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Abstract: A new fault feature extraction method for rolling element bearing is put forward in this
paper based on the adaptive local iterative filtering (ALIF) algorithm and the modified fuzzy entropy.
Due to the bearing vibration signals’ non-stationary and nonlinear characteristics, the ALIF method,
which is a new approach for the analysis of the non-stationary signals, is used to decompose the
original vibration signals into a series of mode components. Fuzzy entropy (FuzzyEn) is a nonlinear
dynamic parameter for measuring the signals’ complexity. However, it only emphasizes the signals’
local characteristics while neglecting its global fluctuation. Considering the global fluctuation of
bearing vibration signals will change with the bearing working condition varying, we modified
the FuzzyEn. The modified FuzzyEn (MFuzzyEn) of the first few modes obtained by the ALIF
is utilized to form the fault feature vectors. Subsequently, the corresponding feature vectors are
input into the multi-class SVM classifier to accomplish the bearing fault identification automatically.
The experimental analysis demonstrates that the presented ALIF-MFuzzyEn-SVM approach can
effectively recognize the different fault categories and different levels of bearing fault severity.

Keywords: adaptive local iterative filtering; modified fuzzy entropy; SVM; rolling element bearing;
fault diagnosis

1. Introduction

As a vital and widely used unit in the machinery system, rolling element bearings play a crucial
role in the rotary machines. Bearing failure can cause enormous economic losses and can even
be catastrophic [1,2]. Therefore, it is significant to develop an effective method for bearing fault
diagnosis to guarantee the safe operation of the mechanical system. Over the last decades, most fault
diagnosis approaches of rolling element bearing have been about vibration signal analysis, because
rich dynamic information on machine health condition is contained in the signals generated by bearing
vibration [3–7].

Usually, the bearing vibration signals will show characteristics of non-stationarity and
non-linearity [8,9]. In recent years, various advanced time-frequency analysis techniques have been
developed to process the non-stationary signals. As the most representative adaptive analysis method
for non-stationary signals, the empirical mode decomposition (EMD) presented by Huang et al. [10]
has attracted many researchers’ attention [8,11,12]. Although EMD can match the signal characteristic
without a priori selection of any basis, it exhibits some shortcomings, such as a lack of mathematical
foundation and mode mixing [13]. In order to overcome the limitations existing with EMD, some
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new adaptive mode decomposition methods have been developed, such as local mean decomposition
(LMD) [14], empirical wavelet transform (EWT) [15] and variational mode decomposition (VMD) [16].
Liu et al. [17] used LMD to decompose bearing vibration signals effectively. However, LMD also
suffers the shortcomings of mode mixing and the parameters of smoothing and step size need to
be selected properly according to the signal characteristics. EWT and VMD are two variants of
EMD, which have successful applications in the field of bearing fault diagnosis [18–20]. For the
EWT method, the question of how to properly perform the spectrum segmentation is still a problem,
while VMD has the requirement of predetermining the number of decomposition modes. Recently,
the adaptive local iterative filtering (ALIF) method was developed by Cicone et al. [21] for analysis of
non-stationary signals, which can produce completely data-driven decompositions and can suppress
mode mixing [22,23]. Therefore, the ALIF approach is adopted in this study to process vibration signals
of rolling element bearing.

