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Abstract
In many fields and applications, count data can be subject to delayed reporting. This is

where the total count, such as the number of disease cases contracted in a given week,

may not be immediately available, instead arriving in parts over time. For short-term

decision making, the statistical challenge lies in predicting the total count based on

any observed partial counts, along with a robust quantification of uncertainty. We

discuss previous approaches to modeling delayed reporting and present a multivariate

hierarchical framework where the count generating process and delay mechanism are

modeled simultaneously in a flexible way. This framework can also be easily adapted

to allow for the presence of underreporting in the final observed count. To illustrate

our approach and to compare it with existing frameworks, we present a case study

of reported dengue fever cases in Rio de Janeiro. Based on both within-sample and

out-of-sample posterior predictive model checking and arguments of interpretability,

adaptability, and computational efficiency, we discuss the relative merits of differ-

ent approaches.

K E Y W O R D S

Bayesian methods, censoring, generalized Dirichlet, multivariate count data, notification delay, underre-

porting

1 INTRODUCTION

In many biostatistical applications where count data are col-

lected, a situation can arise where the available reported count

is believed to be less than or equal to the true count. Delayed

reporting in particular is where the total observable count,

which may still be less than the true count, will only be avail-

able after a certain amount of time. In some situations, infor-

mation will trickle in over time so that the current total count

gets ever closer to the true count, before eventually reaching

the final total observable count.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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An example of this situation is the occurrence of dengue

fever, a viral infection spread by mosquitoes, in Rio de Janeiro.

Delayed reporting implies that, at the end of some week 𝑡,

we will have only observed a portion of the total observable

number of cases 𝑦𝑡 which were contracted over the course of

week 𝑡. At 𝑡 + 1, a further portion will become available and so

on, such that after a number of weeks 𝑦𝑡 eventually becomes

known. Figure 1 shows an instance of the data, where 𝑡 = 114.

The gray portions of each bar represent the yet unknown cases

as of week 𝑡. For week 𝑡 − 1, we only have 2 weeks worth of

information because we only have data that arrived in weeks
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F I G U R E 1 Bar plot of Rio de Janeiro dengue cases in the weeks

leading up to time 𝑡 = 114. The gray bars represent the total (as yet

unobserved) number of reported cases, while the different colored bars

show the number of cases reported after each week of delay. This figure

appears in color in the electronic version of this article, and any

mention of color refers to that version

𝑡 − 1 and 𝑡. Likewise, for week 𝑡 − 2 we only have 3 weeks

worth of information and so on.

Reporting delay is a problem when decisions based on the

total count need to be made before it has been completely

observed. Figure 1, for example, illustrates that it can take

months before 𝑦𝑡 is known. This impedes the response time

to severe outbreaks and puts lives at risk. It is therefore neces-

sary to make predictions about the current state of the disease

based on the partial counts observed (nowcasting), to enable

action such as issuing of warnings for predicted epidemics

before they have been completely detected by the data. This

motivates a statistical treatment of delayed reporting, aiming

to predict the total count based on corresponding available

partial counts. Further goals include predicting total counts

which have not occurred yet (forecasting) and learning about

the structure of the delay mechanism, to inform improvements

in reporting.

In this article, we review and evaluate previous statisti-

cal approaches to modeling delayed reporting of counts (Sec-

tion 2). We then propose a general framework for model-

ing count data with discrete-time delays, which is sufficiently

flexible to be used for a range of applications (Section 3). We

present two variations of this framework which differ in how

the expected delay mechanism is modeled. In Section 4, we

present a case study of dengue fever counts in Rio de Janeiro to

test the efficacy of the proposed framework compared to exist-

ing approaches. Here, also in a more comprehensive predic-

tion experiment presented in Web Appendix A, we base model

assessment on posterior predictive checking of nowcasting

and forecasting performance. In Section 5, we discuss under-

reporting in the final observed count and how the proposed

framework can be adapted to account for it. Finally, Section 6

concludes with a discussion of interpretability, adaptability,

and ease of implementation.

2 BACKGROUND

We begin by introducing some notation. Let 𝑦𝑡 be the total

observable count occurring at temporal unit 𝑡 ∈ 𝑇 . We refer

to 𝑦𝑡 as “observable” because this may still be an underrep-

resentation of the true count 𝑥𝑡 ≥ 𝑦𝑡, an issue we return to in

Section 5. Suppose that after some (temporal) delay unit (eg,

1 week) a portion of 𝑦𝑡, 𝑧𝑡,1 ≤ 𝑦𝑡, has been reported. At

the next delay unit, we observe an additional portion of 𝑦𝑡,

denoted as 𝑧𝑡,2. This continues so that at each delay unit

𝑑 ∈ {1,… , 𝐷} (where 𝐷 is the maximum possible delay) we

observe a count 𝑧𝑡,𝑑 and
∑𝑑

𝑗=1 𝑧𝑡,𝑗 gets closer to 𝑦𝑡.

