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Abstract: Angiogenesis is involved in physiological and pathological processes in the body. Tumor
angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore,
there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor
of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF),
angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF
and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic
drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used
for cancer treatment, or are still in various stages of clinical development or preclinical evaluation.
This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus
on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic
drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein
90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream
signaling molecules depend on the function of HSP90. This article also briefly introduces the role of
HSP90 in angiogenesis and some HSP90 inhibitors.

Keywords: anti-tumor angiogenesis; VEGF/VEGFR; Tie/Ang; HSP inhibitors; novel drugs

1. Introduction

Tumor development is primarily dependent on the vascular supply, which is facilitated
by angiogenic activity within malignant tissues. The inhibition of angiogenesis is consid-
ered to be a promising therapeutic approach. Angiogenesis is controlled by the interaction
of certain biomolecules produced in the body. It is a process in which new blood vessels
are formed by “sprouting” from pre-existing blood vessels, and this process is involved in
the physiological and pathological processes of the body [1]. The process of angiogenesis is
complex and mainly includes the production of proteases, endothelial cell migration and
proliferation, the formation of vascular tubes, the anastomosis of newly formed tubes, the
synthesis of new basement membranes, and the incorporation of envelope and smooth
muscle cells [2,3].

The biological process of angiogenesis is thought to be important for normal phys-
iological growth, tissue regeneration and wound healing [4]. Under normal conditions,
angiogenesis occurs only in processes, such as embryonic development, the female repro-
ductive cycle, and wound repair [5]. However, abnormal angiogenesis is a key mediator
and major process of cancer development. Furthermore, tumor angiogenesis is a key factor
associated with tumor growth, progression, and metastasis [6]. Angiogenesis is required
for the development and growth of solid tumors larger than 1–2 mm3 in size [7]. Solid
tumors depend on neovascularization for continued growth [8].

Tumor angiogenesis is achieved through a series of sequential steps that further lead
to cancer development. It is caused by an imbalance between pro- and antiangiogenic
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modulators in the tumor microenvironment [6]. The process of angiogenesis is mainly
initiated by the tumor itself. When a malignant tumor grows to a certain size, it causes
the cells to become hypoxic [9]. Hypoxia is characterized by O2 tension levels below
5–10 mmHg, which is an essential initiator of tumor angiogenesis [10,11]. Hypoxia leads to
the increased expression of angiogenic molecules in hypoxic cells, including growth factors,
cytokines, bioactive lipids, and matrix-degrading enzymes, which bind to receptors on
adjacent vascular endothelial cells (ECs) to initiate new blood vessel formation [9,12].

Hypoxia-inducible factor (HIF) is highly expressed in the tumor microenvironment.
High expression of HIF induces the up-regulation of angiogenic factors, such as vascular
endothelial growth factor (VEGF), angiopoietin (Ang1 and Ang2), VEGF receptor (VEGFR),
and Tie2 receptor at the transcriptional level, thereby, promoting the formation of new
blood vessels in cancer [13,14]. After tumor neovascularization, adequate vasculature and
blood supply continue to provide oxygen and nutrients to cancer cells, leading to tumor
growth, progression, and metastasis [2,13].

Thus, inhibiting tumor angiogenesis can reduce the blood flow required for tumor
development, and tumor cell growth will cease due to the lack of nutrients and growth fac-
tors needed to support the formation of newly formed blood vessels [15]. Previous studies
have identified a number of angiogenic factors. The most widely studied modulators of
angiogenesis are VEGF and the corresponding membrane receptors, primarily VEGFR2.
These play a major role in regulating physiological and pathological angiogenesis [16]. The
first treatment that targeted tumor angiogenesis was monoclonal antibody bevacizumab,
which acts by interacting and blocking VEGF interaction with its receptor [17,18].

Another strategy to target VEGFR2 is to use small molecules, such as tyrosine kinase
inhibitors (TKIs). This strategy resulted in the first clinically approved small-molecule-like
drugs targeting tumor angiogenesis: sunitinib and sorafenib [19,20]. However, the high
expectations for these anticancer drugs were quickly shattered, and treatment resistance
complicates the use of VEGF signaling pathway inhibitors. They have shown only marginal
benefits in early clinical trials, as escape or major resistance mechanisms are acquired,
resulting in transient therapeutic benefits [18].

For example, sunitinib is widely used as a first-line treatment for metastatic renal cell
carcinoma. However, 20–30% of patients do not respond to sunitinib, and even those who
initially respond to sunitinib frequently experience disease exacerbations within a year [21].
Treatment failure can be attributed to adaptive mechanisms of the tumor microenvironment
(e.g., the induction of compensatory angiogenic pathways) [22]. In addition, the tumor
endothelium is a heterogeneous cell population with distinct functional and organ-specific
phenotypes, indicating multiple pathological features of tumor vasculature [23]. In addition
to vascular sprouting, other angiogenic processes, such as vessel co-option or vasculogenic
mimicry, may play an important role in antiangiogenic therapy resistance [22].

The missing signaling molecules can be replaced in tumors by activating alternative
pathways. For example, when VEGF/VEGFR is inhibited, angiogenesis can be maintained
by secreting alternative factors, such as platelet-derived growth factor (PDGF) [24], basic
fibroblast growth factor (bFGF) [25], and Ang2 [26], or by recruiting pro-angiogenic cells,
such as trypsin-secreting mast cells, and promoting tumor growth [27]. This will reduce
the effectiveness of single-target therapy or be ineffective. Recently, the Ang–Tie signaling
pathway emerged as an attractive vascular drug target.

The Ang–Tie pathway is required for lymphatic and vascular development in mid-
gestation and controls vascular permeability, inflammation and pathological angiogenic
responses in adult tissues [28–30]. Drugs targeting the Ang–Tie pathway could complement
current antiangiogenic strategies in the treatment of cancer [31]. In addition, the Ang–Tie
pathway has a unique role in controlling vascular stability.

Thus, modulation of this axis may be beneficial in conditions where vascular over-
growth is not a problem but vascular stabilization is critical. In addition, studies using
dual- or multi-targeted antibodies that simultaneously inhibit several angiogenic signals
have shown incremental antiangiogenic efficacy in different tumor types [32–35]. However,
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many processes and factors that contribute to ineffectiveness and resistance to angiogenesis
inhibitors remain, particularly those associated with the tumor endothelium.

We are faced with a multifaceted network of treatments in antiangiogenic therapy,
many of which still need to be thoroughly investigated. At present, the combination of anti-
tumor angiogenesis drugs and other therapies has become an important means in cancer
treatment. Increased expression of heat shock proteins (HSPs) is another important defense
mechanism activated in response to hypoxia. HSP inhibitors have potential antiangiogenic
effects in cancer therapy [36].

A variety of HSP90 inhibitors have been developed and have demonstrated convinc-
ing antitumor activity in preclinical tumor models. Results from recent studies suggested
that HSP90 inhibitors induce antiangiogenic properties by affecting the PI-3K/Akt/eNOS
signaling pathway in endothelial cells, as well as through the down-regulation of VEGFR-2
expression [37]. Blockade of HSP90 also reduces the secretion and expression of tumor-cell-
derived pro-angiogenic growth factors and cytokines, resulting in an “indirect” antiangio-
genic effect [37]. In addition, angiogenesis inhibitors combined with HSP inhibitors may
enhance the overall antiangiogenic activity [38].

