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A B S T R A C T   

Purpose: To assess the impact of lung segmentation accuracy in an automatic pipeline for quantitative analysis of 
CT images. 
Methods: Four different platforms for automatic lung segmentation based on convolutional neural network 
(CNN), region-growing technique and atlas-based algorithm were considered. The platforms were tested using CT 
images of 55 COVID-19 patients with severe lung impairment. Four radiologists assessed the segmentations using 
a 5-point qualitative score (QS). For each CT series, a manually revised reference segmentation (RS) was ob
tained. Histogram-based quantitative metrics (QM) were calculated from CT histogram using lung segmenta
tionsfrom all platforms and RS. Dice index (DI) and differences of QMs (ΔQMs) were calculated between RS and 
other segmentations. 
Results: Highest QS and lower ΔQMs values were associated to the CNN algorithm. However, only 45% CNN 
segmentations were judged to need no or only minimal corrections, and in only 17 cases (31%), automatic 
segmentations provided RS without manual corrections. Median values of the DI for the four algorithms ranged 
from 0.993 to 0.904. Significant differences for all QMs calculated between automatic segmentations and RS 
were found both when data were pooled together and stratified according to QS, indicating a relationship be
tween qualitative and quantitative measurements. The most unstable QM was the histogram 90th percentile, 
with median ΔQMs values ranging from 10HU and 158HU between different algorithms. 
Conclusions: None of tested algorithms provided fully reliable segmentation. Segmentation accuracy impacts 
differently on different quantitative metrics, and each of them should be individually evaluated according to the 
purpose of subsequent analyses.   

1. Introduction 

In March 2020 the World Health Organization defined SARS-CoV-2 
disease (COVID-19) as a pandemic [1]. Since then, it has spread 
throughout the world causing more than 89 million global cases and 
nearly 1.9 million deaths [2]. COVID-19 is an infectious disease char
acterized by a broad spectrum of non-specific clinical manifestations, as 
fever, cough, dyspnoea and fatigue [3] which can cause from very mild 

to severe illness, including Acute Respiratory Distress Syndrome (ARDS) 
[4]. Although respecting the Berlin definition of ARDS [5] there is 
growing evidence that COVID-19 ARDS has distinctive pathophysio
logical features responsible for the heterogeneous presentations and 
responses of the patients [6–8]. 

Computed tomography (CT) plays a key role in the clinical classifi
cation and management of COVID-19 patients [9,10]. Starting from the 
experience acquired on ARDS [11–13], = numerous studies have 
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focused on the quantitative analysis of the CT images (QCT) for the 
extraction, analysis and interpretation of quantitative data about 
COVID-19. Lung quantitative CT analysis includes threshold measure
ments that count the number of voxels above or below a specific 
attenuation value [14,15] features based on the intensity histogram 
[16,17] and texture metrics that consider the spatial relationship be
tween voxels [18,19] up to the application of complex AI algorithms to 
create predictive models [20–22]. Most of the research works used a 
partition of the lung based on threshold measures to quantify the well- 
aerated and the compromised pulmonary volumes as predictors of the 
disease severity and its complications, such as the need for oxygenation 
support or ICU admission or the risk of death [14,15,19]. 

The first step required for the QCT is volume segmentation, which is 
the identification and delineation of the region of interest, usually 
coinciding with the entire lung volume in the case of pneumonia studies 
[23]. Several software from commercial and research sources may be 
exploited for this task, as reported in the Internet Analysis Tools Registry 
[24]. Automatic algorithms are preferable to minimize intra- and inter- 
operator variability and reduce the time dedicated to the contouring 
process, thus increasing the number of patients analysed [25]. Espe
cially, the performance of deep learning-based or atlas-based algorithms 
continues to improve, so that they are expected to swiftly replace the 
other methods and become the standard [26–28]. However, when 
dealing with routine data, automatic segmentation still relies on human 
inspection and manual refinements because of the high diversity of 
physiological and pathological phenotypes and image data [29]. 