The biostatistical literature on modeling delayed report-

ing is well established, notably for correcting AIDS or HIV

records (eg, Rosinska et al. (2018)). Historically, the task of

correcting the delayed reporting has been separated from the

task of modeling or forecasting the incidence of the total count

(see for instance Brookmeyer and Damiano, 1989, and Harris,

1990). However, this ignores the joint uncertainty in the inci-

dence of the total count and the presence of delay. For exam-

ple, suppose that at time 𝑡 the number of cases reported in the

first week 𝑧𝑡,1 is unusually low. This could either be because a

low proportion of 𝑦𝑡 was reported in the first week, or because

𝑦𝑡 was itself unusually low, or both. Differentiating between

these cases is vital for reliable prediction, so from this point

on, we only focus on approaches which jointly model the delay

mechanism and the total count.

2.1 Multinomial mixture approach

A sensible approach for modeling delayed reporting involves

the idea of jointly modeling 𝑧𝑡,𝑑|𝑦𝑡 at the same time as the

totals 𝑦𝑡. Höhle and an der Heiden (2014) propose modeling

the delayed counts as 𝒛𝑡|𝑦𝑡 ∼ multinomial(𝒑𝑡, 𝑦𝑡). Here 𝑝𝑡,𝑑
is the expected proportion of 𝑦𝑡 which will be reported at

delay 𝑑 and is modeled as arising from the generalized

Dirichlet(𝜶,𝜷) (GD) distribution (Wong, 1998), an extension

of the Dirichlet(𝜶) distribution (Kotz et al., 2004). If 𝒑 =
(𝑝1,… , 𝑝𝑘) ∼ Dirichlet(𝜶), then for 𝜙 =

∑𝑘

𝑖=1 𝛼𝑖, E[𝑝𝑖] =
𝜇𝑖 = 𝛼𝑖∕𝜙, Var[𝑝𝑖] = 𝜇𝑖(1 − 𝜇𝑖)∕(𝜙 + 1) and Cov[𝑝𝑖, 𝑝𝑗] =
−𝜇𝑖𝜇𝑗∕(𝜙 + 1), so the covariance of any pair is negative.

The conditional distributions are 𝑝1 ∼ Beta(𝛼1,Σ𝑘
𝑗=2𝛼𝑗);

𝑞𝑖 ∼ Beta(𝛼𝑖,Σ𝑘
𝑗=𝑖+1𝛼𝑗), where 𝑝𝑖 = 𝑞𝑖(1 −

∑𝑖−1
𝑗=1 𝑝𝑗) and

finally 𝑝𝑘 = 1 −
∑𝑘−1

𝑗=1 𝑝𝑗 . The GD introduces a free parame-

ter 𝛽𝑖 so that each 𝑞𝑖 ∼ Beta(𝛼𝑖, 𝛽𝑖). The increased number of

parameters (2𝑘 − 1 compared to 𝑘 in the Dirichlet) results in

a more general covariance structure, for example, allowing
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for positive covariances (Wong, 1998). As such it is a

very flexible distribution for use in modeling multivariate

proportion or count data, where the different elements have

distinct variances or indeed an unusual covariance structure

(eg, Stoner et al., 2019b). In Höhle and an der Heiden (2014),

𝜶 and 𝜷 are temporally constant and 𝑦𝑡 is a latent Poisson

variable:

𝑦𝑡 ∣ 𝜆𝑡 ∼ Poisson(𝜆𝑡); log(𝜆𝑡) = 𝑓 (𝑡), (1)

where 𝑓 (𝑡) represents a combination of covariate or random

effects. Wang et al. (2018) also apply this approach to

monitoring of food-borne diseases.

The assumption that 𝜶 and 𝜷 are time-invariant can be

viewed as a restriction in capturing any delay mechanism

which varies systematically over time, potentially inhibiting

nowcasting and forecasting precision. Höhle and an der Hei-

den (2014) address this by replacing the GD component with

a more conventional multinomial regression. The modeled

quantity is then 𝜈𝑡,𝑑 , the expected proportion of counts which

will be reported at delay 𝑑 out of those which are yet-to-be-

reported:

log
(

𝜈𝑡,𝑑

1 − 𝜈𝑡,𝑑

)
= 𝑔(𝑡, 𝑑); 𝑝𝑡,𝑑 = 𝜈𝑡,𝑑

(
1 −

𝑑−1∑
𝑖=1

𝑝𝑡,𝑖

)
, (2)

where 𝑔(𝑡, 𝑑) is a linear combination of covariate effects.

Quantity 𝜈𝑡,𝑑 is termed the “hazard” as it is akin to a haz-

ard function in survival regression. This model allows for

temporal heterogeneity in the delay mechanism; however,

it is in part more restrictive. Note that this is in essence

a multivariate generalization of the binomial framework for

underreporting presented in Stoner et al. (2019a), where 𝑦𝑡
is made up of only two partial counts: an observable total

count and an unobservable remainder that was missed due to

underreporting.

Removing the GD variability risks confounding variabil-

ity in the delay mechanism with variability in the total count

𝑦𝑡 when nowcasting. We illustrate this by considering the

predictive distribution for unobserved totals 𝑦𝑡 given partial

counts 𝒛𝑡: 𝑝(𝑦𝑡|𝒛𝑡) ∝ 𝑝(𝒛𝑡|𝑦𝑡)𝑝(𝑦𝑡). Here 𝑝(𝒛𝑡|𝑦𝑡) is multino-

mial, which lacks flexibility in the variance since the means,

variances, and covariances are all defined wholly by 𝒑𝑡.