This article reviews the commonly used drugs targeting VEGF/VEGFR and Ang/Tie
and the clinical studies targeting both targets simultaneously, as well as several novel
dual-target anti-tumor angiogenesis drugs. Several HSP inhibitors are also introduced. On
the one hand, problems related to the development of drug resistance may be solved. These
studies provide an important reference for the treatment of tumors and are crucial for the
best treatment outcomes of cancer patients.

2. Mechanisms of Tumor Angiogenesis

During the development of solid tumors, tumor cells proliferate rapidly and consume a
large amount of nutrients. In addition, high oxygen consumption, lack of nutrients, and the
accumulation of metabolites in cells can create a hypoxic microenvironment that is not suit-
able for tumor cell growth [39]. As oxygen is key to the growth of any cell, tumor cells that
are deprived of oxygen do not proliferate and divide [2]. HIF transcription is known to be
induced under hypoxia. First, hypoxia stabilizes HIF1α, promoting its heterodimerization
with HIF1β, and thereby transcriptionally activating many genes [13,40].

A large number of genes are transcriptionally regulated through the HIF pathway,
including genes for various physiological functions, such as cell survival, proliferation,
metabolism, inflammatory cell recruitment, and angiogenesis [41,42]. In tumor therapy,
genes related to angiogenesis are major downstream targets that have been extensively
studied. Two important angiogenic factors induced by hypoxia include vascular endothelial
growth factor-A (VEGFA) and angiopoietin-2 (Ang2) [14].

2.1. Hypoxia-Inducible Factor (HIF)

HIF is the main trigger for the growth of new blood vessels in malignant tumors, and
hypoxia is the most common mechanism of HIF activation in tumors [43]. Hypoxia due to
an imbalance between tumor cell oxygen consumption and supply is present in 50–60% of
solid tumors [44]. HIF is a heterodimer composed of an oxygen-dependent alpha subunit
(HIF-α) and an oxygen-dependent beta subunit (HIF-β). There are three isoforms of HIF-α:
HIF-1α, HIF-2α, and HIF-3α [45]. There are two isoforms of HIF-β, also known as aryl
hydrocarbon receptor nuclear translocators (ARNT), namely HIF-1β and HIF-2β [46]. The
alpha subunit is oxygen-sensitive, while the beta subunit is ubiquitously expressed [47].
Among them, HIF-1α is mainly responsible for activating transcriptional responses under
hypoxia and is the most important among these HIFs [48].

HIFs are proteins that sense and respond to hypoxia by acting as transcription factors.
An early insight into the possible mechanism of oxygen sensing in HIF was the determina-
tion that HIFα subunit stability is largely regulated by a 200 amino acid region known as
the oxygen-dependent degradation domain (ODD) [49]. Conserved proline residues on
the α subunit are hydroxylated by prolyl-4-hydroxylase (PHDs) in the presence of oxygen,
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thereby, promoting HIF-α degradation [50,51]. α subunit hydroxylation as a recognition
signal for the von Hippel-Lindau (pVHL) tumor suppressor protein, which subsequently
targets the α subunit for degradation by 26S proteasome [52,53].

However, under hypoxic conditions, PHD was unable to hydroxylate the α subunit.
This results in HIF-α protein stabilization, nuclear translocation, and dimerization with
HIF-1β to form the HIF transcription factor [40]. In the nucleus, HIFs bind to the A/GCGTG
consensus motif in the promoter region of target genes, and these sites are called hypoxia
response elements (HREs). By recruiting transcriptional coactivators, HIFs regulate the
expression of numerous genes involved in diverse processes, including angiogenesis,
metabolism, erythropoiesis, apoptosis, pH regulation, metastasis, and cell differentia-
tion [54,55]. HIF transcriptional activity is also regulated by a second oxygen-sensitive
hydroxylation event mediated by factor inhibiting HIF-1 (FIH-1) [56,57].

FIH-1 is a 2-oxoglutarate-dependent oxygenase (similar to PHD) that catalyzes the
hydroxylation of asparagine residues in the C-TAD of HIF-α, preventing interaction with
coactivators [58]. Due to specific amino acid differences between the two HIFs, HIF-1α
is more sensitive to FIH-1-mediated inhibition than HIF-2α is [59]. Hypoxia-associated
factor (HAF) is an E3 ubiquitin ligase that switches HIF-1-dependent signaling to HIF-2 by
targeting HIF-1α degradation and increasing HIF-2α transactivation [60].

Although the primary mode of HIF stabilization is through proline hydroxylation and
VHL-mediated degradation, several non-hypoxia-driven stimuli, such as growth factors,
cytokines, hormones, and various stressors also regulate HIF [47]. For example, several
growth factors and their cognate receptors, conducted through the PI3K or Ras/MAPK
pathways, can induce HIF expression [61,62]. HIFs are direct substrates of multiple pro-
tein kinases that regulate HIF stabilization, nuclear translocation, and activation [63]. In
addition, studies have also shown that ROS can directly regulate the expression of HIFs [64].

HIF-1α plays an important role in endothelial cell (EC) biology and angiogenesis. The
deletion of HIF-1α prevents EC angiogenic behavior, including proliferation, migration,
chemotaxis, and wound healing [48]. The angiogenesis of many solid tumors is related
to HIF-1α [65–67]. In addition, HIF-2α has also been shown to be involved in tumor
angiogenesis. HIF-2α deficiency reduces vascular function and tumor angiogenesis in mice
EC [68]. VEGF expression is positively regulated by HIF-2α in VHL-deficient RCC cells [69].
HIF-2 promotes hypoxia-mediated angiogenesis and breast cancer metastasis through the
induction of long noncoding RNA in breast cancer [70]. Collectively, these findings suggest
that both HIF-1α and HIF-2α contribute to tumor angiogenesis.

HIF induces the expression of numerous pro-angiogenic factors, including VEGF,
Ang1/2, VEGFR (FLT-1 and FLK-1), Tie2 receptors, PDGF-B, plasminogen activation
inhibitor-1 (PAI-1), and matrix metalloproteinases (MMP-2 and MMP-9). [71]. The HIF-1α
pathway has been shown to be a master regulator of vasculature formation by upregulating
these factors, such as VEGF [72].

2.2. VEGF and Ang

While vascular growth and maturation are complex and highly coordinated processes
requiring sequential activation of multiple factors, it is agreed that VEGF and Ang signaling
are critical steps in tumor angiogenesis [43]. HIF-1α can transcriptionally activate several
pro-angiogenic molecules by directly binding to their promoters.

2.2.1. VEGF/VEGFR

Of all these pro-angiogenic factors activated by HIF, VEGFA, a potent endothelial
mitogen, is the most prominent protein because it is highly expressed in many human
tumors [73,74]. In tumors, such as neuroblastoma, HIF-1 mediates acute hypoxia-induced
VEGF expression, whereas HIF-2 regulates VEGF expression during chronic hypoxia [75].
“VEGF” refers to both the originally identified disaccharide protein (now known as VEGFA)
and the family of VEGF-related polypeptides [76]. VEGFA is produced by most cells in
the body but is upregulated in hypoxia. In tumors, VEGF is produced by hypoxic tumor
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cells, ECs, and infiltrating myeloid cells called tumor-associated macrophages (TAMs). In
mammals, the VEGF family has five members: VEGFA, VEGFB, VEGFC, VEGFD, and
placental growth factor (PGF) [77].

