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ABSTRACT

Dhh1 and Pat1 in yeast are mRNA decapping acti-
vators/translational repressors thought to play key
roles in the transition of mMRNAs from translation to
degradation. However, little is known about the
physical and functional relationships between these
proteins and the translation machinery. We desc-
ribe a previously unknown type of diauxic shift-
dependent modulation of the intracellular locations
of Dhh1 and Pat1. Like the formation of P bodies,
this phenomenon changes the spatial relationship
between components involved in translation and
mRNA degradation. We report significant spatial
separation of Dhh1 and Pat1 from ribosomes in
exponentially growing cells. Moreover, biochemical
analyses reveal that these proteins are excluded
from polysomal complexes in exponentially growing
cells, indicating that they may not be associated
with active states of the translation machinery. In
contrast, under diauxic growth shift conditions,
Dhh1 and Pati1 are found to co-localize with poly-
somal complexes. This work suggests that Dhh1
and Pati functions are modulated by a re-
localization mechanism that involves elF4A. Pull-
down experiments reveal that the intracellular
binding partners of Dhh1 and Pat1 change as cells
undergo the diauxic growth shift. This reveals a
new dimension to the relationship between transla-
tion activity and interactions between mRNA, the
translation machinery and decapping activator
proteins.

INTRODUCTION

Recent years have seen recognition that a diversity of
post-transcriptional control mechanisms influences the
rate and regulation of eukaryotic gene expression. Yet
our understanding of the interplay between the compo-
nent processes of post-transcriptional gene expression is
very limited. A prime example is the relationship
between translation and mRNA degradation, which is
not only fundamental to the correct functioning of gene
expression but also a potential cause of disease if defective.
It has been proposed that translational repression, as for
example observed under stress conditions, is a key step in
promoting mRNA decapping, thus leading to the forma-
tion of P bodies (1,2). P bodies, like stress granules, are
RNA/protein foci that form under certain (mostly
stress-related) conditions in eukaryotic cells. P bodies gen-
erally contain non-translating mRNAs as well as the
mRNA decapping machinery, Lsm1-7, the 5'-3’ exonucle-
ase Xrnl and other RNA-binding proteins (3), although
the physical nature and degree of heterogeneity of P body
populations is unclear.

Two proteins, Dhh1l and Patl, are thought to lie at the
heart of the relationship between translation and mRNA
degradation (4). Dhhl and Patl act as activators of de-
capping and, at least under conditions of overexpression,
they are capable of repressing translation in vivo (4).
However, other results suggest that Patl (at normal cellu-
lar levels) acts to promote translation initiation at a step
before or during 40S ribosomal recruitment onto mRNA
(5). In other eukaryotes, such as Xenopus and Drosophila,
Dhhl orthologues have been shown to be involved in
translational repression of specific mRNAs during ecarly
development (6,7). It has previously been postulated that
translational repression generically drives mRNAs into P
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bodies (and thus accelerated decay), and that translational
repression is in constant competition with active transla-
tion (4). Other reports have suggested that the decay rate
may be modulated differentially in response to distinct
types of translational control event and that translation—
decay relationships can be mRNA species specific (8,9).
While mRNA decapping, which plays a key role in
mRNA degradation (4), can be inhibited by the cap-
binding protein elF4E in vitro and in vivo (1,2,10,11), it
is neither clear how this apparently competitive relation-
ship is controlled nor at what stage it features in
modulating the balance between translation and decay.
Very recent work has also shifted the emphasis of current
thinking by revealing that, as in bacteria (9,12,13), mRNA
decay in Saccharomyces cerevisiae can be co-translational
(14) although this does not rule out the possibility that
translation and decay mutually influence or regulate each
other. Against this complex background of previous find-
ings, it is important to know how Dhhl and Patl partici-
pate in controlling the relationship between the translation
apparatus and the decay machinery.

Dhh1 belongs to a family of closely related DEAD-box
RNA helicases that associate with components of mRNA
decapping, deadenylation and transcription complexes
(1,4). Dhhl stimulates mRNA decapping by the decapp-
ing enzyme complex Dcpl/Dcp2, and has been shown to
localize partly to P-bodies (15). Orthologues of Dhhl in
other eukaryotes, such as Xenopus and Drosophila, play
roles in repressing translation of specific mRNAs during
early development (6,7). Dhh1 has been suggested to play
a role in partitioning mRNAs between translatable and
non-translatable pools, which has been implicated in the
recovery from GI1/S cell-cycle arrest following DNA
damage (16). DHH1 is orthologous to the human putative
proto-oncogene p54/RCK, indicating that the mechan-
isms of action suggested by studies of yeast are relevant
to human health/disease. Moreover, a fascinating parallel
exists to the involvement of Lsm1-7/Patl/Dhhl in the tran-
sition from an actively translating state to a non-
translating state (replication or decay competent) observed
in Brome Mosaic Virus (BMV). In addition, a comparable
transition is promoted in Hepatitis C Virus (HCV) by the
virus-encoded NS3 helicase (e.g. 17), suggesting that there
may be common molecular principles (for example, re-
sponsible for remodelling ribonucleoprotein complex
structures) operating in diverse subcellular systems.