If there is excess variability (overdispersion) in 𝒛𝑡|𝑦𝑡, this

is likely to be erroneously absorbed by 𝑝(𝑦𝑡). For exam-

ple, if 𝑧𝑡,1∕𝑦𝑡 is too high for the multinomial to reasonably

capture given 𝑝𝑡,1, then predictions of 𝑦𝑡 may be too high

when nowcasting. Moreover, if both the mean and corre-

lation structure in 𝒛𝑡,𝑠|𝑦𝑡,𝑠 are exclusively defined by 𝒑𝑡,𝑠,

then flexibility in capturing unusual covariance structures is

limited.

2.2 Conditional independence approach

A similar approach presented in Salmon et al. (2015) extends

the Poisson model for 𝑦𝑡 to a negative-binomial (NB), where

the additional parameter 𝜃 allows for overdispersion:

𝑦𝑡 ∣ 𝜆𝑡, 𝜃 ∼ NB(𝜆𝑡, 𝜃); log(𝑝𝑡,𝑑) = 𝑔(𝑡, 𝑑), (3)

where 𝜆𝑡 is modeled as in (1). Here the multinomial probabil-

ities 𝑝𝑡,𝑑 are modeled directly with a log-link. The marginal

distribution for 𝒛𝑡 is then also NB:

𝑧𝑡,𝑑 ∣ 𝑝𝑡,𝑑 , 𝜆𝑡 ∼ NB(𝜇𝑡,𝑑 = 𝑝𝑡,𝑑𝜆𝑡, 𝜃); (4)

log(𝜇𝑡,𝑑) = log(𝑝𝑡,𝑑𝜆𝑡) = 𝑓 (𝑡) + 𝑔(𝑡, 𝑑). (5)

The resulting marginal model is effectively (conditional on

dispersion parameters) a NB generalized linear model (GLM)

(Dobson and Barnett, 2018) for 𝑧𝑡,𝑑 . It is also possible to

arrive at this model by generalizing the Chain-Ladder method

(Mack, 1993), often used in the field of actuarial statistics for

projecting ultimate losses from delayed insurance claims.

The advantage of only considering the marginal model

is that it can be easily implemented in a variety of like-

lihood frameworks (such as generalized additive models;

Wood, 2017), as well as Bayesian ones. For example, Bas-

tos et al. (2019) use integrated nested Laplacian approxima-

tions (INLA) (Lindgren and Rue, 2015) to apply this frame-

work to dengue fever in Rio de Janeiro and to spatiotemporal

Severe Acute Respiratory Infection (SARI) data in the state

of Paraná (Brazil). However, there is an inherent danger in

directly modeling 𝒛𝑡: when the multinomial model is not able

to capture all of the variability in the delay mechanism, the

dispersion parameter 𝜃 must account for this, in addition to

any overdispersion in 𝑦𝑡. This amalgamation of overdispersion

from both 𝑦𝑡 and 𝑧𝑡,𝑑 means that estimates for 𝜃 may lead to

excessive variance in any predicted 𝑦𝑡 when simulating from

(3). We illustrate this using simulated data in Section 1 of Web

Appendix A.

Instead, we may predict 𝑦𝑡 as 𝑦𝑡 =
∑𝐷

𝑑=1 𝑧𝑡,𝑑 . This has

two issues: First, uncertainty in the delay component of

𝑧𝑡,𝑑 is potentially transferred to 𝑦𝑡 through the summa-

tion. This may result in predictive uncertainty (eg, as quan-

tified by 95% prediction intervals) that is prohibitively

large, particularly when forecasting into the future where

no 𝑧𝑡,𝑑 are available. Second, we would want Var[𝑦𝑡] =
Var[

∑𝐷

𝑑=1 𝑧𝑡,𝑑] =
∑𝐷

𝑖=1
∑𝐷

𝑗=1 Cov[𝑧𝑡,𝑖, 𝑧𝑡,𝑗] to be captured

well. In turn, Cov[𝑧𝑡,𝑖, 𝑧𝑡,𝑗] must be captured well, but this

is restricted by the assumption that 𝑧𝑡,𝑑 are independent

(given 𝜇𝑡,𝑑). In particular, this ignores a considerable source

of positive covariance in 𝒛𝑡. Consider that (3) is equivalent

to a Poisson-gamma mixture, that is, 𝑦𝑡 ∣ 𝛾𝑡 ∼ Poisson(𝛾𝑡),
where 𝛾𝑡 ∼ Gamma(𝜃, 𝜃𝜆−1

𝑡
). The marginal model for 𝑧𝑡,𝑑 is
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therefore Poisson(𝑝𝑡,𝑑𝛾𝑡), where 𝐸[𝑧𝑡,𝑑 ∣ 𝛾𝑡] = 𝑝𝑡,𝑑𝛾𝑡, such that

𝛾𝑡 induces positive covariance in 𝒛𝑡.