VEGF family members bind to the three receptor tyrosine kinases (VEGFR1, VEGFR2,
and VEGFR3) in an overlapping manner. VEGFR1 and VEGFR2 are mainly expressed on vas-
cular ECs; however, VEGFR3 is especially expressed on lymphatic ECs. VEGFR2 has stronger
proangiogenic activity and higher tyrosine kinase activity than does VEGFR1 [78]. VEGFA
mediates in vivo angiogenic responses primarily through the activation of VEGFR2 [76].
VEGF receptors can be divided into three domains: the extracellular VEGF-binding domain,
transmembrane domain, and intracellular domain (tyrosine-activation domain) [79].

The expression of VEGFA, like all other genes, is regulated in terms of transcription,
mRNA stability, and translation. Transcriptional regulation of the VEGF gene is mediated
through the proximal region of the promoter (−88 bp upstream of transcription initiation),
which contains a high proportion of the GC domain. These regions can bind to specific
protein (Sp) family factors and AP-2 transcription factors [80].The transcription of VEGF is
by recruiting HIF to the promoter of VEGF through the phosphorylation of transcription
factor Sp1 and the HIF-1α subunit [80,81].

Transcription factor activator protein-1 (AP-1) can also alter the transcription of
VEGF [80]. VEGFA mRNA is stabilized by the stress-activated kinase p38. Translation is
ensured by an internal ribosome entry site (IRES) sequence under hypoxic conditions [82].
HIF-2 also forms heterodimers with the aryl hydrocarbon receptor nuclear translocator and
regulates VEGF expression [83]. In addition, the expression of VEGFR2 also promotes an-
giogenesis under hypoxic conditions. Hypoxia does not increase the expression of VEGFR2
through HIF-induced transcription but increases phosphocortin-like 3 (PDCL3) production
to stabilize VEGFR2 protein expression [84].

VEGF is mainly produced by cells that surround blood vessels, and it acts on en-
dothelial cells through a paracrine mechanism [85]. After VEGF-A levels reach maximal
concentration levels at the leading edge of the vascular sprout, it binds to VEGFR2 and
induces the migration of endothelial tip cells. Once VEGFR is activated, it leads to a se-
ries of downstream pathways related to tumor angiogenesis, including endothelial cell
proliferation; survival, invasion, and metastasis; cytoskeletal rearrangement; and vascular
permeability [6,86].

The transduction of downstream Raf-MEK-MAPK, P13K/AKT, and ERK1/2/FAK
signals affects endothelial cell proliferation and survival [87–89]. The migration of en-
dothelial cells is an important prerequisite for tumor angiogenesis. PI3K/Akt signaling
is responsible for the expression of other molecules required for tumor cell invasion and
metastasis, including Cdc42, Rho, and Rac proteins [76,90,91].

VEGFA can activate c-Src and Yes proteins through VEGFR and phosphorylated
adhesion factors, such as VE-cadherin and β-catenin, in the presence of TSAd to increase
vascular permeability [92]. Furthermore, activated endothelial nitric oxide synthase (eNOS)
affects the vascular permeability by releasing nitric oxide in blood vessels. VEGF can also
activate PLCγ through PI3K/Akt, thereby, activating the nuclear factor of T cells to regulate
the intracellular calcium concentration or increase eNOS production to increase vascular
permeability [93,94]. Enhanced vascular permeability will maintain an adequate nutrient
and oxygen supply, thereby, resulting in rapid tumor growth [95].

VEGFR can also activate the P38/MAPK signaling pathway through Nck and Fyn
binding, induce changes in the cytoskeleton, and promote tube formation in endothelial
cells [96] (Figure 1).

Experiments with VEGF deletion in mice and VEGF knockouts in zebrafish demon-
strated the role of the VEGF pathway in the development of the blood and lymphatic
vasculature. The genetic deletion of VEGFA or its major signaling receptor VEGFR2 results
in early embryonic lethality (around embryonic stage E9) associated with a near-complete
blockade of hematopoiesis and vascular development [97]. VEGF plays an important role
in the female reproductive cycle.
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Figure 1. VEGF signaling pathway. After the VEGF level reaches the maximal concentration level at
the leading edge of the vascular sprout, it binds to VEGFR and induces the migration of endothelial
tip cells. Once VEGFR is activated, it leads to a series of downstream pathways. The transduction of
downstream Raf-MEK-MAPK, P13K/AKT, (ERK)1/2/FAK, and other signals affects endothelial cell
proliferation and survival. PI3K/Akt signaling is responsible for the expression of other molecules
required for tumor cell invasion and metastasis, including Cdc42, Rho, and Rac proteins. VEGFA can
activate c-Src and Yes proteins through VEGFR and phosphorylated adhesion factors, such as VE-
cadherin and β-catenin, in the presence of TSAd to increase the vascular permeability. Furthermore,
activated endothelial nitric oxide synthase (eNOS) affects vascular permeability by releasing nitric
oxide in blood vessels. VEGFR can activate the P38/MAPK signaling pathway through Nck and Fyn
binding, induce changes in the cytoskeleton, and promote tube formation in endothelial cells. VEGF,
vascular endothelial growth factor; and VEGFR, vascular endothelial growth factor receptor.

The study found that melatonin (Mel) and follicle-stimulating hormone (FSH) act on
secondary follicles and antral follicles, respectively, to promote follicular angiogenesis by
increasing the expression of VEGF [98]. However, abnormal angiogenesis often has an
important relationship with VEGF, which plays a key role in tumor angiogenesis. Research
on breast cancer found that VEGF expression occurs throughout the tumor stage [99].
Most non-small cell lung cancer (NSCLC) cells overexpress VEGFA, and brain-derived
neurotrophic factor (BDNF) enhances VEGF-dependent angiogenesis [100].

2.2.2. Ang/Tie2

Hypoxia also upregulates Tie2 expression in human tumors [101]. The receptor ty-
rosine kinases (RTKs) Tie1 and Tie2 were discovered by screening endothelial cells (ECs)
for expressed tyrosine kinases [102,103]. Gene targeting studies show that the Ang–Tie2
system plays a critical role during vascular remodeling and maturation and stabilization
of the cardiovascular system [104,105]. Angiopoietins are a family of growth factors that
regulate tumor angiogenesis through Tie2 receptors and are highly expressed in growing
blood Ecs [28,106]. The Ang family includes four proteins: Ang1, Ang2, Ang3, and Ang4.
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However, the function of Ang4 (or its mouse homolog Ang3) has not been extensively
studied [28].

Ang1, Ang2, Tie1, and Tie2 are required for vascular remodeling and maturation
during development. Ang1 and Tie2 are required for cardiac development, and Ang2
and Tie1 are also required for lymphoid development after VEGF-directed signaling to
form the primary vascular plexus [107,108]. Ang1 and Ang2 have completely different
mechanisms of action. Among them, Ang2 is more likely to lead to tumor angiogenesis.
Ang2 is induced by HIF under hypoxic conditions and acts as an antagonist ligand for Tie2
in endothelial cells [109]. Ang2 mediates the capillary destabilization required to initiate
sprouting angiogenesis, blocks Tie-2 signaling, and allows VEGFA-induced cell migration
and division [82,109].