In this study, we examine the undefined relationship
between Dhhl/Patl and the translation machinery. We
focus on their respective cellular distributions, since these
are directly relevant to the functions of these proteins. For
example, if the spatial distributions of a regulatory mol-
ecule and its target do not overlap, this exercises a limiting
effect on the regulatory competence of the regulator.
Imaging of fluorescently tagged cellular components, com-
bined with analyses of the composition of polysomal
complexes, reveals a remarkable degree of separation of
these proteins from ribosomal populations during expo-
nential cell growth, i.e. in cells lacking P bodies. This is
found to correlate with spatial segregation of these pro-
teins from actively translating polysomal complexes. In
contrast, Dhh1 and Patl gain greatly increased access to
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actively translating polysomes in the phase of growth that
is associated with the shift from glucose fermentation to
ethanol oxidation (the diauxic growth shift). This has pro-
mpted us to investigate whether there is a control relation-
ship between translation rate and these relocation events,
and to characterize protein interactions involving Dhhl
and the translation machinery that are likely to be relevant
to the functional roles of these decapping modulators in
the cell. The results suggest that segregation of Dhh1 and
Patl from actively translating polysomes, like the forma-
tion of P bodies, reflects modulation of the access of these
translational repressors to the translational machinery.
Thus modulation of the subcellular localization of trans-
lational effectors may play a role in post-transcriptional
control.

MATERIALS AND METHODS
Yeast strains, plasmids and growth conditions

Strains and plasmids used in this study are listed in Tables 1
and 2, respectively. TCM-tag strains were generated by
chromosomal integration of the tetracysteine-motif and
kanMX antibiotic selection cassette at the C-terminal of
the genomic copy of the gene of interest. Briefly, the
‘TCM-tag-kanMX cassette’ for homologous recombin-
ation comprised two oligonucleotides complementary to
the TCM tag-kanMXmarker cassette together with the
appropriate region of homology with the yeast genome
to facilitate in frame fusion of the TCM-tag downstream
of the gene of interest. Strains were grown at 30°C unless
otherwise stated in either yeast extract/peptone medium
(YPD) or synthetic medium (SC) supplemented with ap-
propriate amino acids and 2% glucose. Strain growth was
initiated using a single colony from an agar plate for each
5-ml starter culture (containing the appropriate selective
medium). Each starter culture was then used to inoculate a
larger liquid culture (starting ODygo = 0.2), which was
shaken (220 rpm) at 30°C in a conical flask of volume
10 times the culture volume until the culture reached either
ODgoo = 0.5 (exponential growth phase) or ODggg = 2.0
(post-diauxic shift growth; this point was reached after at
least 20 h of incubation). These two points are indicated
on the growth curve shown in Supplementary Figure S1.

Microscopy

Cells for high-resolution analysis were grown from an ini-
tial liquid culture to an ODgyy = 0.4 (for final ODgg upon
visualization of ~0.5) or to an ODgy = 2.0 and then
200 pl of culture was incubated with 2 M ReAsH-EDT?2
biarsenical dye (Invitrogen) and 1uM 1, 2-ethanedithiol
(EDT) for 1h at 30°C in the dark, with shaking and
aeration. Then cells were washed in appropriate growth
media with glucose for exponentially growing cells or with-
out glucose for diauxic shift cells supplemented with
25uM EDT for 10 min in the dark, briefly centrifuged at
4000 rpm and then washed as before with 1 uM EDT then
resuspended in 200 pl of appropriate media (to analyse
ReAsH labelled Dhhl/Patl migration into P-bodies,
cells were resuspended in media minus glucose) then
mounted on slides treated with 2% polylysine. Images


