
limited in OS. Our results suggest that the eight metabolism-
related lncRNAs identified in this study can accurately predict
overall survival of OS patients. In the eight metabolism-related
lncRNAs, MANCR, LINC00837, LINC00506, and IL10RB-DT
are relatively well characterized. Tahmouresi et al. (2020)
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suggests that MANCR is a potential diagnostic biomarker for
breast carcinoma (BC) and is associated with aggressive clinical
parameters of BC. The study also shows that MANCR was
functionally associated with cell proliferation, viability, and
genomic stability and represented a potential therapeutic target
for BC (Tracy et al., 2018). It is well known that the P53
pathway is related to the metabolism of cancer cells in multiple
cancers (Chen et al., 2017; Goyal et al., 2019), and GSVA results
also suggest that the P53 pathway was activated in high-risk
OS patients. Taken together, these results also suggest that the
eight metabolism-related lncRNA signature has strong ability to
predict the prognosis of OS patients.

Despite the identification of six metabolic gene and eight
metabolism-related lncRNA prognostic signatures, few reports
regarding these signatures have been reported in OS previously.
In the future, it will be necessary to explore the molecular
biological functions of the six metabolic genes and eight
metabolism-related lncRNA signatures in OS tumorigenesis
and progression, such as in cell proliferation, cell viability,
cell metabolism, cell motility, tumor angiogenesis, and drug
resistance. In addition, to further validate these metabolic
genes and metabolism-related lncRNA signatures in accurate
OS diagnosis and prognosis, more clinical evidence, including
prospective large-scale cohorts related to these signatures, is
crucial. Last, for the potential application of these signatures in
the personalized treatment of OS, we believe that it is important
to identify the best biomarker and target from these signatures to
improve cellular metabolism and immunotherapy of OS. There
are several limitations to our study. First, owing to the limited
availability of OS sample size (n = 84) and clinical data, the
subgroup analysis based on other clinical characteristics was
limited. Second, the OS sample sizes and clinical data of the
independent cohort are also hampered. Last, biological functions

of the metabolic genes and metabolism-related lncRNAs need to
be verified in the future.

In conclusion, we identify six metabolic gene and eight
metabolism-related lncRNA prognostic signatures that show
good performance in predicting the survival outcomes of OS
patients and are independent of other clinical risk factors.
Overall, our study suggests that the six metabolic genes and
eight metabolism-related lncRNAs are promising prognostic and
diagnostic biomarkers for OS therapy and diagnosis.
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