In vivo, constitutive Angl–Tie2 signaling is thought to limit angiogenesis in mature
blood vessels. When Ang1 binds to Tie2, five tyrosine residues within the intracellular ki-
nase domain of Tie2 become auto-phosphorylated. The activation of Tie2 stimulates several
signaling pathways, such as PI3K/AKT, mitogen-activated protein kinase (MAPK)/ERK
(also known as Ras/Raf/MEK/ERK), survivin, eNOS, caspase-9, and Bad. [110,111]. These
pathways are involved in reducing angiogenesis and vascular permeability, which are
beneficial to vascular stability. Following Tie2 activation, FOXO-1 is phosphorylated and
inactivated, thereby, promoting EC quiescence, survival and vascular stabilization [112]. In
addition, phosphorylation of Tie2 also prevents NF-κB signaling activation [102] (Figure 2).

Figure 2. Angiopoietin signaling pathway. When Ang1 binds to Tie2, Tie2 auto-phosphorylates.
Tie2 receptors regulate downstream signaling pathways, such as PI3K/AKT, MAPK)/ERK (also
known as Ras/Raf/MEK/ERK), Survivin, and eNOS, and inhibits Caspase-9 and Bad, among others.
These pathways are involved in reducing angiogenesis and vascular permeability, favoring vascular
stability. Following Tie2 activation, FOXO-1 is phosphorylated and inactivated, thereby, promoting
endothelial cell quiescence, survival, and vascular stability. In addition, the phosphorylation of
Tie2 also prevents NF-κB signaling activation. In activated endothelial cells, Ang2 is released from
endothelial Weibel–Palade bodies. It will antagonize Ang1–Tie2 signaling and inhibit Tie-2 phos-
phorylation, leading to vascular instability, vascular leakage, inflammation, etc., thereby promoting
angiogenesis. Under these conditions, the FOXO-1 transcription factor is activated and promotes the
transcription of Ang2 mRNA, further promoting vascular destabilization. Ang, Angiopoietin; and
WPB, Weibel–Palade bodies.
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However, once ECs are activated, Ang2 is released from endothelial Weibel–Palade
bodies (WPB). This may antagonize Ang1 and promote EC responses to exogenous cy-
tokines, such as VEGF or tumor necrosis factor (TNF)-α [113–116]. Ang2 competes
with Ang1 for binding to Tie2, inhibits Tie-2 phosphorylation, and adversely affects the
PI3K/AKT and other pathways mentioned in the previous paragraph, leading to vascular
instability, vascular leakage, and inflammation and thereby promoting angiogenesis.

It also can promote the development and metastasis of tumors by inducing the pro-
duction of endothelial cell proteases and MMP-2 [117,118]. Under these conditions, the
FOXO-1 transcription factor is activated and promotes the transcription of Ang2 mRNA,
further promoting vascular destabilization [102]. In addition, the produced Ang2 protein
will continue to be stored in the WBP, ready to be released into the extracellular matrix
upon the detection of inflammatory signals [119].

Furthermore, Ang2 is expressed prior to VEGFA in growing tumor vessels and en-
hances angiogenesis in the presence of VEGFA [120]. Ang2 mediates the capillary destabi-
lization required to initiate sprouting angiogenesis, thereby, blocking Tie2 signaling and
allowing VEGFA-induced cell migration and division [82,109]. The Ang/Tie system plays
a critical role in the pathophysiology of tumor vasculature as well as normal vasculature,
and Ang2 expression was found to be upregulated in many types of cancer [121,122].

Compared with tumors in wild-type mice, Ang2-knockout mice exhibited a more
mature phenotype with increased numbers of PCs and narrowed vessels [123]. Studies
have shown that Ang2 can also enhance tumor angiogenesis, promoting the expression
of several growth factors, including VEGFA [28]. Some studies have shown that Ang2
cooperates with VEGFA to promote tumor angiogenesis and metastasis [28,106,124].

2.3. HSP90

Another important defense mechanism activated in response to hypoxia is the in-
creased expression of HSPs. Elevated levels of HSP have been detected in many solid
tumors, including non-small cell lung cancer, esophageal cancer, and lymphoma. [125–127].
HSPs are highly conserved molecular chaperone proteins originally thought to be stress-
responsive proteins required for the survival of cells or organisms after exposure to heat
stress [128]. HSPs provide transient protection from stress as chaperones by regulating
protein folding to ensure the correct conformation and translocation [129].

Cellular stress, including hypoxia and oxidative damage, can activate HSPs [129]. At
present, a large number of studies have found that HSP90 plays an important role in tumor
angiogenesis, and HSP90 inhibitors are also used to treat tumors clinically. The P13K/AKT
pathway is essential for promoting endothelial cell survival, and HSP90 plays an important
role in the P13K/AKT angiogenesis signaling pathway [130].

A recent study showed that HSP90 is involved in VEGF-mediated signaling by in-
teracting with eNOS and subsequently releasing NO from endothelial cells [131]. HSP90
is involved in the activation of AKT and eNOS and further defined as a scaffolding role
for HSP90 in the formation of the AKT/PDK1/eNOS complex [37]. In addition, blocking
HSP90 also led to the degradation of AKT, c-Raf-1, and ERK protein kinases, which are
important components of angiogenic signaling [37].

The VEGF/VEGFR system appears to be a direct target of HSP90 inhibitors [132,133].
Pharmacological inhibition of HSP90 stimulates VEGFR2 degradation in primary endothe-
lial cells and blocks VEGF-A-stimulated intracellular signaling through VEGFR2 [134]. It
was mentioned above that HSP90 is involved in the activation of AKT and eNOS. Studies
have found that the binding of HSP90 to eNOS and the activation of the PI3K/AKT path-
way promotes Ang-1-induced phosphorylation of eNOS, production of NO, and eventual
angiogenesis [135].

3. Drugs for the Treatment of Tumor Angiogenesis

At present, there are many drugs and methods for antiangiogenesis, and here we
discuss several new drugs and clinical programs (Table 1).
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Table 1. Antiangiogenesis drugs.

Drug Target Disease/Model Phases of Clinical
Trials and Approval References

Bevacizumab VEGFA
renal cell carcinoma; colorectal

cancer; Glioblastoma; non-small
cell lung cancer

2004, approved [136,137]

Axitinib VEGFR1, 2, 3 renal cell carcinoma 2012, approved [138,139]

Sorafenib VEGF2, 3; PDGFR hepatocellular carcinoma; renal
cell carcinoma 2005, approved [140–142]

Sunitinib VEGFR1, 2, 3; PDGFR renal cell carcinoma;
gastrointestinal stromal tumor 2006, approved [143,144]

Aflibercept VEGFA, B; PLGF colorectal cancer 2012, approved [145,146]

Trebananib (AMG 386) Ang2
fallopian tube cancer; breast

cancer; gastroesophageal cancer;
renal cell carcinoma

Phase II; completed [147–149]

CVX 060 Ang2 glioblastoma Phase II; withdrawn
prior to enrolment [150–152]

Nesvacumab (REGN
910) Ang1, 2 advanced-stage

solid tumors Phase I, completed [153,154]

CVX-241 VEGFA and Ang2
breast cancer xenograft model;
skin cancer xenograft model;
advanced stage solid tumors

Phase II; terminated
owing to poor

tolerability
[150,152]

Vanucizumab VEGFA and Ang2
multiple orthotopic;

subcutaneous xenograft models;
Glioblastoma

Phase II; completed [155,156]

Faricimab VEGFA and Ang2 macular edema; macular
degeneration

not used for cancer
treatment [157–159]

BI836880 VEGFA and Ang2 brain metastases Phase I, completed [160–162]

Double antiangiogenic
protein (DAAP) VEGFA and Ang2 colon cancer; spontaneous breast

tumor models preclinical stage [163,164]

Tanespimycin
(17-AAG) HSP90 prostate cancer Phase III; completed [165,166]

CNF2024 HSP90 Hodgkin’s lymphoma Phase I, completed [167,168]

SNX-5422 HSP90 hematologic tumors Phase I, completed [169,170]

AT-533 HSP90 breast cancer preclinical stage [171,172]

Note: VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; PDGF,
platelet-derived growth factor receptor; Ang, angiopoietin; and HSP, heat shock protein.