The lung segmentation task provides a clear example of this issue. 
Healthy lungs are a low-density high-contrast region where automatic 
segmentation algorithms work well [30]. Conversely, the presence of 
abnormalities, like pleural effusion or parenchymal consolidations, 
which have attenuation characteristics similar to the pleural margin and 
the thoracic soft tissues, often leads to inaccurate output [31,32]. 
Therefore, manual contouring, or at least manual correction, remains 
the actual reference standard for lung segmentation, but such an 
approach is time-consuming and hardly compatible with large-scale 
data analyses [29]. Given the pressing need to implement automatic 
segmentation tools, and considering that the contouring process affects 
the QCT results [33–35] even when automatic [36] it is crucial to 
investigate how this source of variability impacts on the QCT of COVID- 
19 patients. 

In this work, four medical radiologists evaluated the performance of 
four different image analysis platforms for the automatic lung segmen
tation applied on a cohort of COVID-19 patients with severe lung 
involvement. These automatic segmentations were then compared 
against a manually corrected reference. Finally, quantitative metrics 
resulting from CT histogram of the lungs were calculated using auto
matic and manually corrected segmentations in order to understand how 
differences in segmentations affect quantitative measurements. 

2. Material and methods 

This retrospective study was approved by the Local Ethics Commit
tee. The need for informed consent was waived owing to the retro
spective nature of the study. 

2.1. Patient population and CT protocol 

To select cases with relevant lung involvement, patients with posi
tive Real-Time Polymerase Chain Reaction for SARS-CoV-2 and positive 
chest CT scan were randomly selected among those admitted in inten
sive care unit within the 48 h after the CT scan acquisition in March- 
April 2020 in Niguarda Hospital. 

Chest CT examinations were acquired on 3 Siemens scanners 
installed at our hospital (Somatom Definition Edge, Somatom Sensation 
64, Somatom Definition) with patients in supine position, during 
inspiratory breath-hold, in keeping with the collaboration status of the 

patient. For each patient, the unenhanced series reconstructed with slice 
thickness of 3 or 1 mm and Bl57- or B70 kernels, as available, was 
considered for subsequent processing. 

2.2. Segmentation algorithms 

In all chest CT scans the lungs were automatically segmented using 
four image analysis platforms:  

a) Philips IntelliSpace Portal 9.0 (Philips Healthcare SpA), hereafter 
called ISP: automatic region-growing segmentation of the lungs was 
obtained using the Chronic Obstructive Pulmonary Disease (COPD) 
Analysis module included in the PACS software suite;  

b) 3D Slicer 4.10.2 (https://www.slicer.org), hereafter simply called 
Slicer: lungs were automatically segmented in two ways, i.e. using:  
1. the Parenchymal Analysis function in the Chest Imaging Platform 

extension (Applied Chest Imaging Laboratory; Boston, Massa
chusetts, USA), which implements a region-growing-like tech
nique specifically tailored for lung segmentation;  

2. a Deep Convolutional Neural Network extension based on a U-Net 
architecture trained to segment lungs affected by multiple pa
thologies including COVID-19 (https://github.com/acil-bwh 
/ChestImagingPlatform/blob/develop/cip_python/dcnn/projects 
/lung_segmenter/lung_segmenter_dcnn.py); 

c) QUIBIM Precision® Platform 2.8 (QUIBIM, Valencia, Spain), here
after simply called QUIBIM: automatic segmentation of the lungs was 
provided by means of a deep learning model;  

d) the Simultaneous Truth And Performance Level Estimation (STAPLE) 
approach inside the atlas-based auto-segmentation software package 
ABAS® (Elekta Oncology Systems, Crawley, UK), hereafter simply 
called ABAS: this multiatlas-based automatic tool applies several 
individual atlases to obtain multiple segmentations of the same 
subject and combine them into a final unique segmentation. The 
selection of the input required for the best fit in lung segmentation is 
not straightforward: the larger the number of images and structures 
used, the longer it will take the tool to search through the atlas to 
select the best match. Onestudy suggested that a data set of 15 pa
tients may berequired for abdominal organs [37]. For this analysis, 
different combinations of atlases were tested:  
1. lungs from 18 patients with COVID-19 pneumonia and from 6 

patients with no pulmonary involvement;  
2. lungs, liver and heart from 6 patients with COVID-19 pneumonia;  
3. lungs, liver and heart from 12 patients with COVID-19 

pneumonia. 

In all cases, the segmentations were obtained without the need of 
user input and no manual corrections were applied to the algorithms 
output. 

2.3. Assessment of segmentation performance 

The lung volumes delineated in all CT images with all platforms were 
evaluated using subjective and quantitative approaches. Furthermore, 
the effects of different segmentations on QCT were analysed. 