In the following section, we present a general modeling

framework, which can capture heterogeneity in the delay

mechanism and can appropriately separate variability and

uncertainty in the delay mechanism from the model of the

total count.

3 GENERALIZED
DIRICHLET-MULTINOMIAL
FRAMEWORK

We begin by defining a NB model for the total counts:

𝑦𝑡 ∣ 𝜆𝑡, 𝜃 ∼ NB(𝜆𝑡, 𝜃); log(𝜆𝑡) = 𝑓 (𝑡), (6)

with 𝑓 (𝑡) a general function as in Section 2. Given 𝑦𝑡, the

model for the partial counts is

𝒛𝑡 ∣ 𝒑𝑡, 𝑦𝑡 ∼ Multinomial(𝒑𝑡, 𝑦𝑡). (7)

As discussed in Section 2.1, assuming that 𝒑𝑡 are fixed given

any random effects or covariates is problematic: there is a risk

of confounding variability in the delay mechanism with vari-

ability in 𝑦𝑡 when nowcasting, and there is limited flexibility in

capturing unusual covariance structures. Both of these issues

can be addressed by assuming 𝒑𝑡 ∼ GD(𝜶𝑡, 𝜷𝑡), where

𝑝(𝑝1, 𝑝2,… , 𝑝𝑘 ∣ 𝜶,𝜷)

= 𝑝
𝛽𝑘−1−1
𝑘

𝑘−1∏
𝑖=1

⎡⎢⎢⎣
𝑝
𝛼𝑖−1
𝑖

𝐵(𝛼𝑖, 𝛽𝑖)

(
𝑘∑
𝑗=𝑖

𝑝𝑗

)𝛽𝑖−1−(𝛼𝑖+𝛽𝑖)⎤⎥⎥⎦. (8)

The marginal distribution of 𝒛𝑡 is therefore a general-
ized Dirichlet-multinomial(𝜶𝑡,𝜷𝑡, 𝑦𝑡) (GDM), with probabil-
ity mass function:

𝑝(𝑧1, 𝑧2,… , 𝑧𝑘 ∣ 𝜶,𝜷, 𝑦)

= Γ(𝑦 + 1)
Γ(𝑧𝑘 + 1)

𝑘−1∏
𝑖=1

[
Γ(𝑧𝑖 + 𝛼𝑖)Γ(

∑𝑘

𝑗=𝑖+1 𝑧𝑗 + 𝛽𝑖)

𝐵(𝛼𝑖, 𝛽𝑖)Γ(𝑧𝑖 + 1)Γ(𝛼𝑖 + 𝛽𝑖 +
∑𝑘

𝑗=𝑖 𝑧𝑗)

]
. (9)

For nowcasting. we need predictive inference for 𝑦𝑡 given

any observed 𝑧𝑡,𝑑 (as well as any preceding observed 𝑦𝑡).

Using Markov chain Monte Carlo (MCMC; as is done

here), this is possible by sampling the corresponding not-yet-

observed 𝑧𝑡,𝑑 and 𝑦𝑡. We therefore need to be able to sam-

ple from the conditional distributions 𝑧𝑡,𝑑 ∣ 𝑧𝑡,1,… , 𝑧𝑡,𝑑−1, 𝑦𝑡,

which are given by

𝑧𝑖 ∣ 𝒛−𝑖,𝜶,𝜷, 𝑦 ∼ Beta-Binomial(𝛼𝑖, 𝛽𝑖, 𝑛𝑖 = 𝑦 −
∑
𝑗<𝑖

𝑧𝑗); (10)

𝑝(𝑧𝑖 ∣ 𝒛−𝑖,𝜶,𝜷, 𝑦) =
(
𝑛𝑖
𝑧𝑖

)
𝐵(𝑧𝑖 + 𝛼𝑖, 𝑛𝑖 − 𝑧𝑖 + 𝛽𝑖)

𝐵(𝛼𝑖, 𝛽𝑖)
. (11)

To sensibly model structured variability in the delay mecha-

nism, we re-parametrize (10) in terms of mean 𝜈𝑡,𝑑 and dis-

persion 𝜙𝑡,𝑑 , where 𝛼𝑡,𝑑 = 𝜈𝑡,𝑑𝜙𝑡,𝑑 and 𝛽𝑡,𝑑 = (1 − 𝜈𝑡,𝑑)𝜙𝑡,𝑑 .

Having already observed some delayed counts

𝑧𝑡,1,… , 𝑧𝑡,𝑑−1 corresponding to the total count 𝑦𝑡, 𝜈𝑡,𝑑
represents the proportion of the remaining (so far unreported)

counts, we expect to be reported in the next delay step 𝑑.