After the vibration signals are decomposed by ALIF, the fault information needs to be extracted
from the decomposition modes. Targeting the characteristics of the non-stationarity and non-linearity
of vibration signals of rolling element bearing, many non-linear analysis parameters have been
introduced to extract information on the bearing conditions. For the rolling element bearing, vibration
signals of different states will exhibit diverse complexity. Hence, some entropy parameters have been
investigated to diagnose the bearing faults. Therein, appropriate entropy (ApEn) and its improvement
sample entropy (SampEn) as well as multi-scale entropy (MSE), hierarchical entropy (HE), were used
to measure the complexity of bearing vibration signals. Through this, a good level of performance of
fault feature extraction can be achieved [24–26]. Nevertheless, the similarity degree between vectors
in SampEn is designed on the basis of Heaviside function whose boundary is rigid. However, the
classes’ boundaries are ambiguous in the real applications, so it has difficulty in determining if an input
pattern belongs to a class [27]. Therefore, the fuzzy entropy (FuzzyEn) algorithm was put forward
in [27], in which exponential function replacing Heaviside function. Because of continuous boundaries
of exponential functions, FuzzyEn is defined more accurately and shows a better statistical stability.
On the basis of FuzzyEn, the multi-scale fuzzy entropy method was developed by Zheng et al. [28] and
it was applied for bearing fault diagnosis. Li et al. [29] proposed a kind of improved multi-scale fuzzy
entropy for the avoidance of inaccurate estimation of entropy values and used it to evaluate complexity
of bearing vibration signals. However, FuzzyEn only emphasizes the signals’ local characteristics
while neglecting its global characteristics because of the vector generalization of removing a local
mean [30]. Considering that the global characteristics of vibration signals of rolling element bearing
may vary as the bearing runs under different conditions, it may be unsuitable to assess the bearing
vibration signals’ complexity by using the original FuzzyEn. Based on this consideration, in this paper,
we modified the algorithm of FuzzyEn by removing the local mean used in the procedure of vector
generalization, and the modified FuzzyEn was then adopted to acquire fault-related information from
the decomposition modes obtained by the ALIF.

Naturally, after the fault features are extracted, an intelligent classifier is required to automatically
identify the bearing fault categories as well as different levels of fault severities. Over the past decades,
various pattern recognition methods have been applied in the field of mechanical fault diagnosis,
among which support vector machines (SVM) [31,32] are the most commonly used ones. On the
basis of statistical learning theory, SVM is suitable to address situations with small-quantity samples.
At the same time, SVM has good generalization ability and can ensure the local and global optimal
solution identical [33]. Because it has high recognition rate and superior generalization ability for
a small quantity of samples, SVM is utilized in this paper to fulfill the fault identification of rolling
element bearing.

To sum up, a novel fault diagnosis approach for rolling element bearing is proposed by combining
ALIF, modified FuzzyEn and SVM in this study. The remainder of this paper is described as follows.
The ALIF algorithm is given briefly in Section 2. Section 3 gives the introduction of the modified FuzzyEn.
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In Section 4, the fault diagnosis approach of rolling element bearing is put forward. Experimental
validation of the presented approach is given in Section 5. Section 6 provides some conclusions finally.

2. Adaptive Local Iterative Filtering

The ALIF algorithm is the improvement of iterative filtering (IF) [34], which uses the same
algorithm framework as the original EMD but computes the moving average of the signal through
convolution using low pass filters [21]. There are two main differences between ALIF and IF. One is that
ALIF calculates the filter length locally and adaptively. The other is that ALIF computes the moving
mean of signals by means of the so-called Fokker–Planck filters, which are achieved as solutions of FP
equations [21]. The ALIF algorithm is depicted as below. Given a signal f (x), xεR, the moving average
of the signal f (x) can be designated as:

Lωn ,ln( f )(x) =
∫ ln(x)

−ln(x)
f (x + t)ωn(x, t)dt (1)

where ωn(x, t) is the filter at step n while 2ln(x) is the mask length.
Assuming f1 = f , the fluctuation in fn can be captured by the operator which is defined as

S1,n( fn) = fn − L(1)
ωn ,ln( fn) = fn+1. Then the first mode can be obtained as M1 = lim

n→∞
S1,n( fn).

There are two loops in the ALIF algorithm: the inner loop and the outer loop. The inner loop extracts
a single mode while the outer loop generates all the modes contained in a signal [21]. The iteration
equation of the inner loop is denoted as:

fn+1(x) = fn(x)−
∫ ln(x)

−ln(x)
fn(x + t)ωn(x, t)dt (2)

In real applications, n is limited based on a stopping criterion, which is defined as follows:

SD =
‖M1,n −M1,n−1‖2
‖M1,n−1‖2

(3)

The inner iteration is stopped when the SD value reaches a certain threshold as recommended
in literature [10,34]. The outer iteration stops when the remainder signal r becomes a trend signal,
which indicates it has no more than one local extreme point. The remainder signal is calculated as
r = f −M1 − · · · −Mk−1. The description in detail about ALIF can be found in [21].

