
OR I G I N A L A R T I C L E

Deciphering molecular properties of hypermutated
gastrointestinal cancer

Wangxiong Hu1 | Yanmei Yang2 | Weiting Ge1 | Shu Zheng1

1Cancer Institute (Key Laboratory of Cancer

Prevention and Intervention, China National

Ministry of Education), The Second

Affiliated Hospital, Zhejiang University

School of Medicine, Zhejiang, China

2Key Laboratory of Reproductive and

Genetics, Ministry of Education, Women's
Hospital, Zhejiang University School of

Medicine, Zhejiang, China

Correspondence

Wangxiong Hu and Shu Zheng, Cancer

Institute (Key Laboratory of Cancer

Prevention and Intervention, China National

Ministry of Education), The Second Affiliated

Hospital, Zhejiang University School of

Medicine, Hangzhou, Zhejiang, China.

Email: wxhu@zju.edu.cn; zhengshu@zju.

edu.cn

Funding information

The Fundamental Research Funds for the

Central Universities, Grant/Award Number:

2018FZA7012; China Postdoctoral Science

Foundation, Grant/Award Number:

2016M590532

Abstract

Great mutational heterogeneity is observed both across cancer types (>1000‐fold)
and within a given cancer type, with a fraction harboring >10 mutations per million

bases, thus termed hypermutation. We determined the genome‐wide effects of high

mutation load on the transcriptome and methylome of two cancer types; namely,

colorectal cancer (CRC) and stomach adenocarcinoma (STAD). Briefly, hierarchical

clustering of the expression and methylation profiles showed that the majority of

CRC and STAD hypermutated samples were mixed and separated from their respec-

tive non‐hypermutated samples, exceeding the boundary of tissue specificity. Fur-

ther in‐detailed exploration uncovered that the underlying molecular mechanism

may be related to the perturbation of chromatin remodeling genes.
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1 | INTRODUCTION

A tumor is largely caused by somatic mutations.1,2 In general, muta-

tion of a few genes is sufficient to initiate tumorigenesis.1 However,

great mutational heterogeneity is observed both across cancer types

(>1000‐fold) and within a given cancer type.3 The wide range of

mutation frequency within a given cancer type (eg, in melanoma and

lung cancer, the frequency ranged between 0.1‐100/million bases

[Mb]) has prompted researchers to classify cancers into hyper-

mutated and non‐hypermutated forms.4,5

Commonly, a sample is defined as hypermutated if its mutation

rate is >10 mutations per Mb.4,6 Hypermutation can be caused by

in vitro (environmental mutagen exposure such as UV light and

tobacco smoke) and in vivo factors (dysregulation of apolipoprotein

B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) family

members and defects in DNA polymerase ε (POLE), Polδ1 (POLQ1),

or the DNA mismatch repair system (MMR)).4,7,8 Tumors with a large

number of somatic mutations may be susceptible to immune check-

point blockade (eg, PD‐1).9–11 Thus, microsatellite instability‐high
(MSI‐H) status (commonly linked to high mutation burden) may be

associated with a better prognosis.12,13 However, the transcriptome

and epigenetic profiles, such as the DNA methylome, in hypermu-

tated samples are poorly understood. Here, we focused on two can-

cer types (CRC and STAD) with a relatively high proportion of

intrinsic hypermutation.

2 | MATERIALS AND METHODS

2.1 | Hypermutation definition

All cancer somatic mutation data and clinical information were

downloaded from The Cancer Genome Atlas (TCGA) data portal
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(11/03/2015). Silent mutations and RNA mutations were discarded

from further analyses. The hypermutated criterion was defined,

which was similar to the work by Campbell et al.4 Briefly, the

breakpoint at which a significant change in the slope occurred

was determined to be the hypermutation threshold. Thus, the

samples with over 10 mutations per Mb were defined as hyper-

mutated.