2.3.1. Qualitative assessment of segmentations 
Two resident radiologists (2 and 3 years of experience) and two se

nior radiologists (15 and 14 years of experience) evaluated the seg
mentation performance of the four algorithms. When different methods 
were tested for a certain platform, the Authors collectively assessed the 
quality of lung segmentation to choose the best option. Thus, for each CT 
series the four segmentations representative of the different image 
platforms were ranked according to quality (1 = best segmentation; 4 =
worst segmentation) and scored using the following 5-point Qualitative 
Score (QS): 
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• 1 = very poor: segmentation with extensive errors requiring the 
reader excessive effort to correct them;  

• 2 = poor: segmentation with errors that require sizeable and/or time- 
consuming corrections;  

• 3 = acceptable: segmentation with inaccuracies that require limited 
and/or brief corrections;  

• 4 = good: segmentation with small imperfections negligible for the 
reader;  

• 5 = excellent: segmentation corresponding to the ideal result for the 
reader. 

The test was performed using a program developed in JavaScript that 
automatically opened the same CT series in four separated windows, 
overlaying each of them with one of the four segmentations to be 
assessed. The axial slices were synchronized to facilitate comparison, 
while the patient and segmentation data were not shown. The radiolo
gist selected the window with the best segmentation by clicking on it 
and assigned the QS to it through a dialog box; afterwards, the window 
closed. The order in which the windows were selected was tracked to 
define the segmentation rank. After evaluating the 4 segmentations of 
the same CT series, the program automatically loaded the data of the 
next patient. 

For each patient, the segmentation with higher QS and higher rank in 
case of QS tie was manually corrected, when necessary, to obtain a 
collectively agreed reference segmentation (RS) for the subsequent 
analysis. 

2.3.2. Quantitative assessment of segmentations 
Quantitative assessment of segmentations was performed using Dice 

index (DI), an objective metric that quantifies the spatial overlap be
tween two contours, ranging from 0 for null overlapping to 1 for perfect 
overlapping [38,39]. Lung volumes were also calculated multiplying the 
number of voxels included in the segmentations by the voxel size. DI and 
differences between lung volumes were computed comparing the RS 
with the segmentations provided by the different image platforms. Dif
ferences between lung volumes were expressed as relative values (ΔVol 
(%)). 

2.3.3. Histogram metrics of QCT on segmented lungs 
Quantitative metrics (QM) derived from the relative CT lung histo

gram were calculated using all segmentations for each CT image. Dec
iles, mean value, skewness and kurtosis of the histogram values were 
calculated using a software for automatic analysis of CT lung images 
written in JavaScript code [17]. In addition, a metric representative of 
well-aerated lung volume (WAVE.f) previously described [17] was 
calculated. The differences and the absolute values between QM ob
tained with RS and other segmentations (ΔQM, ΔQMabs) were calcu
lated for all data. 

2.4. Data analysis 

The data analysis was generated using the Real Statistics Resource 
Pack software (Release 6.8) (www.real-statistics.com). 

Quantitative data were tested with Shapiro-Wilk test for normality 
and Levene test for homogeneity of variance. The comparisons of paired 
and non-paired quantitative data among multiple groups were evaluated 
using Friedman test and Kruskal-Wallis test, respectively; comparison of 
paired data between two groups were evaluated using paired t-test and 
Wilcoxon signed rank test, as appropriate. 

Statistical significance was established at the p < 0.05 level, applying 
Bonferroni’s correction for multiple comparisons when appropriate. 

2.4.1. Data analysis of qualitative assessment of segmentations 
Categorical variables were expressed as counts and percentage. Re

sults of continuous variables were reported as median values with 25th 
and 75th percentiles of their distribution. 

The chance-corrected inter-reader agreement for the QS was tested 
using Gwet’s second-order agreement coefficient (AC2) with ordinal 
weights [40]. AC2 was chosen to correct for the partial agreement 
occurring when comparing ordinal variables with multiple readers and 
because it is less affected by prevalence and marginal distribution 
[41,42]. A level of agreement > 0.8 was considered very good, following 
Altman’s interpretation [43]. Weighted percentage agreement was also 
reported [44]. 