Variability about 𝜈𝑡,𝑑 is controlled by 𝜙𝑡,𝑑 , which can be

generally characterized as a function of time and delay:

log(𝜙𝑡,𝑑) = ℎ(𝑡, 𝑑). (12)

Unlike the GLM approach, predictive inference for 𝑦𝑡 is

based on both the delayed counts 𝒛𝑡 and previous observed

values 𝑦𝑡′ , for 𝑡′ ≤ 𝑡 −𝐷 + 1. Using MCMC automatically

generates predictive samples from 𝑦𝑡|𝒛𝑡, 𝑦𝑡′ . Furthermore,

when nowcasting or forecasting, uncertainty in the delay

mechanism only propagates into predictive uncertainty for 𝑦𝑡
through the available partial counts (observed elements of 𝒛𝑡)

for that week. Uncertainty in the behavior of any unobserved

𝒛𝑡 (or corresponding 𝝂𝑡) does not influence predictions of 𝑦𝑡.

In the following subsections, we present two alternative mod-

els for the proportions 𝜈𝑡,𝑑 .

3.1 Hazard model

The first model for the delay mechanism is a natural exten-

sion of the multinomial regression in Höhle and an der Hei-

den (2014). The expected delay mechanism is characterized

directly in terms of 𝜈𝑡,𝑑 , which is akin to a hazard function in

survival regression:

log
(

𝜈𝑡,𝑑

1 − 𝜈𝑡,𝑑

)
= 𝑔(𝑡, 𝑑). (13)

The intuition is to think about how the temporal structure in

the proportion of reported cases differs across delay levels.

Figure 2 shows the proportion of dengue cases reported in

each of the first three delay weeks, out of all those yet-to-

be-reported. In the left plot, the proportion of cases reported

in the same week they occurred (d = 1) generally decreases

over 2011 before increasing again. We could, therefore, define

𝑔(𝑡, 1) as a smooth function of time.

While this characterization is intuitive for the first delay, it

loses interpretability as the delay increases. For example, it

is difficult to intuitively understand the expected proportion

reported after 6 weeks of delay, out of those unreported after

5 weeks. We could just include a different smooth function

of time in each 𝑔(𝑡, 𝑑), but it is not immediately obvious how

to simplify this for less complicated temporal structures and
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F I G U R E 2 Proportion of not-yet-reported dengue cases (𝑦𝑡 −
∑𝑑−1

𝑗=0 𝑧𝑡,𝑗 , with 𝑧𝑡,0 = 0), with super-imposed LOESS estimates, reported in the

same week they occurred (d = 1, left), in the week after they occurred (d = 2, center), and in week d = 3 (right). This figure appears in color in the

electronic version of this article, and any mention of color refers to that version

F I G U R E 3 Cumulative proportion of total reported dengue cases

reported after each week of delay, with no transformation (left) and a

probit transformation (right). This figure appears in color in the

electronic version of this article, and any mention of color refers to that

version

reduce the risk of overparametrization. In the following sub-

section, we present an equally flexible but more interpretable

delay model.

3.2 Survivor model

Instead of different temporal structures for each delay, we can

think about a delay structure for each time point. In particu-

lar, we can examine how the cumulative proportion of cases,

defined as 𝑠𝑡,𝑑 =
∑𝑑

𝑗=1 𝑧𝑡,𝑗∕𝑦𝑡 ∈ [0, 1], varies with time. The

two plots in Figure 3 show 𝑠𝑡,𝑑 and probit(𝑠𝑡,𝑑) plotted against

𝑑 for dengue, where a clear pattern emerges: a collection of

similar curves, shifted up and down as time varies. For exam-

ple, curves around 𝑡 = 80 are usually lower down compared

to earlier realizations (eg, around 𝑡 = 20). This motivates a

general model for the expected cumulative proportions:

probit(𝐸[𝑠𝑡,𝑑]) = probit(𝑆𝑡,𝑑) = 𝑔(𝑡, 𝑑), (14)

where 𝑔(𝑡, 𝑑) is once again a general combination of covari-

ates or random effects. We refer to this as the “survivor”

variant of the GDM framework, as 𝑆𝑡,𝑑 is akin to a survivor

function. The familiar relative proportions 𝜈𝑡,𝑑 can be com-

puted by

𝜈𝑡,𝑑 =
𝑆𝑡,𝑑 − 𝑆𝑡,𝑑−1

1 − 𝑆𝑡,𝑑−1
. (15)

Including delay-time interactions in 𝑔(𝑡, 𝑑) results in equiv-

alent flexibility to the hazard variant in capturing complex

delay mechanisms. However, a key advantage of the survivor

variant is that it remains intuitive for an arbitrary number of

delay levels. Moreover, it can be easily reduced to more effi-

ciently capture simple delay mechanisms (eg, as in Figure 3).

In the subsequent section, we will apply comparable GDM

hazard, GDM survivor and GLM models to dengue fever data,

discussing their relative merits with respect to performance in

model checking, nowcasting, and forecasting.

4 CASE STUDY

Dengue fever is a mosquito-borne viral infection that may

evolve into a potentially fatal condition known as severe

dengue (WHO, 2018). It is a major societal burden, partic-

ularly in Brazil which reports more dengue cases than any

other country (Silva et al., 2016). Effective response to dengue

requires early detection (WHO, 2018), so preparedness of

healthcare providers for outbreaks relies on timely informa-

tion. Though the reporting of dengue cases to the Brazilian

national surveillance system (SINAN) is mandatory (Silva

et al., 2016), it can take weeks/months of delay for the weekly

number of reported cases to approach a final count. As such,

statistical models are used to correct delays and predict out-

breaks before the total count is available (Bastos et al., 2019).