2.2 | Gene expression data processing and
normalization

All level 3 tumor mRNA expression data sets (RNASeqV2) were

obtained from the TCGA (October 2015). Known batch effects

were corrected using the ComBat function in the Bioconductor sva

package.14 Analysis of differentially expressed mRNA between

hypermutated and non‐hypermutated was performed using the

DEGSeq package for R/Bioconductor.15 Genes with expression levels

<1 (RNA‐Seq by Expectation Maximization (RSEM)‐normalized

counts) in more than 50% of samples were removed. Significant

differentially expressed mRNAs were selected according to a false

discovery rate (FDR) adjusted P value <0.05 and fold change >2

conditions.

2.3 | HM450k data retrieval and process

CRC and STAD level three DNA methylation data (HumanMethyla-

tion450) were downloaded from the TCGA data portal (11/13/

2016). The methylation level of each probe was measured with a

beta value ranging from 0 to 1; this is calculated as the ratio of

the methylated signal to the sum of the methylated and unmethy-

lated signals. Probes with an “NA” value in more than 10% of the

CRC or STAD samples were discarded. Next, the limma Bioconduc-

tor package was used to identify differentially methylated sites

(DMSs) in the remaining probes.16 Significant DMSs were selected

according to the FDR adjusted P value <1E‐20 condition. All heat-

maps were generated using the pheatmap package in R (64‐bit, ver-
sion 3.0.2).

2.4 | Survival analysis

Genes that correlated with patient survival time in the multivariate

Cox regression analysis were determined using the least absolute

shrinkage and selection operator (LASSO) method. The best λ was

determined by 10‐fold cross‐validation using the glmnet package

built‐in function cv.glmnet.17 For each group, we divided the patients

into high‐ and low‐risk groups by calculating the prognostic index

(PI) as follows:

PIk ¼ ∑n
g¼1βgmgk

where n is the number of survival correlated genes, βg is the

regression coefficient of the Cox proportional hazard model for

gene g, and mgk is the expression level of gene g in patient k.

Patients were then divided into high‐ and low‐risk groups based on

the median PI. The survival difference between the two groups

(good‐ and poor‐prognosis) was tested by the Kaplan‐Meier method

and analyzed with the log‐rank test with functions survfit and survd-

iff in the survival package for R.18 A P value <0.05 was considered

significant.

2.5 | Hub gene definition

Co‐expression network construction was performed as described

in our previous work.19 Hub genes were those with an extremely

high level of connectivity in a given network. Connectivity reflects

how frequently a node interacts with other nodes and the sum of

the weights across all edges of a node. Because some modules

(also known as networks) were rather large, we restricted the

number of genes in the output of the module. Here, the top 50

genes with the highest connectivity in each network that were

reasonable to display were defined as hub genes as previously

described.20

2.6 | Data and code availability

Codes used in this study are available at https://github.com/huwa

ngxiong/Hypermutated_gastrointestinal_cancer (Digital Object Identi-

fier: https://doi.org/10.5281/zenodo.1406067). All other data are

available from the authors upon request.

3 | RESULTS

3.1 | Characteristics of hypermutated samples in
CRC and STAD

Consistent with the observation by Campbell et al4, here, patients

with over 10 mutations per Mb were defined as hypermutated (Fig-

ure S1A and B). This outcome established 61 (16%) and 83 (24%) of

the samples as hypermutated in CRC and STAD, respectively. Of

the 61 hypermutated samples in CRC, no difference was observed

in age and gender in comparison with the 322 non‐hypermutated

samples. However, 77% of the hypermutated samples originated

from patients who were diagnosed with stage I/II, while an even dis-

tribution was observed in the non‐hypermutated group (Table 1).

Notably, all hypermutated CRC samples were classified as MSI‐H
using the criteria of Hause et al21, and 80% were located in the

right side of the colon. In STAD, 60% of the hypermutated cases

were median‐aged (60‐75), and no significant difference was

observed in gender when compared with the non‐hypermutated

samples. Notably, no stage prevalence was observed in the STAD

hypermutated samples, which was in contrast with the CRC sam-

ples. However, similar to the findings in CRC, 84% of the hypermu-

tated cases were driven by MSI‐H with microsatellite status

annotation (Table 1).