To account for the role of heterogeneity in COVID-19 lung lesions on 
the segmentation task, the CT images were grouped in 3 classes as fol
lows. CT images with at least one automatic segmentation judged not 
worthy of manual correction (QS ≥ 4) by all the readers were considered 
“easy” to segment. Conversely, images were considered “critical” when 
all readers judged all outputs of the automatic platforms sub-optimal 
(QS ≤ 3). The remaining cases were labelled as “challenging”. 

Furthermore, according to the scores given by the four readers, each 
segmentation for all platforms was labelled as “optimal”, if all readers 
agreed with a QS ≥ 4, “sub-optimal”, if at least one reader judged 
necessary to manually correct the segmentation (QS ≤ 3), and “unsuit
able” if all readers gave a QS < 4. 

2.4.2. Data analysis on quantitative assessment of segmentations and 
histogram metrics 

For each patient, DI, lung volumes and the results of QCT metrics 
obtained from each of the four segmentation masks were compared with 
the corresponding results from the RS to understand how different 
segmentations affected QCT results. 

3. Results 

According to the inclusion criteria, a cohort of 55 patients (41 males, 
14 females; median age 56 years, range 33–74 years) was enrolled for 
the study. Example of segmentation outputs and subsequent analysis is 
reported in Fig. 1. 

3.1. Results of qualitative assessment of segmentations 

After a preliminary assessment, the Parenchymal Analysis function in 
the Chest Imaging Platform extension for Slicer and the combination of 
the atlases from 12 patients with COVID-19 pneumonia for ABAS were 
chosen to be tested with the QS together with QUIBIM and ISP plat
forms. Thus, a total of 220 segmentations were obtained and scored by 
the four readers. 

Since the inter-reader agreement for the QS was very good, with an 
AC2 = 0.88 (95 %CI: 0.86–0.90; p < 0.001) and weighted percentage 
agreement was 95%(with perfect agreement between the four readers in 
75 (34%) cases and at least three readers giving the same score in 205 
(93%) cases), no further tests on reproducibility of readers’ scoring were 
performed. In 59% of the cases where the readers showed perfect 
agreement, a QS = 3 was assigned to the segmentation. Averaging over 
the readers, 45%, 20%, 37% and 7% of the scores assigned to QUIBIM, 
Slicer, ABAS and ISP segmented lungs, respectively, were positive, 
indicating no need no or only minimal corrections (QS ≥ 4), as reported 
in Table 1. The QS differences observed between the four platforms were 
significant (p < 0.001) according to Friedman test. For 17 CT scans, 
automatic segmentations provided RS without any manual correction. 

As regards the classification of cases according to the difficulty of 
automatic segmentation, lung images of 20 CT scans resulted “easy to 
segment”, 10 resulted “critical to segment” and 25 were considered 
“challenging”. 

On the other hand, regarding the classification of each individual 
segmentation, 37 of them resulted “optimal” (QUIBIM = 18; Slicer = 10; 
ABAS = 7; ISP = 2), 61 resulted “suboptimal” (QUIBIM = 15; Slicer = 7; 
ABAS = 33; ISP = 6) and 122 resulted “unsuitable” (QUIBIM = 22; Slicer 
= 38; ABAS = 15; ISP = 47). 
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3.2. Results of quantitative assessment of segmentations and histogram 
metrics 

Median (25th percentile, 75th percentile) values of the DI were 0.994 
(0.979, 1), 0.952 (0.921, 0.971), 0.959 (0.945, 0.963) and 0.904 (0.848, 
0.937) for QUIBIM, Slicer, ABAS and ISP, respectively. The differences 
between results were significant (p < 0.001) according to Friedman test. 
Values of DI and ΔVol(%) are graphically reported in Fig. 2. 

The results of the ΔQM are reported in Table 2. CT lung histogram 
percentiles calculated using automatic segmentations were always 
significantly different from QM obtained with RS, albeit the extent of the 
differences could be very limited. For example, both QUIBIM and ABAS 
segmentations showed a median volume discrepancy of − 1% compared 
with the RS. Also, an increase in the extent of the differences was 

observed as the percentiles(i.e. the CT voxel density) increased. In 
particular, the histogram 90th percentiles was the most unstable met
rics, with median values ranging from 10HU and 158HU betweendif
ferent algorithms. 

Notably, while for QUIBIM, Slicer and ISP these differences were 
negative, indicating the exclusion of areas with higher density, ABAS 
algorithm showedan opposite behaviour in that the differences were 
positive. 