Here we consider data on dengue cases in Rio de Janeiro,

occurring in weeks 𝑡 = 1 (week commencing (w/c) January

3, 2011) to 𝑡 = 120 (w/c April 15, 2013). For illustration, we

assume that present day, denoted by 𝑡0, is week 𝑡0 = 114 (w/c
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F I G U R E 4 Total number of reported dengue cases from 2011

onwards in Rio de Janeiro. Different colors represent which data are

fully observed, partially observed or unobserved at week 𝑡 = 114
(March 2013). This figure appears in color in the electronic version of

this article, and any mention of color refers to that version

March 4, 2013). Furthermore, we assume the total count to be

the number of cases reported within 6 months of occurrence.

This means that 𝑦𝑡 =
∑27

𝑑=1 𝑧𝑡,𝑑 , where 𝑧𝑡,1 (𝑑 = 1) represents

the number of cases reported in the same week they occurred.

Similarly, 𝑧𝑡,2 (𝑑 = 2) represents the number of cases reported

in the week after they occurred and so on. For 𝑡0 = 114, we

have 88 weeks of fully observed total counts 𝑦𝑡, while 𝑦89–

𝑦114 are partially observed and must be nowcasted. Unob-

served 𝑦𝑡 for 𝑡 > 114 constitute the forecasting period.

Figure 4 shows the associated time series of 𝑦𝑡. There

is some evidence of seasonality, with outbreaks starting at

the beginning of the calendar year, ending approximately

6 months later. This may be because dengue incidence is con-

nected to the time of and climatological conditions (Morales

et al., 2016). Some nonseasonal temporal structure is also

evident, for example, the 2012 outbreak is more severe than

the one in 2011. Finally, we can see (with hindsight) that

at 𝑡0 = 114 we are well into a third outbreak, with worse

to come.

4.1 Formulation of competing GDM
and GLM models

Modeling all available partial counts 𝑧𝑡,𝑑 (for 𝑑 = 1,… , 27)

maximizes predictive information, albeit at a potentially high

computational cost. In some cases, it may be more pragmatic

to only model 𝑧𝑡,𝑑 up to 𝑑 = 𝐷′, alongside the sum of the

remaining counts 𝑟𝑡 = 𝑦𝑡 −
∑𝐷′

𝑑=1 𝑧𝑡,𝑑 . In the GDM approach,

we achieve this by only including the conditional models for

the first 𝐷′ partial counts, such that the remainder 𝑟𝑡 is mod-

eled implicitly, while in the GLM approach 𝑟𝑡 is modeled

by (4), as if it were an individual 𝑧𝑡,𝑑 . In Section 4 of Web

Appendix A, we present a sensitivity experiment which illus-

trates that, at least for these data, uncertainty in predictions

of 𝑦𝑡 is unaffected for 𝑡 > 𝑡0 −𝐷′. Choice of 𝐷′ can therefore

be viewed as a trade-off between computation time (which

increases linearly with 𝐷′), and the number of weeks prior to

𝑡0 for which predictions must be as precise as possible. Here

we choose 𝐷′ = 8, which maximizes prediction precision for

the last 8 weeks (including 𝑡0).

The model based on the GDM hazard framework is defined

by

𝑦𝑡 ∼ NB(𝜆𝑡, 𝜃); log(𝜆𝑡) = 𝜄 + 𝛼𝑡 + 𝜂𝑡; (16)

𝒛𝑡 ∣ 𝑦𝑡 ∼ GDM(𝝂𝑡,𝝓, 𝑦𝑡); log
(

𝜈𝑡,𝑑

1 − 𝜈𝑡,𝑑

)
= 𝜓𝑑 + 𝛽𝑡,𝑑 , (17)

where 𝝂𝑡 and𝝓 are parameters of the beta-binomial condition-

als, as described in (10)–(12). In the GDM survivor model, the

model for 𝜈𝑡,𝑑 in (17) is replaced by probit(𝑆𝑡,𝑑) = 𝜓𝑑 + 𝛽𝑡,

where 𝝂𝑡 relates to 𝑺 𝑡 as in (15). Finally, the model based on

the GLM framework is

𝑧𝑡,𝑑 ∼ NB(𝜇𝑡,𝑑 , 𝜃); log(𝜇𝑡,𝑑) = 𝜄 + 𝛼𝑡 + 𝜂𝑡 + 𝜓𝑑 + 𝛽𝑡,𝑑 . (18)