In the hypermutated tumors, ARID1A, RNF43, LRP1B, FAT1~4,

MLL1~4 and MACF1 were frequent targets of mutation in both CRC

and STAD. We found that 630 and 582 genes were mutated (>20%

HU ET AL. | 371

https://github.com/huwangxiong/Hypermutated_gastrointestinal_cancer
https://github.com/huwangxiong/Hypermutated_gastrointestinal_cancer
https://doi.org/10.5281/zenodo.1406067


hypermutated patients) in CRC and STAD, respectively, with 351

mutated genes shared by them.

3.2 | Mutation‐driven expression patterns are
consistent across organs

To decipher the mutation‐driven expression profiles across organs,

we first compared the transcriptomes between the hypermutated

and non‐hypermutated samples in CRC and STAD. In total, 935 and

1047 differentially expressed genes (DEGs) were identified in CRC

(hypermutated vs. non‐hypermutated) and STAD (hypermutated vs.

non‐hypermutated), respectively, with 185 DEGs common to both

comparisons. Intriguingly, only 56 genes (5%) were upregulated in

the hypermutated subgroup in STAD. Notably, the upregulated

genes such as AIM2 and TNFRSF9 in the hypermutated samples were

closely associated with immune response. AIM2 suppresses tumor

growth via inhibiting AKT, which is a promising avenue for therapy

or prevention.22,23 TNFRSF9 is a critical mediator of sterile inflam-

mation and is also a therapeutic target for cancer.24

Next, we evaluated if the mutation‐driven gene expression pat-

tern was similar across organs with DEGs identified in CRC and

STAD. The results showed that most of the CRC and STAD hyper-

mutated samples were mixed and separated from their respective

non‐hypermutated counterparts, exceeding the boundary of tissue‐
specificity (Figure 1).

3.3 | Mutation‐driven methylation patterns are
similar across organs

Gene expression lies in the downstream cascade of gene

mutation. To further consolidate the molecular similarities in the

hypermutated samples with high mutational burden across cancer

types, we explored the epigenetic patterns in the hypermutated

and non‐hypermutated samples between CRC and STAD. Notably,

CRC was more sensitive to DNA methylation variation compared

to STAD. In total, 1604 and 53 differentially methylated sites

(DMSs, P < 1E‐20) were identified in CRC (hypermutated vs. non‐
hypermutated) and STAD samples (hypermutated vs. non‐hypermu-

tated), respectively, with 21 CpG sites common to both compar-

isons. Notably, 19 of the 21 common CpG sites were within

MLH1, a gene closely associated with MSI‐H if it is inactivated.

Hierarchical clustering of DNA methylation profiles showed that

most CRC and STAD hypermutated samples were mixed together

and separated from their respective non‐hypermutated samples,

which is consistent with the expression pattern observations

(Figure 2).

TABLE 1 Clinical characteristics of hypermutated and non‐hypermutated in colorectal cancer (CRC) and stomach adenocarcinoma (STAD)

Variable

CRC STAD

Hyper Non‐hyper
P

Hyper Non‐hyper
Pn = (61) n = (322) n = (72) n = (268)

Age

<60 19 94 0.1343 11 96 0.00379

60‐75 22 153 44 129

>75 21 75 16 41

Unknown 0 0 1 2

Sex

Male 38 181 0.4597 37 180 0.01954

Female 23 141 35 88

Stage

I 10 51 <0.001 15 34 0.2178

II 37 103 23 85

III 11 108 23 116

IV 2 44 7 25

Unknown 1 16 4 8

MMR

MSI‐H 61 0 <0.001 31 0 <0.001

MSS or MSI‐L 0 322 6 157

Unknown 0 0 36 111

Location

Left 11 205 <0.001

Right 45 105

Unknown 5 12
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3.4 | Mutation‐driven consistent methylation
pattern is independent of MLH1 hypermethylation

Inactivation of the MMR pathway is often caused by hypermethyla-

tion of the MLH1 gene promoter.25 Thus, the consistent methylation

pattern observed in the hypermutated groups may largely be a con-

sequence of MLH1 hypermethylation. Indeed, 57% (27 samples) CRC

and 58% (45 samples) STAD hypermutated cases were MLH1 hyper-

methylated. After excluding all MLH1 CG probes and reclustering the

methylation profiles, we found that the consistent mutation‐driven
methylation patterns held (Figure S2). This result strongly suggested

that consistent mutation‐driven methylation patterns in CRC and

STAD were based on an unknown molecular mechanism, irrespective

of MLH1 methylation status.