3.1. Drugs Targeting VEGF/VEGFR

VEGF/VEGFR has been the main target of antiangiogenic drugs in cancer therapy.
At present, many anti-tumor angiogenesis drugs targeting VEGF/VEGFR targets have
appeared in the clinic, including bevacizumab, axitinib, sorafenib, sunitinib, and afebecept,
for the treatment of various cancer types [173,174].

3.1.1. Bevacizumab

Bevacizumab was the first antiangiogenic drug approved for clinical use. It is a human-
ized monoclonal antibody that targets all VEGFA isoforms to prevent angiogenic processes
within tumors [6]. It has been shown to have therapeutic efficacy in a variety of malig-
nancies, including colorectal cancer, glioblastoma, non-squamous small-cell lung cancer,
cervical cancer, ovarian cancer, and metastatic breast cancer [6,136,137]. In addition, post-
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treatment outcomes have been shown to lead to relapse due to invasion and drug resistance,
necessitating the need for combination therapy to consolidate and strengthen [137].

3.1.2. Axitinib

Axitinib is a selective inhibitor of VEGFR1, VEGFR2, and VEGFR3 and a weaker
inhibitor of platelet-derived growth factor receptor (PDGFR) and KIT [138]. In preclinical
studies, axitinib showed inhibitory activity against VEGF-mediated endothelial cell survival
and demonstrated potent antitumor activity against tumors [139]. However, the activity
of axitinib is limited to a small number of tumors, including renal cell carcinoma and
radioactive iodine-refractory thyroid cancer [138].

3.1.3. Sorafenib

Sorafenib inhibits tumor growth and angiogenesis by targeting the RAF/MEK/ERK
pathway and receptor tyrosine kinases. For the treatment of unresectable hepatocellular
carcinoma and advanced renal cell carcinoma [140]. Sorafenib has been an effective first-line
therapy in advanced hepatocellular carcinoma [141]. Adverse events identified in patients
given sorafenib mainly included gastrointestinal, physical, and skin disorders. In severe
cases, sorafenib can cause high blood pressure and abdominal pain [142].

3.1.4. Sunitinib

Sunitinib is a small-molecule multiple tyrosine kinase inhibitor targeting VEGFR,
PDGFR, stem cell factor receptor, colony stimulating factor 1 receptor, FMS-like tyrosine
kinase receptor, and neurotrophic factor receptor [143,175]. The parallel inhibition of these
receptors reduces tumor angiogenesis, thus, leading to cancer cell apoptosis. Currently,
it has been used to treat renal cell carcinoma and gastrointestinal stromal tumors [144].
Sunitinib-related side effects are often associated with pulmonary toxicity, causing patients
to have difficulty breathing and to cough [176].

3.1.5. Aflibercept

Aflibercept is a soluble recombinant fusion protein consisting of the extracellular
domains of VEGFR1 and VEGR2 fused to the Fc portion of human immunoglobulin G1
(IgG1) that neutralizes VEGFA, VEGFB, and PGF [177]. It was approved by the FDA in
2012 for the treatment of metastatic CRC. Aflibercept exhibits higher tumor suppressor
activity compared with bevacizumab in patient-derived xenograft (PDX) models [145].
However, there are a number of limitations to treatment with VEGF inhibitors. First, VEGF
inhibitors can produce side effects, including hypertension, atherosclerosis, bleeding, and
proteinuria [6,137]. Second, VEGF inhibition leads to the upregulation of various other
pro-angiogenic factors, such as PDGF, angiopoietin, and FGF, leading to the failure of
antiangiogenic therapy [178]. For example, in mice treated with sunitinib, accelerated
tumor metastasis and decreased overall survival were found [179]. Another study in
glioblastoma multiforme found that bevacizumab treatment resulted in more aggressive
tumor growth, possibly due to mechanisms such as the MET pathway activated by VEGF
inhibition [180].

Third, VEGF inhibitors not only target tumor cells but also affect normal capillaries to
a certain extent, causing their regression [181,182]. Fourth, vascular normalization may be
short-lived [183] and may depend on the tumor and the dose of anti-VEGF drug used [184].
This may be because tumors evade anti-VEGF therapy through the upregulation of alterna-
tive angiogenic pathways, such as Ang2–Tie2 signaling. In addition, the amplification of
pro-angiogenic genes, the secretion of various pro-angiogenic factors, and the recruitment
of pro-angiogenic bone marrow-derived cells also contribute to the occurrence of antiangio-
genic drug resistance of tumor cells [178]. Therefore, new antiangiogenic strategies must
be developed to overcome the side effects and resistance of these drugs and improve the
efficiency of treatment by targeting multiple cancer-related angiogenic mechanisms.
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3.2. Drugs Targeting Ang/Tie2

At present, more safe and effective anti-tumor angiogenesis pathways and targets
have been explored. Among many such targets, the Ang–Tie2 system is considered a
successful surrogate for VEGF [28]. Ang1 and Ang2 are involved in angiogenesis, and
Ang2 in particular may prove effective in treating tumors.

3.2.1. Trebananib (AMG 386)

Trebananib (AMG 386) is a first-in-class peptide antibody that inhibits the interaction
of angiopoietins 1 and 2 with their receptor Tie2. Trebananib consists of a biologically
active peptide grafted onto the Fc region of IgG [185]. Improved progression-free survival
(PFS) in combination with paclitaxel in patients with recurrent ovarian cancer, undoubtedly
enhances the ability to treat this difficult-to-treat disease [147]. In addition, the treatment of
fallopian tube cancer, peritoneal cancer, breast cancer, gastroesophageal cancer, and renal
cell cancer have also developed to the clinical trial stage [148,186,187].

However, subsequent studies have found disappointing results from clinical studies
targeting Ang1 and Ang2 using the bispecific peptibody trebananib. The results of the phase
II study of adding trebananib to chemotherapy suggest that the vascular normalizing effect
of an Ang1–Ang2 blockade is often insufficient to improve patient outcomes [149,186,187].
One possible reason for the clinical failure of a dual Ang1–Ang2 blockade is that inhibition
of Ang1, the agonistic ligand of Tie2, may impair the vascular normalization benefit
conferred by blocking the antagonistic Tie2 ligand Ang2 [188]. In addition, the study found
that dual inhibition of Ang1 and Ang2 can lead to peripheral edema [189].

3.2.2. CVX 060

CVX 060 is a monoclonal antibody that treats solid tumors by inhibiting Ang2 [150]. In
preclinical studies, CVX 060 was evaluated for activity in the colon cancer cell line Colo-205,
and tumor growth was significantly reduced by CVX 060 monotherapy [151]. Combination
therapy of CVX 060 with VEGF inhibitors, such as axitinib or sunitinib, has made progress
in metastatic renal cell carcinoma (RCC) [152].