In all models, 𝜂𝑡 is a penalized cyclic cubic spline (Wood,

2017) defined over weeks 1,…,52, aimed at capturing within-

year temporal variation in the total dengue cases 𝑦𝑡. Simi-

larly, 𝛼𝑡 is a penalized cubic spline defined over the whole

time range, aimed at capturing nonseasonal variation in 𝑦𝑡,

and is constrained to be linear beyond the end knots so that

it can be used for forecasting. In the GDM hazard and GLM

models, the effects 𝛽𝑡,𝑑 are defined by a different penalized

cubic spline (each with its own smoothness penalty) for each

delay index 𝑑, intended to capture temporal changes in the

delay mechanism. In the GDM survivor model, this com-

plexity is substantially reduced a priori by only using one

spline 𝛽𝑡 in the model for the expected cumulative propor-

tions 𝑆𝑡,𝑑 . As discussed in Wood (2016), the coefficients of

each spline are assigned a multivariate-normal prior distribu-

tion and are penalized to prevent excessive wiggliness through

an unknown penalty parameter 𝜏 (a scaling factor in the prior

precision he matrix). A prior can be put on the more inter-

pretable 𝜎 = 1∕
√

𝜏, where smaller 𝜎 corresponds to higher

penalty on wiggliness. The splines are centered to have zero

mean, so that fixed effects 𝜄 and 𝜓𝑑 are interpretable.

Generally noninformative prior distributions were chosen,

detailed in Section 2 of Web Appendix A. All code was writ-

ten and executed using R (R Core Team, 2019) and all models

were implemented using nimble (de Valpine et al., 2017), a

facility for highly flexible MCMC. The model matrices for the

splines were set up using the package jagam (Wood, 2016).

Four MCMC chains were run from different initial values and

random seeds, until convergence criteria were met (Section

3 of Web Appendix A). The survivor model was computa-

tionally fastest (≈30 minute), compared to the hazard (≈60

minute), and GLM (≈120 minute) models. Code and data for

reproducing all results are included as the Supporting Infor-

mation.
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F I G U R E 5 Density plots of the mean bias (left column) and the

logarithm of the mean squared error (right column) of the covariance of

the partial counts 𝑧𝑡,𝑑 and the proportion reported in each week 𝑧𝑡,𝑑∕𝑦𝑡.
This figure appears in color in the electronic version of this article, and

any mention of color refers to that version

4.2 Results

Here we discuss ways in which the models differ, while in

Section 5.1 of Web Appendix A we discuss the similarity of

the temporal and seasonal effects between the models.

We use in-sample posterior predictive checking (Gelman

et al., 2014) to check model fit. Replicates of the observed

𝑧𝑡,𝑑 and of the fully observed 𝑦𝑡 (weeks 1-88) are simulated

from the respective predictive distributions. We then check

whether important statistics of the data are well-captured by

the corresponding predictive distributions.

We begin by looking at sample estimates of Cov[𝑧𝑡,𝑑 , 𝑧𝑡,𝑑′ ]
and Cov[𝑧𝑡,𝑑∕𝑦𝑡, 𝑧𝑡,𝑑′∕𝑦𝑡]. The left (right) column of Fig-

ure 5 shows the mean difference (mean-squared differ-

ence) between replicated and observed covariances. For

Cov[𝑧𝑡,𝑑 , 𝑧𝑡,𝑑′ ], the survivor model is the least biased and most

precise, with the hazard model coming second in precision.

For Cov[𝑧𝑡,𝑑∕𝑦𝑡, 𝑧𝑡,𝑑′∕𝑦𝑡], the hazard model is the least biased,

likely owing to the larger number of parameters compared to

the survivor model, while both GDM variants are far more

precise than GLM.

Predictive distributions of the sample mean and variance of

replicated 𝑦𝑡 were compared to the corresponding observed

statistics in the left and central panels of Figure 7 in Web

Appendix A). In both cases, the observed statistic is cap-

tured best by the GDM models, though the GLM model also

fares relatively well. Additionally, we computed the posterior

medians of sorted replicated 𝑦𝑡, with 95% prediction intervals

(shown in the right panel of Figure 7 in Web Appendix A). For

F I G U R E 6 Posterior median predictions of the

unobserved/partially observed total dengue cases 𝑦𝑡, from the GDM

hazard, GDM survivor, and GLM models, with associated 95%

posterior predictive intervals. This figure appears in color in the

electronic version of this article, and any mention of color refers to that

version

all models, the posterior medians match the observed medians

closely, indicating the distribution of 𝑦𝑡 is captured well.

In Section 5.3 of Web Appendix A, we also investigate

whether the addition of GD variability leads to tangible

improvements over methods relying only on multinomial vari-

ability (Section 2.1). In summary, 95% prediction interval

coverage for posterior replicates of 𝑧𝑡,𝑑∕𝑦𝑡 is very poor (under

70%) without the GD variability.

Finally, we look at nowcasting and forecasting perfor-

mance. Recall that we are in week 𝑡0 = 114 and we wish to

predict 𝑦𝑡 for recent weeks 𝑡 ≤ 114, as well as forecast the next

6 weeks (𝑡 = 115,… , 120). Figure 6 shows posterior median

predicted 𝑦𝑡 (median and 95% prediction intervals), for t =
100,… , 120 (recalling that 𝑦𝑡 is unobserved for 𝑡 > 88), from

the three models. Median predictions from all three models

are virtually identical; however in both the nowcasting and

forecasting ranges, the two GDM models have far less predic-

tive uncertainty than the GLM. Notably, the survivor model

has similar predictive uncertainty to the hazard variant, even

though it has much fewer parameters. Importantly, with only

1 week’s data (less than 20% of the total as per Figure 2),

both GDM models provide a high degree of nowcasting pre-

cision, with 95% prediction intervals of approximately 1300-

3500 cases (hazard) and 1300-3700 cases (survivor) for week

𝑡 = 114. In addition, 80% prediction intervals indicate that

within only a few weeks, there is a strong chance (>90%) there

will be more than 2000 new cases each week—invaluable

information for decision makers.