3.5 | Identifying genes and methylation probes
associated with survival in STAD hypermutated
samples

We next sought to find genes and CG probes that may serve as

prognostic markers in hypermutated and non‐hypermutated

samples. Since the power of detecting prognostic genes mainly

depends on the sample size and the number of survival events

(that is, death), here, we focused on STAD because the CRC hyper-

mutated samples only contained 11 survival events. Cox propor-

tional hazard survival analysis showed that 1851 and 1543 genes

correlated with survival outcomes in STAD hypermutated and non‐
hypermutated samples, respectively, with only 135 genes in com-

mon between them. This result suggested that most of the survival

factors were hypermutated‐driven, not shared by non‐hypermutated

cases. Genes whose increased expression was correlated with

worsened survival outcomes in hypermutated samples included

EPHA5 (Ephrin Type‐A Receptor 5) (hazard ratio (HR) = 1.33, 95%

confidence interval (CI) 1.178‐1.501, P = 4.152E‐06) and TAGLN3

(Transgelin 3) (HR = 1.546, 95% CI 1.24‐1.929, P = 0.0001094). In

contrast, genes whose expression was correlated with a better

prognosis included GAS2L1 (GAS2‐like protein 1) (HR = 0.9983,

95% CI 0.9974‐0.9993, P = 0.0004428), PRICKLE3 (Prickle Planar

Cell Polarity Protein 3) (HR = 0.9922, 95% CI 0.988‐0.9964,
P = 0.0002996) and RNH1 (ribonuclease/angiogenin inhibitor 1)

(HR = 0.9986, 95% CI 0.998‐0.9993, P = 0.0001094). Additionally,

we sought to determine an expression signature that could
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F IGURE 1 Global molecular pattern defined by hypermutation is consistent across colorectal cancer (CRC) and stomach adenocarcinoma
(STAD). Heatmap depicting mRNA expression of DEGs between hypermutated and non‐hypermutated CRC. Hierarchical clustering reveals that
majority of CRC and STAD hypermutated samples were mixed and separated from their respective non‐hypermutated samples
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separate the hypermutated patients into two groups with either a

high or low prognostic index (PI, see methods for more detail) since

canonical survival‐related factors such as TNM staging and MMR

status were invalid in this context. Notably, STAD hypermutated

patients could be separated into two groups with high or low PI

based on 1‐8 survival‐related genes (Table 2). Particularly for RNH1

and TAGLN3, the discrimination power (C‐index value) reached

>0.7 with only a single variable (Figure S3, Table 2). A well‐con-
ceived five‐gene signature (DNAI2, EPHA5, GAS2L1, RNH1, TAGLN3)

was identified that could predict prognosis of hypermutated STAD

patients with high performance (C‐index: 0.84), but the robustness

should be validated in another independent dataset in the future.

These survival‐related genes can be prognostic signatures used in

hypermutated STADs, but they warrant further validation to test

whether they are broadly applicable.

Meanwhile, 185 and 1616 CG probes correlated with survival

outcomes were identified in hypermutated and non‐hypermutated

samples, respectively, with only 8 probes (cg04431629‐DMRTA2,

cg05542757‐FREM2, cg10439246, cg12630461‐RCCD1,
cg12837869, cg14696334‐RCCD1, cg17219660‐GPR37L1 and

F IGURE 2 Overall DNA methylation pattern defined by hypermutation is consistent across colorectal cancer (CRC) and stomach
adenocarcinoma (STAD). Heatmap depicting DNA methylation of differentially methylated sites between hypermutated and non‐hypermutated
CRC. Hierarchical clustering reveals that majority of CRC and STAD hypermutated samples were mixed and separated from their respective
non‐hypermutated samples

TABLE 2 Expression signature that could distinguish hypermutated STAD patients into two groups with high and low prognostic index