Moreover, the median difference in WAVE.f between automatic 
segmentations and RS were within 2%, except for ISP where it rose to 
7.9%. 

Median values of ΔQMabs for each histogram percentiles are graph
ically reported in Fig. 3 for the three classes of patients (“easy”, “chal
lenging” and “critical” to segment) and for the platforms used. The gap 
between histogram metrics increased according to the class of segmen
tation difficulty, except for ABAS results, which were more homoge
neous and independent of the class of patients. 

Regarding the subdivision of the segmentations based on the QS 
received, the distribution of values of all quantitative metrics between 
the three classes (“optimal”, “sub-optimal” and “unsuitable”) are sum
marized in boxplots in Fig. 4. Such differences were all significative (p <
0.001) according to Kruskal-Wallis test and showed how the QS assigned 
by the radiologists is reflected in different discrepancies compared with 
the RS. In particular, wider ranges of values were observed when moving 
from the “optimal” to the “unsuitable” category. 

Notably, for the 122 “unsuitable” segmentations (QUIBIM = 22, 

Fig. 1. Example of the outputs of the four automatic segmentation tools tested on a COVID-19 CT scan. Automatic segmentations are reported as a red overlay. CT 
lung histograms calculated from reference (black curve) and automatic (red curve) segmentations are reported on the same graphs with their difference (blue curve). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Results of the Qualitative Score (QS) given by four radiologists to the automatic 
segmentations of 55 COVID-19 lungs obtained with four image platforms. Data 
are averaged over the 55 segmentations and the four readers. A QS ≥ 4 was given 
when the segmentation was assessed as needing no or only minimal corrections.  

QS QUIBIM Slicer ABAS® ISP 

1 0%  5%  0%  10%  
2 5% 55% 29% 80% 4% 63% 45% 93% 
3 49%  47%  59%  37%  
4 29% 45% 16% 20% 33% 37% 7% 7% 
5 16%  4%  4%  0%   

Fig. 2. Boxplots of Dice Index values and differences of volumes calculated between the automatic segmentations and the reference segmentations revised by the 
radiologists. 
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Slicer = 38, ABAS = 15, ISP = 47) median (25thpercentile, 75th 
percentile) value of DI and 90th percentile resulted in 0.930 (0.890, 
0.957) and 88 (29,159)HU. Also, median (25thpercentile, 75th percen
tile) difference for WAVE.f was 0.31 (0.00, 0.91)%, 0.88 (0.31, 1.9)% 
and 3.00 (1.30, 5.65)% for “optimal”, “sub-optimal” and “unsuitable” 
segmentations, respectively. 

4. Discussion 

In this work we compared four different tools for the automatic 
segmentation of lung in CT images of COVID-19 patients with the aim of 
assessing accuracy and suitability in a fully integrated workflow of 
image analysis. There are many papers in the literature on automatic 
segmentations applied to radiotherapy field [28] and, to the best of our 
knowledge, this is the first work published on these topics in COVID-19 
diagnostic imaging field. 

Quantitative metrics from imaging could allow to overcome the 
current lack of effective biomarkers for diagnosis, prognosis and 

outcome prediction in COVID-19 patients. However, quantitative image 
analysis still relies on manual intervention, which is time-consuming 
and often not compatible with daily clinical workloads. Since a fully 
automatic process would represent a paradigm shift in the application of 
quantitative imaging, it is crucial to understand the degree of inaccuracy 
of these metrics entailed by the use of unsupervised automatic 
segmentations. 

A critical issue in dealing with performance evaluation of automatic 
segmentation is the dependency of output scoring on individual 
subjectivity. In our study, the agreement between the four readers 
involved was high, especially considering their different experience. 
This suggests that the biases related to the qualitative score were 
limited, in particular in separating the “easy” and “critical” cases and the 
“optimal” and “unsuitable” segmentations as defined in the Materials 
and Methods section. 