3. Modified Fuzzy Entropy

3.1. Fuzzy Entropy

SampEn adopts Heaviside function to assess the two vectors’ similarity degree while FuzzyEn uses
fuzzy function for the similarity calculation. The computation procedures of FuzzyEn are presented as
follows [27,35].

(1) For a sequence with length N {u(i) : 1 ≤ i ≤ N}, construct the vectors of m-dimension Xm
i :

Xm
i = {u(i), u(i + 1), · · · , u(i + m− 1)} − u0(i)1 ≤ i ≤ N −m + 1 (4)

where Xm
i stands for a new time series, being generalized by subtracting the mean of the m

consecutive u values:

u0(i) = m−1
m−1

∑
j=0

u(i + j) (5)
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(2) The distance between Xm
i and Xm

j is denoted as

dm
ij = d

[
Xm

i , Xm
j

]
= max

k∈[0,m−1]
|(u(i + k)− u0(i))− (u(j + k)− u0(j))| (6)

(3) The similarity degree Dm
ij can be computed by

Dm
ij = µ

(
dm

ij , r
)

(7)

(4) Denote ϕm
i (r) as

ϕm
i (r) = (N −m− 1)−1

N−m

∑
j=1,j 6=i

Dm
ij (8)

(5) The function ϕm
i (r) is defined as

ϕm(r) = (N −m)−1
N−m

∑
i=1

ϕm
i (r) (9)

(6) Similarly, the ϕm+1
i (r) is obtained by repeating the above steps

ϕm+1(r) = (N −m)−1
N−m

∑
i=1

ϕm+1
i (r) (10)

(7) Then define FuzzyEn of the sequence

FuzzyEn(m, r) = lim
N→∞

[
lnϕm(r)− lnϕm+1(r)

]
(11)

(8) Lastly, for a N with finite length, FuzzyEn could be calculated by

FuzzyEn(m, r, N) = lnϕm(r)− lnϕm+1(r) (12)

The exponential function used in FuzzyEn was defined in [27] as

µ(d, r, n) = e−(d/r)n
(13)

3.2. Modified Fuzzy Entropy

One difference between FuzzyEn and SampEn is the computation of the vectors’ similarity degree.
Another difference is the construction of m-dimensional vectors Xm

i , which are generalized by removing
the mean of the segment of the time series defined by Equation (5). However, this implementation
makes FuzzyEn focus only on the signals’ local characteristics while neglecting the corresponding
global characteristics [30]. The global fluctuation in the bearing vibration signals may change with
bearing states varying. Therefore, it may be not suitable to measure the bearing vibration signals’
complexity of using original FuzzyEn. Based on this consideration, the local mean is removed and the
Equation (5) is modified as

Xm
i = {u(i), u(i + 1), · · · , u(i + m− 1)}1 ≤ i ≤ N −m + 1 (14)

In this paper, the Equation (14) was utilized to calculate the fuzzy entropy values to evaluate
the complexity of bearing vibration signals. By combining the modified FuzzyEn (MFuzzyEn) and
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ALIF, a new feature extraction approach of rolling element bearing is put forward by calculating the
MFuzzyEn values over different modes obtained by ALIF.

3.3. Parameter Selection

Before the calculation of MFuzzyEn, four parameters need to be determined, viz. m, r, N, and
n. The detailed reconstruction of the dynamic process is determined by the embedding dimension
m. Normally, m is set to 2. The fuzzy entropy value depends less on the record length, so N is set to
4096 in this paper. The width of the fuzzy function boundary is decided by the parameter r while the
boundary gradient is determined by the parameter n. According to previous study [25,27], r is chosen
by 0.1–0.25 multiplying standard deviation (SD) and n should be small integers. Here, r = 0.2SD is
selected while n = 2 is given.

4. The Proposed Bearing Fault Diagnosis Method

By integrating ALIF, modified FuzzyEn and SVM, a novel rolling element bearing fault diagnosis
approach is presented as below:

(1) Vibration signals of rolling element bearing under different conditions are acquired by using
an accelerometer.