Model Gene number C‐index logrank coxph_Wald test

DNAI2‐EPHA5‐GAS2L1‐HCG4P6‐PDE5A‐PI4KAP2‐RNH1‐TAGLN3 8 0.846702 4.15E‐05 2.99E‐09

DNAI2‐EPHA5‐GAS2L1‐RNH1‐TAGLN3 5 0.8404635 4.15E‐05 1.49E‐08

EPHA5‐GAS2L1‐RNH1‐TAGLN3 4 0.8163993 4.15E‐05 1.04E‐07

EPHA5‐GAS2L1‐RNH1 3 0.8074866 9.14E‐05 7.40E‐07

GAS2L1‐RNH1 2 0.7816399 5.81E‐06 1.55E‐05

RNH1 1 0.7593583 1.08E‐04 6.99E‐05

TAGLN3 1 0.7027629 6.50E‐03 1.09E‐04
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cg18347921‐NCRNA00171) in common between them. Unlike the

expression variables, we could not determine a threshold that

could separate hypermutated patients into two groups with either

a high or low PI. Some explanations may account for this. First,

the hypermutated sample size is too small to pick a suitable

model. Second, as a binary marker (methylated or hypomethy-

lated), the methylation level cannot sensitively reflect the clinical

outcome.

3.6 | Identification of candidate therapeutic target
genes in STAD hypermutated samples

A mutated gene that is differentially expressed, survival related and

acts as a hub node in a regulatory network may serve as a potential

therapeutic target in the treatment of hypermutated patients. Nota-

bly, we found only one gene, ANK2 (Ankyrin‐2) that may serve as a

potential therapeutic target in the treatment of hypermutated STADs

(Figure 3A). ANK2 was highly repressed in hypermutated samples

compared with non‐hypermutated and adjacent normal tissue

(P < 0.05, Mann‐Whitney test, Figure 3B). Co‐expression network

analysis revealed that ANK2 was a hub gene associated with some

validated tumor suppressors (Figure 3C). For example, ANGPTL1 and

SPARCL1, crosstalking with ANK2, have been shown to attenuate

colorectal cancer metastasis in our previous work.26,27 Hypermutated

patients with higher ANK2 expression levels had a significantly bet-

ter clinical outcome (P = 0.00771, log‐rank test, Figure 3D). Cur-

rently, there are no ANK2‐targeting molecules available in the clinic

or even pre‐clinical research. But we hope we and someone else will
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F IGURE 3 ANK2 is a candidate therapeutic target gene in stomach adenocarcinoma (STAD) hypermutated samples. A, Venn diagram of
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verify this hypothesis using in vivo activation of endogenous target

genes through trans‐epigenetic remodeling in future work.28 The

overall 5‐year survival rates were 68% (95% CI 54% to 85%) com-

pared to 30% (95% CI 12% to 80%) based on the mean expression

cutoff in hypermutated STADs.

3.7 | Chromatin remodeling genes may be
responsible for the consistent expression and
methylation pattern in hypermutated samples

The intrinsic molecular similarity shown in high mutational load sam-

ples with different tissues of origin prompted us to seek potential

drivers. Correlation analysis of mutational profiles, transcriptomes

and methylomes showed that inactivation of chromatin remodeling

genes (ARID1A and MLL1~4) may account for the consistent expres-

sion (Figure 4A) and methylation (Figure 4B) patterns in hypermu-

tated samples. ARID1A fits the hypothesis well; it is mutated in 49%

of CRC and 76% of STAD hypermutated samples but rarely exists in

non‐hypermutated cases. This result was shown for MLL2 as well.

We thus concluded that an MSI‐H→chromatin remodeling genes

(ARID1A and MLL1~4) inactivation→DNA methylation/expression

variation axis (Figure 4C) shared in CRC and STAD hypermutated

samples may be associated with the consistent expression and

methylation patterns identified in this study.