http://nar.oxfordjournals.org/cgi/content/full/gkr474/DC1

7766 Nucleic Acids Research, 2011, Vol. 39, No. 17

Table 1. Strains used in this work

Strain Genotype Source
PTC4l MAT« ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 DSMZ
PTC92 MAT« ura2 trpl his3-11,15 leu2-3,112 DSMZ
PTC296 MAT«a ura3-52 his4-38 trpl-dl leu2-1 rpbl-1 DSMZ
PTC324 MATa leu2-3,112 trpl ura3-52 his4-539 cupl::LEU2/PGKIpG/MFA2pG DHHI-GFP (NEO) (15)
PTC325 MATa leu2-3,112 trpl ura3-52 his4-539 cupl::LEU2/PGKIpG/MFA2pG PATI-GFP (NEO) (15)
PTC326 MATa DHHI:TCM:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC327 MATa PATI1:TCM:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC326 MATa DEDI:TCM:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC327 MATa TIFI:TCM:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC328 MATa TIFI:GFP:HIS3IMX6 DHHI:TCM:kanMX his3-Al leu2-A0 met15-40 ura3-A0 This study
PTC329 MATa TIFI:GFP:HIS3MX6 PATI:TCM:kanMX his3-Al leu2-A0 met15-A0 ura3-A0 This study
PTC330 MATa CDC33:GFP:HIS3MX6 DHHI:TCM:kanMX his3-Al leu2-A0 met15-A0 ura3-40 This study
PTC331 MATa CDC33:GFP:HIS3MX6 PATI:TCM:kanMX his3-Al leu2-A0 met15-40 ura3-A0 This study
PTC332 MATa TEF3:GFP:HIS3IMX6 DHHI:TCM:kanMX his3-Al leu2-A0 met15-A0 ura3-A0 This study
PTC333 MATa TEF3:GFP:HIS3MX6 PATI:TCM:kanMX his3-Al leu2-A0 met15-40 ura3-A0 This study
PTC334 MATa SUP45:GFP:HIS3MX6 DHHI1:TCM:kanMX his3-Al leu2-A0 met15-40 ura3-A0 This study
PTC335 MATa SUP45:GFP:HIS3MX6 PATI:TCM:kanMX his3-A1 leu2-40 metl15-A0 ura3-40 This study
PTC336 MATa DHHI-pTETO07:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC337 MATa PATI-pTETO7:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC348 MATa DHHI-pTETO07:kanMX his3-dl leu2-d0 metl15-d0 ura3-d0 This study
PTC349 MATa PATI-pTETO07:kanMX his3-dl leu2-d0 met15-d0 ura3-d0 This study
PTC340 MATa CDC33-pTET07 ura3-52 his4-38 trpl-dl leu2-1 rpbl-1 UPFI This study
PTC341 MATa DHHI-pTETO07 ura3-52 his4-38 trpl-dl leu2-1 rpbl-1 UPFI This study
PTC347 MATa DHHI-eGFP:hisSMX6 TIF2-pTETO07:kanMX tifl-A ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC349 MATa PATI-eGFP:hisSMX6 TIF2-Ptet07:kanMX tif1-A ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study
PTC350 MATa PATI-eGFP:hisSMX6 TEF3-Ptet07:kanMX ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study

PTC351 MATa DHHI-eGFP:hisSMX6 TEF3-Ptet07:kanMX [PTEFex-TEF3 (URA3)] ade2-1 ura3-1 leu2-3,112 his3-11,15 canl-100 This study

PTC389 MATa DHHI:TAP ade2 arg4 leu2-3,112 trpl-289 ura3-52

This study

Table 2. Plasmids used in this work

Plasmid Genotype References

pIM23 YEplacl95- ade2-ura3 (39)
RPL25a:GFP

pIM8B0 YCplac33- RPS2:GFP (40)

pRP1502 Patl:GFP + Ycplac33 (41

pRP1151 Dhhh1:GFP LEU2 CEN (42)

pIMS881 YCp33- Supex2 RPS3:TCM A. Stevenson and

P. Juanes (this study)

for Supplementary Figure S4 were acquired on a Confocal
Laser Scanning microscope (Zeiss) with a 100x oil-
immersion objective lens (Zeiss) and LSM 5 software.
All other images were acquired with a Deltavision Core
Imaging System (Applied Precision) as 512 x 512-pixel
files with an EMCCD camera and Softworx software.
Images in Figure 6 and Supplementary Figures S2, S6
and S10 are 3D projections of z-series compilations of mul-
tiple images at 0.1-micron intervals assembled using the
Softworx software. All other images are single section
images, deconvolved with the Huygens Deconvolution
Software (Scientific Volume Imaging B.V.; SVI). For
quantitation, cells were processed for microscopy and
images comprising 3D projections of a z-series compil-
ation of 50 images at 0.1-micron intervals were decon-
volved and analysed using Huygens Co-localization
Analyser software (SVI). Measurements for each tagging
combination were performed on at least 10 cells, yielding
the averages shown in Figure 2. In order to quantify the

extent of co-localization of the red channel (Dhhl/Patl-
TCM[ReAsH]) and green channel (RpL25-GFP, Rps2-
GFP or translation factor-GFP) the Manders
Intersection coefficients (i) were calculated. In this study
the 7, coefficient indicates the portion of voxels of signal 1
(red = TCM) that are intersecting with signal 2
(green = GFP) from the total volume occupied by signal
1. It is of note that as the red and green channels exhibit
different signal intensities, calculation of the intersection
co-efficient (i) will give more reliable quantitation of
co-localization. In Figure 2, i; (the degree to which the
red(TCM-ReAsH) signal overlaps with the green (GFP)
signal) was converted into ‘percentage of total’.

Polysome analysis

Polysomal gradient analysis was performed as described
previously (18). In Figure 3C, cell cultures were incubated
for 1h at 30°C with 1 mg/ml puromycin dihydrochloride
(Melford) in the presence of a low concentration of
Iyticase to ensure maximal access to the translation ma-
chinery. Cells were then processed as above, or clarified
lysate was treated with 1 mg/ml RNase A prior to loading
onto sucrose gradients. To generate samples for Western
blotting, proteins were recovered from gradient fractions
by TCA precipitation. TCM-tagged proteins in polysomal
gradient fractions were labelled using a Lumio-Green
Detection Kit (Invitrogen) according to manufacturer’s in-
structions and visualized in-gel using a UV transillumi-
nator. Bands on western blots were visualized using
chemiluminescence.
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RNA half-life analysis

mRNA half-lives were determined in yeast strains contain-
ing the rpbhl-1 temperature-sensitive mutation and tetO7
promotor substitutions using methods described previously
(19). MFa2 and ACTI band intensities were normalized
against SCR/ band intensity (a pol III transcript).