(2) The ALIF algorithm is utilized to decompose the acquired bearing vibration signals and a series
of mode components are obtained. The first several modes containing rich fault information are
chosen for research.

(3) Calculate the MFuzzyEn of chosen components, and then the corresponding entropy value is
treated as fault feature for reflecting working conditions of rolling element bearing.

(4) The obtained fault feature set is used for the training and testing of multi-class SVM classifier and
fault recognition for rolling element bearing is completed automatically.

The flow chart of the proposed fault diagnosis method is illustrated in Figure 1.
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5. Application

5.1. Experimental Data

The vibration signals coming from the bearing data center of Case Western Reserve University [36]
are used in this paper. The experimental data acquisition apparatus and description can be found in
detail in the same literature. The experimental setup is shown in Figure 2. For each test bearing, three
fault categories were simulated: inner race fault, outer race fault and rolling element fault. For each
fault type, the fault diameters include 0.1778 mm, 0.3556 mm, 0.5334 mm as well as 0.7112 mm.
An accelerometer mounted on the motor housing was adopted to acquire the vibration data at a
sampling frequency of 12 kHz and the collected data is truncated into a 4096-point signal for further
processing. The bearing vibration data was used for analysis when the load was 0 horsepower and the
corresponding speed was 1797 rpm. The data description in detail is shown in Table 1.
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Figure 2. Picture of the experimental setup.

Table 1. Description of experimental data.

Bearing State Fault Diameter
(mm)

Label of
Classification Bearing State Fault Diameter

(mm)
Label of

Classification

Normal 0 1 ORF I 0.1778 6
IRF I 0.1778 2 ORF II 0.3556 7
IRF II 0.3556 3 ORF III 0.5334 8
IRF III 0.5334 4 BF I 0.1778 9
IRF IV 0.7112 5 BF II 0.7112 10

5.2. Experimental Analysis

To validate the effectiveness of the proposed method, the analysis of the experimental data is
carried out. The vibration signals contain three fault categories and different severities, thus the bearing
fault diagnosis is actually a ten-class recognition problem. The data set is composed of 290 samples in
total, and the length of each data sample is 4096. Among these 290 data samples, there are 14 samples
of each category, In total 140 samples are chosen at random as training data while the remaining 150 are
used as testing data.

The time waveforms of bearing vibration signals under ten working conditions are given in
Figure 3. As is shown, it is hard to identify various bearing conditions based only on time domain
waveforms. Therefore, it is essential to further process the original vibration signals. Due to the
non-stationary and nonlinear characteristics of the vibration signals, the ALIF method is utilized to
decompose them into a series of mode components. The state-related information is mainly hidden in
the first several modes [22,23], so the first six modes are used to calculate the MFuzzyEn values, which
form the feature vector.
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Consequently, 290 feature vectors can be obtained and the typical one for ten bearing conditions
is illustrated in Figure 4. From Figure 2, we can see that vibration signals of different conditions have
different entropy values over various modes. Especially for the first three modes, the entropy values
present obvious distinction. To demonstrate the superiority of the feature extraction performance
of the ALIF-MFuzzyEn over that of ALIF-FuzzyEn, the visualization of the first three features are
correspondingly given in Figures 5 and 6. It can be observed from Figure 5 that data points of the
same working conditions are concentrated around one point and the data of different conditions are
separated from each other. It can be seen from Figure 6 that there is overlapping between the data
of some different conditions. This indicates that the ALIF-MFuzzyEn has better feature extraction
ability than ALIF-FuzzyEn. For comparison purpose, the MFuzzyEn values of the first several modes
obtained by using the EMD method (i.e., EMD-MFuzzyEn) are also computed and the first three
features are shown in Figure 7. As shown in Figure 7, there also exists some data of different running
states overlapping with each other. This comparison demonstrates that the feature extraction ability of
ALIF-MFuzzyEn is superior to that of EMD-MFuzzyEn.
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Figure 6. The first three features obtained by ALIF-FuzzyEn.
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The above analysis shows the advantage of the presented ALIF-MFuzzyEn method over
ALIF-FuzzyEn and EMD-MFuzzyEn. Therefore, the ALIF-MFuzzyEn is employed to form feature
vectors and to train multi-class SVM, where the kernel of radial basis function (RBF) is chosen because
of its merits [37]. For the RBF-SVM, there are two parameters needing to be chosen, which are the
optimal kernel parameter and penalty parameter. In this paper, these two parameters will be obtained
by using the five-fold cross-validation approach. After training, the feature vectors of test data can be
identified by a trained SVM classifier.