4 | DISCUSSION

The consistent expression and DNA methylation patterns in hyper-

mutated samples uncover a somatic driver foregoing tissue speci-

ficity. In CRC and STAD, hypermutation is largely contributed by

MSI‐H. It is well‐known that MSI‐H is caused by inactivation (muta-

tion or hypermethylation) of MLH1, MLH3, MSH2, MSH3, MSH6 and

PMS2.6 In addition, the frequent mutation of chromatin remodeling

genes (ARID1A, CHD6, CREBBP, SETD1A, NCOR1 and MLL1~4) indi-

cated that they were also putative cellular drivers in the hypermu-

tated subgroup. To test this possibility, we examined six STAD

hypermutated samples that were microsatellite stable (MSS) to

exclude MSI confounding. The result showed that five of these sam-

ples were probably driven by MLL or MLL3, which was consistent

with the results of previous studies.29,30 The consistent expression

and methylation patterns observed in this study raised the possibility

that the DEGs were a result of the somatic mutations. To test this

theory, we explored the correlation of gene mutations and DEGs in

the hypermutated subgroups. In total, only 30 and 62 DEGs were

associated with mutations in CRC and STAD, respectively. Rare

DEGs associated with mutations revealed another molecular mecha-

nism responsible for the expression variation in the hypermutated

samples. Recently, Mathur et al31, found that ARID1A loss impairs

enhancer‐mediated gene regulation through altering H3K27ac levels

at enhancers, which led to the dysregulation of more than 1000

genes (>2‐fold). Additionally, depleting mouse ESCs of H3K4me3

writers (ie, MLL1 and MLL2) can regulate distinct subsets of genes

and/or are involved in biological functions.32 H3K4me1 is mainly

deposited by protein complexes containing MLL3 and MLL4.

H3K4me3 and H3K4me1 are active markers, and their depletion

may explain the downregulation of most DEGs in STAD. Further-

more, the interplay of an epigenetic hallmark, such as DNA methyla-

tion, as negatively correlated with the H3K4me3 mark may explain

the hypermethylation in the hypermutated samples.32 Meanwhile,

frequent depletion of the H3K36 methyltransferase SETD2 (21%)

and H3K4 methyltransferase SETD1B (34%) in CRC and H3K4

methyltransferase SETD1A (21%) in STAD, which are all associated

with gene transcription, elongation, or alternative splicing,33–36 may

also play a role in remodeling consistent hypermutated expression

and DNA methylation patterns.

A remarkably favorable prognosis has been proposed in MMR‐
deficient colorectal tumors.37 Multiple mechanisms may be underly-

ing this proposal. Hypermutated CRC patients are more prevalent in

stage I/II but are rare in advanced stages (P < 0.001, χ2 test). This

result also holds true in CRC samples collected at Zhejiang Univer-

sity Cancer Institute. Sequencing (71 whole exome sequencing, 10

whole genome sequencing and 257 target sequencing) of 338 pairs

of matched fresh frozen colorectal cancer tissue and adjacent normal

tissue samples, 45 were hypermutated (stage I: 4, II: 27, III: 13, IV: 1,

unpublished data). These results suggest that hypermutated CRCs

are resistant to tumor metastasis and may partially account for the

better survival in hypermutated patients. In addition, better survival

may also be linked to neoantigen enrichment. Recently, Germano et

al13, found that inactivation of MMR triggers neoantigen generation

and impairs tumor growth. As mentioned earlier, frequent mutation

of chromatin remodeling genes by MSI‐H in hypermutated sub-

groups play a vital role in determining consistent expression and

methylation patterns. Thus, we also want to know if the mutation of

chromatin remodeling genes will be accompanied by a better prog-

nosis. As direct mutation evidence suggests, somatic mutations in

chromatin‐regulating genes MLL1~3 and ARID1A in pancreatic cancer

patients are associated with improved survival.38 In addition, this

association may also hold true in CRC and STAD.

Taking advantage of the consistent expression and DNA methy-

lation patterns between CRC and STAD observed in this study could

lead to the use of widely applicable targeted therapies. For the first

time, in 2017, the U.S. Food and Drug Administration (FDA)

approved a cancer drug, Keytruda, for the treatment of any solid

tumor that displays a high MSI, regardless of the organ site. The up‐
regulated genes identified in this study may also be potential drug

targets that are not specific to the organ site of the tumor and are

not restricted to only neoantigens accompanied by mutation.

Recently, Lin et al39 found that adenocarcinomas and squamous cell

carcinomas reveal molecular similarities that span classic anatomic

boundaries via the comparison of their transcriptomes. This finding

further weakens the impact of organ‐driven medical decision making

in future cancer therapy.