Dhh1-TAP pull-downs and protein identification

Cell cultures of cells expressing C-terminally TAP-tagged
Dhhl were centrifuged and 10-ml cell pellet volumes of
exponentially growing (ODggo = 0.5) or post-diauxic shift
(ODggo = 2.0) cells were processed as detailed previously
(20). After elution proteins were then concentrated by
TCA precipitation and resolved by SDS-PAGE and
stained with Sypro Ruby protein stain. Following
excision of Sypro Ruby stained (or control) bands, the
gel slices were subjected to in-gel proteolysis with trypsin
and peptides were analysed by LC-ESI-MS using a
Bruker AmaZon ETD system Data were processed using
DataAnalysis (4.3) and searched against SwissProt v57 15
using MASCOT (21).

Identification of ribosome-associated proteins

PTC49 cells were grown in YPD media until ODggg =
0.7-0.8 and cells were pelleted to yield a 15-ml cell pellet
then resuspended in 10 ml of Lysis Buffer (20 mM HEPES,
pH 7.4, 100mM KAc, 2.5mM MgAc,, 2mM [-merca-
ptoethanol and protease inhibitors). Cells were lysed
with using acid-washed glass beads (Sigma) in a
MiniBeadbeater 8 (Stratech Scientific. UK) for 2 x 45s.
Cell lysates were centrifuged at 14000 rpm for 30 min at
4°C and the supernatant was loaded on to a 1 ml sucrose
cushion (I M sucrose, 20mM HEPES pH 7.4, 500 mM
KCIl, 100mM KAc and 2mM B-mercaptoethanol) and
centrifuged at 382400g for 2h at 4°C. The supernatant
(S2) was aliquoted and snap-frozen on dry ice. An
amount of 500 ul of lysis buffer was added to the pellet
and incubated for 5min on ice. The pellet was then resus-
pended in 3.6 ml of High Salt Wash buffer (HSW; 20 mM
HEPES pH 74, 1M KAc, 2.5mM MgAc, and 2mM
B-mercaptoethanol) and incubated on ice for 1h. This
solution was then loaded onto a 400 pul sucrose cushion
(as before) and centrifuged at 215200g for 10h at 4°C.
The supernatant (S3) was aliquoted and snap frozen on
dry ice. The pelleted 80 S ribosome fraction (P) was resus-
pended in 1 ml of Storage Buffer (20 mM HEPES pH 7.4,
10mM KAc, 2.5mM MgAc, 2mM DTT), aliquoted and
snap-frozen on dry ice. For in-solution identification of
proteins, tryptic peptides were analyzed by LC-MS with
an LTQ-Orbitrap Velos (see Supplementary Figure S8).

RESULTS

Subcellular localization of Dhh1, Patl and polysomal
complexes during exponential growth and the growth
retardation phase

Dhhl and Patl have been shown to be capable of acting,
at least under certain conditions, as translational repres-
sors (3). However, knockouts of these genes have not been
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observed to lead to enhanced protein synthesis rates (4),
thus indicating that we have yet to understand the role of
these proteins in controlling global translation and thus
cell growth. In order to throw light on this poorly under-
stood area, we used fluorescent tags to label Dhhl and
Patl and then compared their subcellular distributions
with those of GFP-tagged 40S and 60S ribosomal
subunits under different growth conditions. In the first
instance, we chose to use the tetracysteine motif (TCM)
tag combined with biarsenical dyes (22,23) to label Dhhl
and Patl. The TCM fusion constructs used in this work
were chromosomally integrated behind the respective
natural promoters (see ‘Materials and Methods’ section)
so that the intracellular levels of the encoded fusion
proteins were the same as the normal endogenous levels
of the non-fused proteins.

Focusing first on cells growing exponentially on glucose,
we made an unexpected observation: the pool of ribo-
somes [large (Rpl25a) and small (Rps2) subunits] was
partly segregated from Dhhl and Patl. This is most evi-
dent in single Z-section (not 3D) images in Figure 1A. In
controls, western blot analysis of polysomal gradient frac-
tions revealed that the GFP-fused ribosomal subunit
proteins were exclusively associated with assembled ribo-
somal subunits (data not shown). In order to control for
any potential influence of the chosen protein tagging
strategy, we repeated this experiment using GFP-tagged
Dhhl and Patl together with TCM-tagged ribosomes
(Figure 1B; fluorescence labelling controls are shown in
Supplementary Figure S1). The advantage of utilizing
both tagging procedures is that the 13mer TCM tag is
far smaller than GFP, so that any size-related effects of
protein tagging could be controlled for by this approach.
Moreover, by imaging live cells, we avoided the artefacts
that are often associated with microscopy of fixed cells.
We next investigated whether this apparent segregation
was maintained after cells have undergone the diauxic
growth shift from glucose fermentation to ethanol oxida-
tion. It is important to note that we imaged cells prior to
the stationary phase since, by definition, in this latter
state large numbers of cells are dying (Supplementary
Figure S1). We observed the previously reported (15) pro-
gressive migration of Dhhl and Patl into P bodies in
response to the diauxic shift, although not all of the intra-
cellular Dhhl and Patl locates to the P bodies
(Supplementary Figure S2 shows 3D projections from
serial Z-axis images).