Following the readers’ evaluation, the automatic segmentations of 
only 17 out of 55 images of COVID-19 patients with severe lung 
impairment were taken directly as reference. Instead, for the other 38 

Table 2 
Results of QCT calculated from the automatic lung segmentation obtained with four different automatic platforms. Values are expressed as differences to the equivalent 
metrics calculated from the Reference Standard and reported as the three quartiles of the distribution of the 55 cases. The p values adjusted after Bonferroni’s 
correction were reported. [n]p: [n]th percentile; Mean.H: density histogram mean; Skew.H: density histogram skewness; Kurt.H: density histogram kurtosis; W.fit %: 
well-aerated lung volume estimation[17]; ΔVol%: percentual difference of volumes.   

QUIBIM Slicer ABAS ISP  

Quartile p Quartile p Quartile p Quartile p  

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

10p − 3 − 1 0 <0.001 − 7 − 3 0 <0.001 1 1 2 <0.001 − 19 − 10 − 5 <0.001 
20p − 4 − 1 0 <0.001 − 10 − 3 0 <0.001 0 2 3 <0.001 − 31 − 17 − 8 <0.001 
30p − 6 − 2 0 <0.001 − 15 − 4 0 <0.001 0 2 4 <0.001 − 46 − 22 − 12 <0.001 
40p − 9 − 3 0 <0.001 − 21 − 5 0 <0.001 0 2 6 <0.001 − 62 − 30 − 16 <0.001 
50p − 13 − 3 0 <0.001 − 33 − 8 0 <0.001 − 1 4 8 <0.001 − 87 − 40 − 22 <0.001 
60p − 18 − 5 0 <0.001 − 55 − 14 − 1 <0.001 0 5 12 <0.001 − 120 − 57 − 27 <0.001 
70p − 20 − 7 0 <0.001 − 69 − 23 − 3 <0.001 1 9 17 <0.001 − 142 − 87 − 40 <0.001 
80p − 23 − 9 0 <0.001 − 86 − 28 − 6 <0.001 1 12 27 <0.001 − 203 − 118 − 59 <0.001 
90p − 33 − 10 0 <0.001 − 86 − 24 − 3 <0.001 2 18 52 <0.001 − 245 − 158 − 93 <0.001 
Mean.H − 14 − 5 0 <0.001 − 45 − 15 − 3 <0.001 1 7 15 <0.001 − 100 − 61 − 37 <0.001 
Skew.H 0.00 0.01 0.06 <0.001 0.03 0.10 0.22 <0.001 − 0.05 − 0.01 0.02 0.023 0.06 0.17 0.41 <0.001 
Kurt.H 0.00 0.03 0.14 <0.001 0.09 0.22 0.62 <0.001 − 0.26 − 0.07 − 0.01 <0.001 0.33 0.73 1.52 <0.001 
W.fit % 0.0 0.5 1.6 <0.001 0.1 2.0 5.5 <0.001 − 1.5 − 0.9 0.0 <0.001 4.3 7.9 12.6 <0.001 
ΔVol% − 4 − 1 0 <0.001 − 8 − 2 1 0.003 − 4 − 1 1 0.045 − 24 − 15 − 10 <0.001  

Fig. 3. Absolute difference in percentile values of the CT histogram calculated between automatic and reference segmentations. The results were divided according 
to the classification of patients based on the segmentation difficulty (“easy”, “challenging” and “critical”). Values obtained from ISP were not shown because out- 
of-scale. 
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patients manual adjustments were introduced due to a certain degree of 
error. In the best case, <50% of the automatic outputs were judged by 
the readers to be accurate enough not to require corrections, but the 
percentage dropped much lower for some of the analysed tools. 

Interestingly, median DI values of 98.11, 96.35 and 93.00 were 
found for “optimal”, “sub-optimal” and “unsuitable” segmentations, 
respectively. In other words, DI indicated a great overlap between 
automatic segmentation and RS even when the software output was 
negatively judged by the readers. This is explained by the fact that 
automatic tools commonly fail to segment the areas of pulmonary con
solidations, especially when they are adjacent to the thoracic wall. These 
segmentation errors may have a low impact on the DI values because of 
the large total volume of the lungs, but they can lead to a serious un
derestimation of the extent of the pulmonary damage. For example, in 
our study the tools based on region growing algorithm, which rely on 
contrast homogeneity and are more prone to cut off the peripheral 
opacities, received the worst evaluation by the readers. Since overlap- 
based similarity indices do not take into account the anatomical and 
clinical relevance of the segmented regions, even DI values up to 0.90, 
usually interpreted as optimal in other contexts, may be misleading 
when large volume structures has to be compared, as lung in COVID-19 
patients [28]. 