To contrast the recognition performance of ALIF-MFuzzyEn-SVM with that of ALIF-FuzzyEn-SVM,
the feature vectors obtained by ALIF-FuzzyEn are also used for the training and testing of the SVM
classifier. At the same time, in order for a comprehensive comparison, the effect of the number of used
features is investigated. The corresponding classification results are described in Table 2. As it can be
seen, the identification rate changes with the number of used features varying. The best classification
rate of the ALIF-MFuzzyEn-SVM method can achieve 100% when the number of used features is
two. On the contrary, the highest identification rate of the ALIF-FuzzyEn-SVM method is only 95.33%
when the first five features are used for classification, with seven samples misclassified. To more
clearly demonstrate the comparison between the aforementioned two methods, the classification
accuracy comparison versus the number of used features is presented in Figure 8. We can observe from
Figure 8 that all the recognition rates based on ALIF-MFuzzyEn-SVM are higher than those based on
ALIF-FuzzyEn-SVM, except when the feature number equals one. Although the ALIF-FuzzyEn-SVM
based accuracy is relatively high when the feature number is equal to one, it is just 88.67%, which is
far below 100%. This comparison results verify that ALIF-MFuzzyEn-SVM has better classification
performance than ALIF-MFuzzyEn-SVM.

Table 2. Classification results of testing data based on the features extracted by FuzzyEn and MFuzzyEn
with different number of features.

Used Features

ALIF + MFuzzyEn + SVM ALIF + FuzzyEn + SVM

The Number of
Misclassified Data Accuracy (%) The Number of

Misclassified Data Accuracy (%)

First 1 33 78 17 88.67
First 2 0 100 10 93.33
First 3 5 96.67 12 92
First 4 5 96.67 8 94.67
First 5 1 99.33 7 95.33
First 6 5 96.67 9 94

Moreover, the classification result of EMD-MFuzzyEn-SVM is also utilized for comparison
with that of ALIF-MFuzzyEn-SVM. The identification results of these two methods versus
different feature numbers are shown in Figure 9, from which it can be seen that all the
identification rates of EMD-MFuzzyEn-SVM are lower than those of ALIF-MFuzzyEn-SVM.
The best classification accuracy based on EMD-MFuzzyEn-SVM is 97.33%, lower than that of
ALIF-MFuzzyEn-SVM, that is 100%. The above results show the advantage of ALIF-MFuzzyEn-SVM
over EMD-MFuzzyEn-SVM in classification performance and further verify the effectiveness of the
developed ALIF-MFuzzyEn-SVM approach.
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6. Conclusions

A new rolling element bearing fault diagnosis approach is put forward in this paper by combining
adaptive local iterative filtering (ALIF), modified fuzzy entropy (MFuzzyEn) and support vector
machine (SVM). The ALIF algorithm is utilized to decompose bearing vibration signals and then
a series of modes are obtained. The MFuzzyEn values of the first few modes are computed to
form fault feature vectors, which are then input into the SVM classifier to realize fault pattern
recognition. For the purpose of comparison, FuzzyEn is also used to analyze the experimental signals,
and the comparison results indicate that ALIF-MFuzzyEn has better feature extraction ability than
ALIF-FuzzyEn. Furthermore, the effectiveness of ALIF is compared with that of EMD, which shows that
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the presented ALIF-MFuzzyEn-SVM approach can obtain higher accuracy than EMD-MFuzzyEn-SVM.
The experimental analysis demonstrates that the developed method based on ALIF, MFuzzyEn and
SVM can effectively identify bearing fault categories and various levels of severities. However, the
proposed approach only considers the vibration data under the same bearing speed. The effect of the
speed changes on the fault identification should be investigated in the future.
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