However, we also observed that Dhhl and Patl co-
localize more extensively with ribosomes downstream of
the diauxic shift; this is again illustrated by single
Z-section images in Figure 1C. In the merged single section
images, the overlap between the GFP- and TCM-tagged
proteins is readily identified as yellow patches in the cells.
Again, switching the tags between ribosomal subunits
and the proteins under study did not alter the observed
respective  subcellular  distributions  (Supplementary
Figure S3 shows single Z-section images). We also ob-
served that elF4A, elF4E, eEF3 and eRF1 remain rela-
tively evenly distributed throughout the cytoplasm and
demonstrate only very limited co-localization with Dhhl
and Patl in both exponential growth and in the ethanol
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Figure 1. Subcellular localization of 40S, 60S, Dhhl and Patl in expo-
nentially growing and diauxic S. cerevisiae cells. (A) Fluorescence
microscopy of glucose-fermenting exponentially growing yeast cells ex-
pressing combinations of Rpl25a-GFP or Rps2-GFP fusions and
ReAsH-stained Dhh1-TCM or Patl-TCM fusions. (B) The correspond-
ing experiment to that shown in panel A with exponentially growing
yeast cells expressing combinations of a ReAsH-stained Rps3-TCM
fusion and Dhh1-GFP or Patl-GFP fusions, respectively. (C) Cells ex-
pressing Dhh1-TCM or Patl-TCM and Rpl25-GFP or Rps2-GFP were
grown into the slower ethanol respiration-dependent growth phase
(post-diauxic growth shift; ODgyy = 2.0) and processed for imaging
with the TCM-tagged protein labelled with ReAsH. Each image is a
single slice montage of corresponding ReAsH, GFP and phase images.
Overlap in the overlays in the bottom row is indicated by yellow
staining. Scale bars = 5pm.

respiration phase (Supplementary Figures S4 and S5 show
single Z-section fluorescence images). It has previously
been reported that elF4E, eIF4G and Pabl are found in
P bodies (24) and also in what are believed to be distinct
bodies that form upon prolonged glucose depletion (EGP
bodies, 25). The shift in distribution of Dhhl and Patl
that we have observed evidently allows these proteins to
share the subcellular regions in which most of the
ribosome pool resides. DAPI staining was used to locate
the positions of the nuclei in glucose-fermenting exponen-
tially growing cells and in cells that have undergone the

diauxic shift (Supplementary Figure S6), revealing that at
least 90% of the Dhhl and Patl TCM-tag fusions,
labelled with ReAsH, are not in the nucleus.

Visual assessment of the subcellular distributions of
proteins and complexes can be misleading, and we there-
fore performed quantitative fluorescence intensity analysis
of the distribution of Dhh1/Patl, ribosomes and transla-
tion factors throughout individual yeast cells. Cells were
imaged in three dimensions, whereby a minimum of 50
serial sections were collected at 0.1-micron intervals and,
once deconvolved, the Manders Intersection coefficients
(i) were calculated for each tagged protein combination
(e.g. Dhh1-TCM and Rpl25-GFP, Patl-TCM and Rps2-
GFP ectc.) in either exponential growth or subsequent to
the diauxic shift. These analyses allow the degree of inter-
section/overlap of the red (TCM-ReAsH) signal with the
green (GFP) signal to be displayed graphically (Figure 2).
These 3D, whole-cell distribution analyses reveal that dur-
ing exponential growth the majority of Dhhl and Patl
(~75-80% of the imaged signal) is segregated from ribo-
somal subunits and translation factors. Upon diauxic
growth shift, Dhh1 and Patl distribution relative to ribo-
somes undergoes a striking reorganization and the major-
ity of Dhhl and Patl, presumably in the context of
P-bodies (Figure 1C), intersects with ribosomal proteins.
Interestingly, this growth-phase-specific differential distri-
bution is not mirrored to the same extent when comparing
Dhhl/Patl and translation factors. However, Dhhl and
Patl do show a small relative increase in signal overlap
with several factors after the diauxic shift (Figure 2 and
Supplementary Figure S4).