The impact of this issue on the QCT is clear observing how, for all 
algorithms, differences in quantitative metrics increased in the higher 
percentiles of the HU distribution calculated from the segmentations. 
Notably, 3D Slicer and also QUIBIM produced the segmentations with 
the highest QS on average, but both provided quantitative results with a 

consistently different gap for “critical”, “challenging” and “easy” cases. 
By contrast, the discrepancies of quantitative metrics observed for ABAS 
were confined in a limited range independently of the class of segmen
tation difficulty assigned to the CT images. This is explained by the fact 
that ABAS works with an algorithm based on “image deformation” 
rather than “region growing”, which may be less accurate on average but 
also less susceptible to the problems caused by low-contrast interfaces. 
Therefore, algorithms based on morphology rather than grey level 
thresholds or image contrast could be more practical when the hetero
geneity and the diffusion of disease is high. 

The downside of atlas-based algorithms is that part of the heart or 
liver adjacent to the lungs can be included in the segmentation as well. 
Indeed, the differences between HU percentiles were almost always 
positive for ABAS compared with RS, meaning that it included larger 
volume of more dense tissues in the lung segmentation. Nevertheless, it 
must be pointed out that, differently from the other three platforms, 
ABAS could be used with an arbitrary number of inputs. In this work, we 
run the automatic lung segmentation using a total of 12 atlases with four 
structures each: the two lungs, the heart, and the hepatic dome. More 
accurate results could be assumed if a higher number of atlases would be 
used, albeit at the cost of more calculation time. 

As expected, significant differences in QCT results were observed 
between “optimal”, “sub-optimal” and “unsuitable” segmentations, with 
most of the histogram metrics showing the largest discrepancies from RS 
when “unsuitable” segmentations were used. This result shows how 
qualitative scoring and quantitative metrics are strongly related, with 
inaccurate segmentations resulting in lower subjective scores and larger 

Fig. 4. Boxplots of the differences in CT histogram metrics calculated between the automatic segmentations and the reference segmentations, divided according to 
Qualitative Score (QS) assigned by the radiologists. “Optimal”: segmentations with all QS ≥ 4; “sub-optimal”: segmentations with at least 1 QS < 4; “unsuitable”: 
segmentations with all QS ≤ 3. 
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QCT discrepancies compared to the reference. However, the actual error 
in the results of quantitative metrics may be limited even when the 
readers gave negative judgements. For example, the WAVE.f, the 
biomarker we previously described [17] to estimate the well-aerated 
pulmonary volume from the CT histogram of the lungs, differed by 
few percentage points from the reference for most algorithms and seg
mentation classes. Recent works [45,46] have reported positive corre
lations between CT severity scores, based on the visual assessment of 
lung involvement by expert radiologists, and clinical outcome like 
COVID-19 patient prognosis. If severity score and WAVE.f correlates, as 
it is reasonable to assume, a reliable assessment of lung involvement 
could be possible in a fully automatic way. 

In general, when automatic segmentations are integrated into a fully 
automatic pipeline, some degree of error is inevitably introduced into 
the QCT, which may vary between different metrics. The magnitude of 
these differences compared with the reference standard should be 
assessed for each metric, and the decision to tolerate it or not should be 
made in relation to the accuracy required for the purposes of subsequent 
analysis and discussed individually. 

The main limit of this study is that four specific image analysis 
platforms were considered, but the results could vary using other tools, 
especially those implementing more tailored algorithms. However, we 
chose to compare tools based on different segmentation techniques and 
that were commercially licensed or freely accessible and largely used in 
literature, like 3D Slicer, to give a more realistic picture of the tools 
currently available. Also, we used a cohort of patients with severe 
COVID-19 pneumonia, but the discrepancies between the automatic 
segmentations and the RS are expected to reduce if patients with milder 
lung involvement are considered. 

5. Conclusions 

None of the tested imaging platforms fully provided reliable auto
matic segmentation in COVID-19 patients with severe lung involvement. 
Since the qualitative score anticipated the extent of differences in 
quantitative metrics, quality assurance programs for automatic image 
analysis pipeline may include subjective scoring of a random sample of 
segmented images. However, the inaccuracy in quantitative metrics due 
to segmentations should be always weighted according to the purpose of 
subsequent analyses and the accuracy they required. 
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