BRAF and KRAS mutations were significantly associated with

shorter disease‐free survival (DFS) and overall survival (OS) in

patients with microsatellite‐stable tumors but not in patients with
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of chromatin remodeling gene (ARID1A, MLL1-4) status reveals that chromatin remodeling genes are responsible for the consistent methylation
pattern in hypermutated samples. C, Schematic diagram of the putative molecular mechanism underlying the consistent expression and
methylation pattern
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MSI tumors.40 This finding suggests that the mutation of many

other genes counteract the negative effect offered by BRAF and

KRAS mutations. An MSI test may be more important than single

or dual gene BRAF and KRAS detection. It is thus reasonable and

a priority to stratify patients into hypermutated and non‐hypermu-

tated subgroups but not based on organ site for better treatment

in future cancer therapy. Identification of the expression or

methylation markers that can predict clinical outcomes of hyper-

mutated patients are beneficial for adopting reasonable treatment

strategy. In addition, markers identified in this study are probably

overlooked by previous hyper/non‐hyper pool analysis. It is thus

necessary and important to identify biomarkers independently and

according to mutational subtypes such as hypermutated and non‐
hypermutated states.

ACKNOWLEDGEMENTS

This work was supported by the Fundamental Research Funds for

the Central Universities (2018FZA7012) and China Postdoctoral

Science Foundation (2016M590532) to Wangxiong Hu.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest.

ORCID

Wangxiong Hu http://orcid.org/0000-0002-2287-9242

REFERENCES

1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr,

Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546‐
1558.

2. Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu

Rev Pathol. 2015;10:25‐50.
3. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in

cancer and the search for new cancer‐associated genes. Nature.

2013;499:214‐218.
4. Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of

hypermutation in human cancer. Cell. 2017;171:1042‐1056 e10.

5. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and

significance across 12 major cancer types. Nature. 2013;502:333‐
339.

6. Cancer Genome Atlas Network. Comprehensive molecular character-

ization of human colon and rectal cancer. Nature. 2012;487:330‐337.
7. Frigola J, Sabarinathan R, Mularoni L, Muinos F, Gonzalez-Perez A,

Lopez-Bigas N. Reduced mutation rate in exons due to differential

mismatch repair. Nat Genet. 2017;49:1684‐1692.
8. Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC cytidine

deaminase mutagenesis pattern is widespread in human cancers. Nat

Genet. 2013;45:970‐976.
9. Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability

as a biomarker for PD‐1 blockade. Clin Cancer Res. 2016;22:

813‐820.
10. Le DT, Uram JN, Wang H, et al. PD‐1 blockade in tumors with mis-

match‐repair deficiency. N Engl J Med. 2015;372:2509‐2520.

11. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts

response of solid tumors to PD‐1 blockade. Science. 2017;357:409‐413.
12. Gavin PG, Colangelo LH, Fumagalli D, et al. Mutation profiling and

microsatellite instability in stage II and III colon cancer: an assess-

ment of their prognostic and oxaliplatin predictive value. Clin Cancer

Res. 2012;18:6531‐6541.
13. Germano G, Lamba S, Rospo G, et al. Inactivation of DNA repair

triggers neoantigen generation and impairs tumour growth. Nature.

2017;552:116‐120.
14. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray

expression data using empirical Bayes methods. Biostatistics.

2007;8:118‐127.
15. Wang L, Feng Z, Wang X, Zhang X. DEGseq: an R package for iden-

tifying differentially expressed genes from RNA‐seq data. Bioinfor-

matics. 2010;26:136‐138.
16. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential

expression analyses for RNA‐sequencing and microarray studies.

Nucleic Acids Res. 2015;43:e47.

17. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized

linear models via coordinate descent. J Stat Softw. 2010;33:1‐22.
18. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the

Cox Model. New York, NY: Springer; 2000.

19. Hu W, Yang Y, Li X, et al. Multi‐omics approach reveals distinct dif-

ferences in left‐ and right‐sided colon cancer. Mol Cancer Res.

2017;16:476‐485.
20. Langfelder P, Horvath S. WGCNA: an R package for weighted corre-

lation network analysis. BMC Bioinformatics. 2008;9:559.

21. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and

characterization of microsatellite instability across 18 cancer types.