The observed co-localization does not tell us whether
Dhhl and Patl associate with particular subclasses of ribo-
somes, and we therefore investigated whether the chromo-
somally encoded TCM fusions become associated with
actively translating, or non-translating, ribosomes under
these conditions. Western blotting of fractions generated
by sucrose gradient fractionation of cell extracts revealed
that Dhh1 and Patl are not present in the polysomal frac-
tions during exponential growth, but do appear in the
polysomal fractions when cells undergo the diauxic shift
(Figure 3B). That Patl is limited to monosomal fractions
in polysomal gradients prepared from exponentially grow-
ing cells was also observed previously (5). The observed
co-fractionation effects might conceivably have been at-
tributable to Dhhl and Patl being incorporated into
P bodies that run in the same fractions as polysomes.
We therefore performed two types of control experiment
(Figure 3C). The addition of puromycin to inhibit trans-
lation drastically reduced the content of polysomes in the
higher mass fractions and also shifted the distribution of
Dhhl and Patl back into the lower mass fractions, just as
would be expected if these two proteins are associated with
polysomal complexes. Similarly, the addition of RNase A,
which cleaves single-stranded RNA 3" of C and U residues,
led to both the collapse of polysomes and the redistribu-
tion of Dhhl and Patl into the lower mass monosomal
and ribonucleoprotein fractions. Overall, these data sug-
gest that the co-localization observed in diauxic growth-
shifted cells reflects genuine association between Dhhl,
Patl and translationally active polysome complexes.
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Physical and functional interactions of Dhh1 and Patl
with the translation machinery

The co-localization of Dhh1 and Patl with the translation
machinery raised the question as to what interactions
underpin the observed association with the translation
machinery and, most importantly, how these interactions
change in response to changes in the cellular environment.
We therefore used pull-down experiments to investigate
whether components of the translation machinery could
be identified as interaction partners of Dhhl and Patl
under our experimental conditions, thus defining key inter-
actions at the interface between translation and mRNA
decay. TAP-tagged Dhhl1 was utilized in this study as bait
in pull-down experiments (Figure 4). These data reveal
that, during exponential growth, Dhhl is complexed with
Patl, the elongation factor eEF1A and several ribosomal
proteins, whereas after the diauxic growth shift not only
does Dhh1 retain its association with Patl and eEF1A but
it also becomes complexed with Ded1 and elF4A. To de-
termine if this co-precipitation is mRNA dependent, the
pull-down experiment was repeated as before or with cell
extracts pre-treated with RNase A and the resultant
eluents analysed by western blotting (Figure 4B). RNase
A cleaves 3’ of C and U residues and will therefore break
down the body of each mRNA into small fragments. This
indicates that the Dedl, eEF1A and eIF4A associate with
Dhhl in an RNA-independent manner and again suggests
that the association of Dhhl with Dedl and elF4A is
enhanced in response to the diauxic growth shift.

We also explored whether Dhh1 and Patl are associated
with ribosomal preparations obtained from yeast.
Partially purified ribosomes were subjected to washes with
500mM KCIl or 1 M KAc to generate protein-containing
supernatants (Supplementary Figure S7, supernatants S2
and S3, respectively) and a ribosomal pellet (P), and the
proteins in these fractions were identified using liquid chro-
matography—electrospray ionization tandem mass spec-
trometry (LC-ESI-MS; see ‘Materials and Methods’
section, Supplementary Figures S7 and S8 and Figure 5).
Exponentially modified Protein Abundance Index
(emPAI) abundance scores reflect the number of peptides
observed per protein (Figure 5A) (21,26,27). We also deter-
mined the MASCOT values for the same data sets; these
correlate well (with one significant outlier) with the emPAI
scores (Figure 5B). These label-free quantitation data
indicate that Dhh1 and Patl retain their association with
ribosomes after washing with 500 mM KCl, but that both
proteins are released (into supernatant S3) upon treatment
with 1 M KAc. Interestingly, a number of translation ini-
tiation and elongation factors (e.g. elF1A, elF4A and
eEF1A, eEF3, respectively), and Dedl, are found in all
fractions, whereas ¢eRF1 and the ribosomal proteins are
identified primarily in the 1-M KAc supernatant (S3) and
the ribosomal pellet (P). Overall, these data suggest that
Dhhl and Patl can be relatively stably associated with
ribosomes, although they do not tell us whether other
factors are required for this association.

One model for the mode of action of Dhh1 and Patl in
the control of mRNA degradation is that they promote
re-localization of mRNAs by inhibiting translation, either
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Figure 4. Dhh1-TAP pull-downs reveal growth-phase-dependent asso-
ciations between Dhhl, Patl and components of the translation ma-
chinery. (A) Exponentially growing cells (ODgg = 0.5) or post-diauxic
shift cells (ODggp = 2.0) expressing TAP-tagged Dhhl were processed
as detailed in ‘Materials and Methods’ section and proteins complexed
with Dhhl were resolved by SDS-PAGE and visualized using
SYPRORuby protein stain. These protein bands were excised and
protein identities determined by LC-ESI-MS/MS as indicated. The as-
terisks indicate the positions of proteolytic products. (B) Dhh1-TAP
complex purification was repeated with RNase A-treated cell extracts
and probed using polyclonal antibodies.

on individual mRNA species or generically. This would
seem to be consistent with the proposal that the rates of
translation and mRNA degradation are inversely related
to each other, so that suppression of translation will auto-
matically lead to accelerated decay (3). We decided to
explore the idea that the mechanism of action of these
proteins is mediated by changes in translation. A key
premise of this model is that translational repression
leads to mRNA destabilization. If this is true, constraints
imposed on the activity of the translation machinery by
limiting translation factor activity should result in
accelerated mRNA decay. We utilized rpbl-1 strains in
which the expression of CDC33 (encoding elF4E) had
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of 1.00). The rows correspond to the three respective fractions
generated in the scheme shown in Supplementary Figure S7.
(B) MASCOT values (detailed in Supplementary Figure S8) for the
same data sets were calculated and plotted against the emPAI scores,
revealing the degree of correlation between the two types of data.