3.2.3. Nesvacumab (REGN 910)

Nesvacumab (REGN910) is a fully human IgG1 monoclonal antibody that specifically
binds and inactivates the Tie2 receptor ligand Ang2 with high affinity but has not been
shown to bind Ang1 [153]. REGN 910 was evaluated for its efficacy in solid tumors in a
phase I study of 47 patients, none of which showed dose-limiting toxicity (DLT), and the
drug showed an acceptable safety profile [153]. In tumor xenograft models, Nesvacumab
significantly inhibited the growth of several tumor types, including PC3 (prostate), Colo205
(colorectal), and A431 (epidermoid carcinoma), in a dose-dependent manner [154].

3.3. Combination of Drugs Targeting VEGF/VEGFR and Ang/Tie2

Substantial evidence suggests that most tumors in human patients and experimen-
tal animal models have high expression and activation levels of VEGF-A/VEGFR2 and
Ang/Tie2 and that these systems interact synergistically on tumor angiogenesis and metas-
tasis [28,106,124,190]. Activation of the Ang2–Tie2 axis may serve as an escape mechanism
for anti-VEGF therapy [191]. Research found that circulating levels of Ang2 transiently de-
creased during the normalization window, recovered, or were even upregulated in mouse
glioma tumor cells with progression following anti-VEGF treatment [192].

Furthermore, Ang2 overexpression in mouse glioma tumor cells inhibited the ben-
eficial effects of anti-VEGFR2 therapy on tumor vessel normalization, brain edema, and
animal survival by increasing vascular permeability [191]. Inhibition of Ang2 reduces
tumor vascular sprouting, whereas anti-VEGF antibody induces vascular regression [193].
The effects of blocking Ang2 and VEGF appear to be at least partially complementary.
Furthermore, the combination of Ang2 inhibition with VEGF drugs showed significantly
enhanced antitumor effects compared to monotherapy [194,195]. Currently, multiple clin-
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ical trials are underway to investigate the dual inhibitory effects of VEGF and ANG2 in
cancer patients.

3.3.1. Nesvacumab (REGN910) plus Aflibercept

Nesvacumab is a selective human Ang2 MAb that potently blocks Ang2 signaling
through the Tie2 receptor. Aflibercept is a recombinant human fusion protein and a decoy
receptor for VEGFA, VEGFB, and PGF. In a mouse xenograft model, the combination
significantly inhibited tumor growth and angiogenesis compared to either drug alone.
Proteinuria was found to be dose-related; however, this symptom subsided with dose
adjustment. The coadministration of two drugs is generally well tolerated in patients with
advanced cancer [196].

In Colo205 and MMT models, the combination of nesvacumab and afibercept (VEGF
Trap) was also found to significantly outperform the single agent in inhibiting tumor
growth and promoted significant regression of Colo205 tumors. Consistent with this
combination’s potent effect on tumor growth, nesvacumab plus afibecept also reduced
Colo205 tumor vascularity and tumor perfusion more significantly than the single agent.
These results suggest that nesvacumab is a promising candidate for selectively inhibiting
tumor angiogenesis, either as a single agent or in combination with anti-VEGF therapy,
even in tumor models (Colo205) that are very sensitive to anti-VEGF therapy [154].

3.3.2. Trebananib plus Bevacizumab

Although clinical studies targeting both Ang1 and Ang2 with trebananib alone are
not entirely satisfactory. However, tumor xenograft studies with trebananib showed
that dual inhibition of Ang1 and Ang2 in the presence of a concurrent VEGF blockade
was significantly more effective than inhibition of either target alone [148,197,198]. In a
phase I/II study in glioblastoma, the PFS at 6 months after completion of the trebananib
and bevacizumab combination was 24% compared to 0% with trebananib alone [199]
and was 23% PFS after combination therapy in a phase II study in adult glioblastoma,
gliosarcoma, and oligodendroglioma [199]. However, in a phase 2 study of HER2-negative
locally recurrent or metastatic breast cancer, the addition of trebananib to paclitaxel and
bevacizumab did not significantly prolong the estimated PFS [148].

3.3.3. Trebananib plus Sorafenib

Interim results from a phase 1b study showed an acceptable toxicity profile and
possible antitumor activity in patients with metastatic renal cell carcinoma treated with
sorafenib or sunitinib plus trebananib [200]. The tolerability and antitumor activity of
trebananib plus sorafenib in previously untreated patients with clear-cell metastatic renal
cell carcinoma was evaluated in another phase 2 study. In these patients, trebananib plus
sorafenib was tolerable but did not significantly improve the PFS compared with placebo
plus sorafenib [187]. A phase II study in patients with advanced hepatocellular carcinoma
also showed no significant improvement in PFS rates at 4 months with the two-drug
combination compared with sorafenib alone [201].

3.4. Drugs Targeting Both VEGF/VEGFR and Ang/Tie2

Currently, dual-target inhibitors targeting both VEGFA/VEGFR2 and Ang/Tie2 have
been studied and developed. In addition to the pharmacoeconomic advantages and conve-
nience, bispecific-targeted drugs have other advantages over the therapeutic application of
monospecific-targeted drugs or their combinations. Systemic toxicity can be reduced by
targeting disease sites and modulating internalization properties.

Additionally, effector cells can be recruited, and synergistic effects are seen when
targeting cell surface receptors [202]. The use of bispecific antibodies also facilitates tar-
geting several pathways simultaneously to avoid escape and resistance mechanisms [203].
Therefore, here, we will focus on this type of drug. However, these dual-target inhibitors
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are only in the preclinical test stage, and no corresponding drugs have been developed.
This will be the direction of scientists’ efforts in the future.

3.4.1. CVX-241

CVX-241 is a first-in-class bispecific antibody developed in 2010. The CVX-241 diabody
is produced by adding two short peptides that inhibit VEGF or ANG2 to a branching linker,
which is then linked to the antibody. It utilizes a technology called bispecific CovX anti-
bodies, a multifunctional technology based on scaffolded antibodies and pharmacophore
peptide heterodimers that enables rapid generation and chemical optimization of bispecific
antibodies [150]. To demonstrate the specificity of CVX-241, direct binding ELISA was used
to examine the binding of CVX-241 to the VEGF family and the angiopoietin family.

CVX-241 selectively binds human VEGFA and Ang2 but not human VEGFB, VEGFC,
VEGFD, Ang1, Ang4, or Ang3 [150]. Pharmacokinetic evaluations in mice, rats, and mon-
keys showed that CVX-241 confers an antibody-like half-life to the peptide in animals,
opening up the possibility of once-weekly dosing in humans [150]. Bispecific CVX-241 in-
hibited VEGF-VEGFR2/Ang2–Tie2 interactions compared to monospecific CovX antibodies
and further demonstrated efficacy in colon adenocarcinoma xenograft models [150,204].

In addition, the antitumor efficacy of CVX-241 was also evaluated in the MDA-MB-435
breast cancer xenograft model and the A431 skin cancer xenograft model [150]. However,
during the phase I clinical trial, it was terminated early due to lack of pharmacological
effects. A study found that, in the LM2-4 breast cancer model, adjuvant CVX-241 to
sunitinib improved the overall survival in mice [152]. At the same time, it also reminds
us that CVX-241 can be used as an adjuvant to continue clinical experimental research in
the future.