Nat Med. 2016;22:1342‐1350.
22. Wilson JE, Petrucelli AS, Chen L, et al. Inflammasome‐independent

role of AIM2 in suppressing colon tumorigenesis via DNA‐PK and

Akt. Nat Med. 2015;21:906‐913.
23. Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2

in stem cell proliferation and cancer. Cell. 2015;162:45‐58.
24. Park SJ, Kim HJ, Lee JS, Cho HR, Kwon B. Reverse signaling through

the co‐stimulatory ligand, CD137L, as a critical mediator of sterile

inflammation. Mol Cells. 2012;33:533‐537.
25. Supek F, Lehner B. Differential DNA mismatch repair underlies

mutation rate variation across the human genome. Nature.

2015;521:81‐84.
26. Chen H, Xiao Q, Hu Y, et al. ANGPTL1 attenuates colorectal cancer

metastasis by up‐regulating microRNA‐138. J Exp Clin Cancer Res.

2017;36:78.

27. Hu H, Zhang H, Ge W, et al. Secreted protein acidic and rich in cys-

teines‐like 1 suppresses aggressiveness and predicts better survival

in colorectal cancers. Clin Cancer Res. 2012;18:5438‐5448.
28. Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation

via CRISPR/Cas9‐mediated trans‐epigenetic modulation. Cell.

2017;171:1495‐1507 e15.

29. Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent

mutation of ARID1A in molecular subtypes of gastric cancer. Nat

Genet. 2011;43:1219‐1223.
30. Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric

adenocarcinoma identifies recurrent somatic mutations in cell adhesion

and chromatin remodeling genes. Nat Genet. 2012;44:570‐574.
31. Mathur R, Alver BH, San Roman AK, et al. ARID1A loss impairs

enhancer‐mediated gene regulation and drives colon cancer in mice.

Nat Genet. 2017;49:296‐302.
32. Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during

stem cell differentiation and development. Nat Rev Genet.

2017;18:643‐658.
33. Bledau AS, Schmidt K, Neumann K, et al. The H3K4 methyltransferase

Setd1a is first required at the epiblast stage, whereas Setd1b becomes

essential after gastrulation. Development. 2014;141:1022‐1035.

378 | HU ET AL.

http://orcid.org/0000-0002-2287-9242
http://orcid.org/0000-0002-2287-9242
http://orcid.org/0000-0002-2287-9242


34. Li Y, Schulz VP, Deng C, et al. Setd1a and NURF mediate chromatin

dynamics and gene regulation during erythroid lineage commitment

and differentiation. Nucleic Acids Res. 2016;44:7173‐7188.
35. Park IY, Powell RT, Tripathi DN, et al. Dual chromatin and cytoskele-

tal remodeling by SETD2. Cell. 2016;166:950‐962.
36. Yuan H, Li N, Fu D, et al. Histone methyltransferase SETD2 modu-

lates alternative splicing to inhibit intestinal tumorigenesis. J Clin

Invest. 2017;127:3375‐3391.
37. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer‐the

stable evidence. Nat Rev Clin Oncol. 2010;7:153‐162.
38. Sausen M, Phallen J, Adleff V, et al. Clinical implications of genomic

alterations in the tumour and circulation of pancreatic cancer

patients. Nat Commun. 2015;6:7686.

39. Lin EW, Karakasheva TA, Lee DJ, et al. Comparative transcriptomes

of adenocarcinomas and squamous cell carcinomas reveal molecular

similarities that span classical anatomic boundaries. PLoS Genet.

2017;13:e1006938.

40. Taieb J, Zaanan A, Le Malicot K, et al. Prognostic effect of BRAF

and KRAS mutations in patients with stage III colon cancer treated

with leucovorin, fluorouracil, and oxaliplatin with or without cetux-

imab: a post hoc analysis of the PETACC‐8 trial. JAMA Oncol.

2016;14:1‐11.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Hu W, Yang Y, Ge W, Zheng S.

Deciphering molecular properties of hypermutated

gastrointestinal cancer. J Cell Mol Med. 2019;23:370–379.
https://doi.org/10.1111/jcmm.13941

HU ET AL. | 379

https://doi.org/10.1111/jcmm.13941