been placed under the control of the tet07 operator, thus
allowing modulation of gene synthesis via the addition of
doxycycline. Using doxycycline to reduce the intracellular
abundance of eIF4E to 75 and to 50%, respectively, of the
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wild-type level, which in turn reduces protein synthesis
to 83 and 72% of the wild-type rate, we determined
whether there are measurable changes in the half-lives of
S. cerevisite mRNAs which manifest distinct stabilities,
i.e. those of ACTI and MFu?2 (Supplementary Figure S9).
The results suggest that the global rates of translation
and decay, at least over the range explored here, are not
universally coupled to each other. For comparison, we
performed parallel experiments using a tet07::DHHI
rpbl1-1 strain (Supplementary Figure S9), confirming that
repression of intracellular Dhhl does lead to mRNA
stabilization (3).

We also examined whether limiting translation in vivo
can induce formation of P bodies, since Dhhl and Patl
are both known to accumulate in these bodies in response
to the diauxic growth shift. This was investigated using
strains that contain tet07-regulated translation factor
genes. Starting with an initiation factor, we found that
suppression of the level of eIF4A in the cell led to reduced
rates of translation but did not, in itself, induce the for-
mation of P bodies during exponential growth (Figure 6).
Interestingly, restricting the availability of elF4A also
limited the observed degree of association of Dhhl with
actively translating polysomal complexes. Moreover, in-
hibition of in vivo translation via suppression of an elong-
ation factor (in a tet07.:TEF3 strain) also did not trigger
formation of P bodies in the exponential phase
(Supplementary Figure S10). In summary, slowing trans-
lation in vivo by imposing inhibition at either the initiation
step or the elongation step had no effect on the relation-
ship between cellular growth phase and P body formation.

DISCUSSION

Multiple types of stress-induced eukaryotic intracellular
body have been described, including P bodies, stress
granules and EGP bodies (15,25,28,29). While the identi-
ties of many of the components of these bodies are known,
the molecular basis for their apparent structural integrity
remains a mystery. For example, a knockdown of the
multiple glycine (G)-tryptophan (W) repeat protein
GWI182 disrupts the formation of mammalian P bodies
(30), yet it is still not clear whether GW182 is a scaffolding
protein for the P body structure. A general theme seems to
be the accumulation in these bodies of translationally sup-
pressed mRNAs, whereby it seems that the fate of these
mRNAs can be cither degradation or re-emergence and
reactivation (3,25,31).

In contrast to these other reported subcellular systems,
in this article, we have described a form of molecular seg-
regation that may not involve the formation of a specific
type of coherent intracellular body, but does involve the
accumulation of proteins that are effectively excluded
from actively translating polysomal mRNPs. This phe-
nomenon is also distinct in that it occurs during expo-
nential growth, and appears to be a form of spatial
modulation of the function(s) of Dhhl and Patl, both
of which are thought to promote mRNA decapping
as well as inhibit translation. We have also shown that
the degree of co-localization of Dhhl and Patl with
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Figure 6. Subcellular localization of Dhh1-GFP in a ptet07::TEF2
(TEFIA) strain at different doxycycline levels. (A) Western blot
showing repression of elF4A expression by addition of different
amounts of doxycycline. Relative expression levels of elF4A were
determined by labelling with a FITC-conjugated secondary antibody,
followed by visualization with a Typhoon Biomolecular Imager (GE
Healthcare) and analysis using ImageQuant software, using hexokinase
as a loading control. The far-left lane (labelled DHH::GFP) shows the
expression levels of hexokinase and eIF4A in a control strain in which
the DHHI::GFP fusion is transcribed from the natural chromosomal
promoter. The other three lanes show, as labelled, 95% expression
(0ng/ml DOX—the promotor substitution induces a 5% decrease in
expression level compared to wild-type), 70% (Sng/ml DOX) and
50% (10ng/ml DOX). (B) Cells were treated as in panel A and then
grown to an ODgy = 0.5 (exponential) or ODggo = 2.0, were visualized
on a Deltavision microscope and then 3D projections were generated
from 50 serial Z-axis images collected at 0.1-micron intervals. (C) Cells
expressing 95, 70 or 50% of the wild-type level of eIlF4A were har-
vested during exponential (left) or retardation phase (diauxic growth
shift; right) growth and extracts from these cells were then analysed by
polysomal gradient fractionation. Corresponding polysomal gradient
fractions were collected and proteins resolved by SDS-PAGE and
probed using anti-GFP antibodies to determine the distribution of
Dhh1-GFP.

translation factors changes to a lesser extent as cells
undergo the diauxic growth shift (Figure 2 and
Supplementary Figure S4). Comparison of the polysomal
distributions of the respective proteins and the quantita-
tion data (Figures 2 and 3) indicates that, during

exponential growth, a substantial part of the Dhhl and
Patl co-localizes with translation factor pools that cycle
on and off mRNP complexes. Subsequent to the diauxic
growth shift, on the other hand, Dhhl and Patl
co-localize to an increased degree with translation factors
that are engaged with actively translating polysomal
mRNP. Since the intracellular abundance of the transla-
tion factors and mRNA has yet to be determined in
ethanol respiration phase cells, we interpret the absolute
co-localization percentages only as a relative guide to
the overall shift in association between the respective
components under study.