3.4.2. Vanucizumab

Vanucizumab (RO5520985, RG7221), a novel bevacizumab-based bispecific human
IgG1 antibody, acts as a dual-targeted inhibitor of two key angiogenic factors, VEGF-A
and Ang-2 [205]. First studied in 2011, through a new method of producing heterobivalent
bispecific human IgG1 antibodies (CrossMabs), bispecific antibodies with minimal differ-
ences from natural antibodies were developed [203]. The antibody displays a classical IgG
structure and exhibits favorable IgG-like properties in terms of pharmacokinetics, diffusion,
tumor penetration, production, and stability [203]. In 2012, vanucizumab became one of
the first human heterodimeric bispecific IgG antibodies to enter clinical trials in cancer
patients [206].

Studies in mouse models of Colo205 tumors (an established model of anti-Ang-2 ther-
apy) and advanced KPL-4 tumors found that vanucizumab treatment reduced the tumor
vascular density, stabilized vascular architecture, eliminated hypoxia, and reduced the
amount of metastatic spread of leaky vessels [205]. Evaluating the safety of vanucizumab,
Ang-2-VEGF-A inhibition does not exacerbate the adverse effects of anti-VEGF-A therapy
on healthy blood vessels [205]. In addition, Ang-2-VEGF-A dual targeting was found to
have better therapeutic effects on larger tumors compared with monotherapy [205]. This
may be related to the fact that larger tumors contain different blood vessel types.

Different types of blood vessels have different degrees of sensitivity to anti-VEGFA
treatment [207]. In athymic nude mice bearing subcutaneous rectal cancer xenograft tumors,
the efficacy of vanucizumab co-targeting VEGF and Ang-2 in combination with chemother-
apy in a chemoresistant colorectal cancer model was evaluated. The vanucizumab-containing
regimen demonstrated clear advantages over clinical standard anti-VEGF/chemotherapy
regimens [208]. Furthermore, the potential for direct equimolar and pharmacoeconomic
dosing regimens achieved by vanucizumab was compared to the combination of monospe-
cific antibodies [205].

In 2018, the first human phase I study was conducted in adult patients with advanced
solid tumors [155]. Acceptable safety and tolerability was found in advanced adult cancer
patients consistent with bevacizumab and Ang/Tie2 axis-selective inhibitors [155]. In
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preclinical studies, vanucizumab was shown to have significant antitumor, antiangiogenic,
and antimetastatic effects [205]. In a clinical analysis of patients with advanced solid tumors,
such as colorectal cancer, non-squamous non-small cell lung cancer, breast cancer, gastric
cancer, pancreatic cancer, and melanoma, treated with vanucizumab, soluble markers of
angiogenesis were affected by vanucizumab administration, infusion post-reduction in
circulating levels of free (unbound bioactive) VEGF-A.

In addition, Ang-2 confirmed the mechanism of action of vanucizumab and illustrates
the potent effect of vanucizumab against tumor vasculature [156]. However, a study of
metastatic colorectal cancer found that, compared with bevacizumab, neither PFS nor the
overall response rate (ORR) improved with vanucizumab in patients treated with modified
(m) FOLFOX-6 folinic acid (leucovorin) combination therapy [192]. The failure to meet
the primary endpoint of this clinical trial may have been due to the use of high doses
of vanucizumab.

Some previous studies have found that the dose of anti-VEGF drugs is important and
that high doses of anti-VEGF drugs can lead to the increased deposition of extracellular
matrix as well as to immunosuppression [209–211]. In contrast, the use of lower doses of
antiangiogenic agents (e.g., as low as one-quarter of the doses that induced antiangiogenic
effects in animal studies) has the potential to induce the long-term normalization of blood
vessels [183,212]. Thus, using lower doses of vanucizumab may provide better treatment
over a long period of time. The efficacy and safety profile of vanucizumab suggest that it is
a promising antitumor, antiangiogenic, and antimetastatic agent. However, there are few
studies on vanucizumab, and these are only preliminary at present. Further clinical studies
are needed in the future.

3.4.3. Faricimab

Faricimab (RO6867461, RG7716) is a VEGFA and Ang2 bispecific antibody, mainly
used for the treatment of wet or neovascular age-related macular degeneration (AMD)
and diabetic macular edema (DME) and other ocular diseases [157,158,213]. It has been
accepted by the Food and Drug Administration (FDA) and approved for marketing in
January this year. The safety and efficacy of faricimab were compared to ranibizumab in a
study in patients with treated macular edema. This study concludes that the dual inhibition
of angiogenic factors proved more effective than single inhibition of factors in macular
edema [158]. Faricimab was evaluated in a phase II study in patients with age-related
macular edema. A total of 65% of patients treated with fariximab showed no symptoms of
the disease, and no new or unexpected toxicities were observed [159]. However, regarding
whether it helps to relieve tumor angiogenesis and thus has an anti-tumor effect, there is
no relevant research. This requires further research.

3.4.4. BI836880

BI836880 is a novel humanized bifunctional nanobody (engineered antibody fragment
of variable antibody domain) developed by Boehringer Ingelheim, whose domain can bind
to VEGF and Ang-2 in a manner similar to Faricimab, and has an Albumin-binding domain
that prolongs the half-life and shows preclinical activity in cancer models [160]. The first
human Phase I clinical trial was conducted in 2018, and early signs of antitumor activity
were observed [160]. Later, BI836880 combined with PD-1 inhibitor Ezabenlimab (BI754091)
was explored for the treatment of advanced/metastatic solid tumors. The combination has
a manageable safety profile, and preliminary anti-tumor activity was observed [161].

Brain metastases (BM) are a growing challenge in oncology, and nanobody BI836880
extended animal survival and reduced BM formation; however, extracranial metastases
were not reduced [162]. The study also supports the idea that antiangiogenic compounds
may be primarily effective in the brain because BM, especially in lung adenocarcinoma,
shows a particularly stronger angiogenic response at this site [162,214,215]. BI836880 is
predicted to make good progress in tumor therapy.
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3.4.5. Double Antiangiogenic Protein (DAAP)

Dual antiangiogenesis protein (DAAP) is a chimeric decoy receptor that binds to
both VEGFA and angiopoietin and blocks their actions [163]. DAAP is a highly potent
molecule for reversing tumor angiogenesis and metastasis in implanted and spontaneous
solid tumors. Compared to VEGF-Trap or Tie2-Fc, which block VEGFA or Angiopoietin
alone, DAAP appears to be well distributed in the tumor environment and blocks VEGFA
and Ang2 in a synergistic manner [163] with more anti-tumor growth, antiangiogenic, and
anti-metastatic effects in colon cancer and spontaneous breast tumor models.

In addition, it has a longer half-life than VEGF-Trap and Tie2-Fc and may be more
cost-effective than dual anticancer agents [163]. It is also effective in reducing ascites
formation and vascular leakage in ovarian cancer models [163]. Angiogenesis plays a key
role in synovial inflammation and joint destruction in rheumatoid arthritis (RA). DAAP
was also found to be effective in preventing inflammation and bone destruction and was
therapeutically effective in mice alone or in combination with TNF-alpha inhibitors [164].
However, further preclinical studies are still lacking.