The imaging and polysomal gradient data indicate col-
lectively that Dhhl and Patl are granted only restricted
access to actively translating mRNP during exponential
growth. This fits with the concept of co-translational
mRNA decay, as originally observed in bacteria and
more recently reported in yeast (14), since this suggests that
these proteins can, in response to the diauxic growth shift,
gain access to mRNAs that are being translated and then
promote decapping. This would mean that Dhh1 and Patl
would only be capable of fully promoting decapping (and
inhibiting translation, possibly involving an additional
mechanism) on polyribosomal mRNPs under conditions
where the cell needs to reduce its rate of protein synthesis.
However, the data reported here do not suggest that at-
tenuation of translation per se is the determinant of the
re-localization of Dhh1 and Patl or of the increased access
of these proteins to polysomal mRNP complexes in the
cell. Moreover, P body formation (as detected by incorp-
oration of Dhh1-GFP) is not promoted by inhibition of
translation via suppression of translation factor activities
using tetO7-dependent regulation. It is of interest that
Teixeira and colleagues have reported (32) that inhibition
of translation initiation by switching a temperature sensi-
tive prt1-63 strain from 23 to 37°C causes P-bodies to in-
crease in size. Thus, more extreme conditions than those
applied in this work, i.e. complete inhibition of translation
induced by temperature stress, can have an effect on (the
rate of) P-body formation. Overall, it seems that the
remodelling of translationally active mRNPs we have
described here is likely to be triggered by a diauxic
growth-shift-induced molecular pathway that functions in-
dependently of the rate at which the translation machinery
is functioning. The enhanced access of Dhhl and Patl
to actively translating polysomes is consistent with an
attenuated requirement for post-transcriptional expression
of many genes when cells encounter poorer growth
conditions.

While detailed characterization of the mechanistic de-
tails underpinning the re-localiization of Dhhl and Patl
within the cell is beyond the scope of the present article,
we have obtained evidence that suggests that eIF4A, and/
or translation initiation, promotes this re-localization
(compare Figure 6 and Supplementary Figure S10).
Thus elF4A and the decapping activators may act syner-
gistically to promote access to actively translating
polysomal complexes. Earlier studies have indicated that
elF4A (in comparison to Dedl) is not effective in
promoting the long-term scanning stability of ribosomal
pre-initiation complexes that have to negotiate long
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S-UTRs (33,34). In contrast, this result may have
identified a more significant role for this initiation factor
in which its remodelling capability is brought to bear to
enable other proteins access to translationally active
mRNPs. In addition, we have found evidence of changes
in the interactome of Dhhl triggered by the diauxic
growth shift that are likely to reflect corresponding alter-
ations in mRNP structure. This also suggests that there is
remodelling of the translating mRNP downstream of the
diauxic shift, allowing closer association of Dhhl and
Patl. The results of the pull-down experiments suggest
that this remodelling may be promoted or supported by
the DEAD-box helicases Ded1 and eIF4A which, together
with Dhh1 (and possibly Patl), become recruited into the
remodelled mRNP formed in response to diauxie. That a
group of helicases is involved in this remodelling process is
consistent with the perceived general role of this class of
proteins in the cell (35). The closer association of Dhhl,
Patl, Dedl and elF4A in a remodelled mRNP may
possibly serve to partially inhibit the positive roles
played by Dedl and elF4A in the fully active process of
translation initiation.

Overall, the results presented here indicate that future
work should focus on further investigation of the potential
role of at least these four proteins in the broader context
of mRNP restructuring as a means of modulating the
translational activity of polysomes in response to changes
in the cell environment. As with the discovery of P bodies,
our observations suggest that the intracellular distribu-
tions of key proteins involved in the control of translation
and mRNA degradation represent a significant factor in
these proteins’ functionalities. This proposed mode of
action is also in accord with the earlier observation that
Dhhl, Patl and Lsm1-7 are involved in the transition of
brome mosaic virus from translation to replication (36).
Indeed, helicases are likely to be involved in such transi-
tions in a wide range of positive-strand RNA viruses
(including HCV and severe acute respiratory syndrome
coronavirus) (37,38). In this context, it is also interesting
to note the earlier observation that deletion of PAT! in
S. cerevisiae suppresses the deleterious effects of PABI
deletion (5), since this may again be attributable to
effects on mRNP structure associated with the presence
of Patl. Finally, the segregation phenomenon described
here provides a potential explanation why Dhhl and
Patl do not inhibit protein synthesis in vivo during expo-
nential growth yet act as inhibitors when added to cell-free
extracts (4).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online
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