4. Combinations of HSP90 Inhibitors with Other Antiangiogenic Drugs

Historically, the maximum tolerated dose (MTD) has been used for the clinical develop-
ment of drugs targeting the VEGF pathway [212,216] with high-dose, prolonged anti-VEGF
therapy associated with lower levels of tumor perfusion and increased hypoxia [183]. Block-
ing the VEGF pathway by adding drugs targeting the ANG2–Tie2 pathway appears to
prolong the window of vascular normalization [33,217].

Over time, however, tumors can become hypoxic again. Therefore, new methods
need to be found to solve this problem. Many HSP90 inhibitors have been developed.
Tanespimycin (17-AAG), a first-in-class HSP90 inhibitor, has entered Phase III clinical
trials [218]. Tanespimycin inhibits the binding of HSP90 to HIF-1α and increases the
binding of activated C kinase-1 (RACK1) receptor, which recruits elongin C and its E3
ligase complex to HIF-1α, resulting in ubiquitin–proteasome pathway degradation [219].
Tanespimycin can directly inhibit eNOS mRNA transcription in an in vitro human umbilical
vein endothelial cell (HUVEC) model of angiogenesis; however, the mechanism remains
unclear [220].

A clinical study found that tanespimycin causes tumor regression in patients with HER-
2-positive metastatic breast cancer [165]. However, its hepatotoxicity, low solubility, and
limited bioavailability make its use difficult in clinical practice [221]. Tanespimycin failed
clinical studies in advanced prostate cancer and clear cell renal cell carcinoma [222,223].
The discordance between Hsp90-targeted efficacy in preclinical models and less favorable
clinical outcomes may be due to a number of pharmacological factors. Tanespimycin
is a substrate of the multidrug resistance (MDR) transporter P-glycoprotein and related
multi-drug resistant associate protein (MRP) efflux pumps [224].

Cellular resistance acquired by this mechanism has been observed in cell cultures [166].
Many improved formulations and chemical derivatives have subsequently emerged based
on Tanespimycin, including DMSO-free formulations, KOS-953, 17AAG (CNF-1010) an oil-
in-water nanoemulsion, a reduced form of 17AAG (IPI-504), and transgenic derivatives, such
as 17-dimethylaminoethylamino-17-demethoxygdamycin (17DMAG), etc. [165,167,225]. Sev-
eral derivatives showed higher potency and lower toxicity compared to 17-AAG. Currently,
there are no FDA-approved Hsp90 inhibitors on the market.

Subsequently, based on different chemical scaffolds, many novel synthetic HSP90
inhibitors have been developed. CNF2024 is a purine scaffold HSP90 inhibitor. It binds to
the ATP-binding pocket of HSP90, leading to HSP90 chaperone dysfunction, which induces
the degradation of client proteins and tumor growth inhibition [168]. A phase I dose-
escalation study of orally administered CNF2024 was completed in patients with relapsed
B-cell chronic lymphocytic leukemia (CLL), advanced solid tumors, or lymphoma [167].

SNX-5422 is a 6,7-indazol-4-one scaffold-based inhibitor [170]. SNX-5422 is a water-
soluble, orally bioavailable prodrug of SNX-2112 that selectively binds to the ATP pocket [226].
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SNX-2112 abrogates signaling through AKT and ERK, potently inhibits growth, angiogene-
sis and osteoclastogenesis in preclinical models of multiple myeloma and other hematolog-
ical tumors [227]. In a Phase I study, the MTD and safety of SNX-5422 were evaluated in
patients with advanced solid tumors [169].

AT-533 is a novel potent Hsp90 inhibitor. It can competitively bind to the ATP-
binding pocket of Hsp90 and significantly inhibit Hsp90 activity, with higher solubility and
pharmacological properties than 17-AAG [172]. The study found that AT-533 inhibited the
viability in vitro and in vivo, tube formation, cell migration, invasion, and angiogenesis
of HUVECs and was more potent than the Hsp90 inhibitor 17-AAG [171]. In studies
conducted on breast cancer, AT-533 significantly inhibited the viability of breast cancer cells
in vitro and the growth of breast cancer xenografts in vivo.

It suppressed the expression levels of HIF-1α and VEGF in breast cancer cells in vitro
and in vivo, and induced the expression of apoptosis-related proteins in breast cancer
xenografts. The findings suggest that the Hsp90 inhibitor AT-533 inhibits tumor angiogene-
sis by inhibiting breast cancer growth and blocking HIF-1α/VEGF/VEGFR-2-mediated
signaling, thereby, triggering an antitumor response in breast cancer [171]. In addition, the
study found that AT-533 attenuated herpes simplex virus (HSV)-1-induced inflammation
and inhibited keratitis caused by HSV [172,228]. Studies have found that targeted therapy
can lead to resistance to anti-VEGF drugs, while still remaining highly sensitive to HSP90
inhibition [38].

Furthermore, it simultaneously targets multiple proangiogenic regulators, potentially
impairing tumor cell signaling [229]. Since HSP90 antagonists have potent antiangiogenic
properties, the combined use of antiangiogenic drugs and HSP90 inhibitors may prove
to be a valuable strategy for overcoming drug resistance [230]. However, this combined
approach needs to be validated in further studies.

5. Conclusions

Angiogenesis plays an important role in tumor progression. The mechanism of an-
giogenesis is tightly regulated by highly specific angiogenic stimulators and inhibitors, as
imbalances in the angiogenesis process can lead to severe pathological conditions. Common
pro-angiogenic factors include VEGF, FGF, PDGF, Ang, and HIF. Activation of the signaling
pathways of VEGF and ANG is considered to be a critical step in tumor angiogenesis. The
effective inhibition of tumor angiogenesis may prevent tumor progression but may not
eradicate tumors when single-mechanism antiangiogenic agents are used as stand-alone
therapy. VEGF/VEGFR has been the main target of antiangiogenic drugs in cancer therapy.

Antineoplastic drugs, such as bevacizumab, axitinib, sorafenib, sunitinib, and afebe-
ceptin, have been developed to treat various cancer types. However, these drugs have side
effects and resistance. Scientists therefore need to overcome these by targeting multiple
angiogenesis-related mechanisms. Ang/Tie-targeted inhibitors, including trebananib, CVX
060, and nesvacumab, are considered to be successful alternatives to VEGF. VEGF/VEGFR2
and Ang/Tie2 have demonstrated synergistic effects on tumor angiogenesis and metastasis.
Numerous clinical studies have shown that the combination of Ang2 inhibition with VEGF
drugs has enhanced antitumor effects.

At present, dual-target inhibitors targeting VEGFA/VEGFR2 and Ang/Tie2 have been
researched and developed, including CVX-241, vanucizumab, faricimab, BI836880, and
DAAP. These drugs have many advantages over the therapeutic application of monospecific
targeted drugs or their combinations: (1) economic advantages and convenience, (2) less
systemic toxicity, (3) synergistic effects are seen when targeting cell surface receptors,
and (4) the simultaneous targeting of multiple pathways to avoid escape and resistance
mechanisms. However, these dual-target inhibitors are still in preclinical or clinical trials.

HSP90 provides an attractive target for cancer therapy. Inhibition of HSP90 function
results in the simultaneous disruption of many signaling pathways that are critical for
both tumor progression and tumor angiogenesis. In addition, the VEGFR system and its
downstream signaling molecules and survival factors are highly dependent on the function
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of HSP90. The addition of HSP90 inhibitors to conventional antiangiogenic therapy may be
a valuable approach to overcome treatment resistance. However, continued preclinical and
clinical studies are required.
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