To further assess the nowcasting and forecasting perfor-

mance of models based on the GDM framework for these

data, as well as to further illustrate such models as a powerful

tool for practitioners, we present a more comprehensive pre-

diction experiment in Section 6 of Web Appendix A. In this

experiment, we begin with a present-day week of 𝑡0 = 100,
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making nowcasting predictions for weeks 𝑡0 −𝐷 + 2,… , 𝑡0
and forecasting predictions for weeks 𝑡 = 𝑡0 + 1,… , 𝑡0 + 4.

We then advance 𝑡0 by 1 week at a time until 𝑡0 = 140, cover-

ing an entire outbreak cycle (2013), so that we can thoroughly

investigate how prediction performance (in terms of precision

and reliable quantification of uncertainty) varies with how

far the prediction week is from 𝑡0. In summary, we find that

both GDM models defined in Section 4.1 display consistently

good prediction performance (quantified by prediction

interval coverage) for wider intervals (80% and 95%), with

disparate performance for narrower ones (50% and 65%).

Compellingly, both models performed well across the board

when forecasting and nowcasting recent weeks, arguably the

most crucial predictions for issuing disease warnings.

5 UNDERREPORTING

A related but different challenge is that sometimes, the final

observed total count 𝑦𝑡 is still a (substantial) underestimate

of the true count. In disease surveillance, this means cases

never being reported, leading to the underestimation of out-

break magnitude. For instance, although reporting of dengue

cases to the national surveillance system (SINAN) is manda-

tory, research suggests the existence of underreporting, owing

to issues such as patients not seeking healthcare (Silva et al.,
2016).

To address this, the GDM framework can be adapted to

allow for underreporting. In particular, it can be merged with

the hierarchical framework for underreporting presented in

Stoner et al. (2019a). Suppose that, in addition to the par-

tial counts 𝑧𝑡,𝑑 and the total counts 𝑦𝑡, there exist unobserved

true counts 𝑥𝑡, such that 𝑦𝑡 ≤ 𝑥𝑡. Then the complete modeling

framework for delayed reporting and underreporting is given

by

𝑥𝑡 ∣ 𝜆𝑡, 𝜃 ∼ Negative-Binomial(𝜆𝑡, 𝜃); (19)

𝑦𝑡 ∣ 𝑥𝑡, 𝜋𝑡 ∼ Binomial(𝜋𝑡, 𝑥𝑡); log
(

𝜋𝑡

1 − 𝜋𝑡

)
= 𝑖(𝑡); (20)

𝒛𝑡 ∣ 𝑦𝑡 ∼ GDM(𝝂𝑡,𝝓𝑡, 𝑦𝑡), (21)

where 𝜆𝑡 is now the incidence rate of the true count 𝑥𝑡 and

𝜋𝑡 is the reporting rate. Both covariates and random effects

can be used to model the reporting rate, represented by the

generic function 𝑖(𝑡) in (20). Without any observations for 𝑥𝑡,

there is nonidentifiability between a high reporting rate 𝜋𝑡 and

a low incidence rate 𝜆𝑡 or vice versa, but this can be resolved

by using at least one informative prior (such as for the overall

reporting rate, as discussed in Stoner et al., 2019a).

Using this approach means that policy and intervention

can be based on predictions for the true number of cases,

taking into account both the delayed reporting and under-

reporting mechanisms to reduce the risk of an undersized

response. In contrast, allowing for underreporting in the total

count would be much less straightforward using the GLM

approach, primarily because the totals 𝑦𝑡 are not modeled

explicitly.

6 DISCUSSION

In this article, we have introduced the problem of delayed

reporting and its implications. We argued that there are two

general approaches to this problem: (a) ones based on a multi-

nomial mixture distribution, with either a time stationary GD

distribution or a logistic regression and (b) ones based on

conditional independence in the partial counts (GLM). Both

approaches are very flexible in terms of incorporating com-

plex temporal structures. However, we argue that they both

have limitations: The approaches based on a multinomial

mixture are not sufficiently flexible to capture delay mech-

anisms which are simultaneously heterogeneous in time and

overdispersed. The GLM approach, on the other hand, does

not explicitly model the total counts. This means it relies on

capturing the covariance structure of the partial counts well

in order to capture the distribution of the total counts well.

This is hindered by the assumption that the partial counts are

assumed conditionally independent.

We have proposed a general framework based on a gener-

alized Dirichlet-multinomial mixture, where the total counts

are modeled explicitly and the multinomial probabilities fol-

low a generalized Dirichlet distribution with temporally vary-

ing parameters. For this framework, we presented two alterna-

tive formulations of the delay mechanism, one which can be

considered a natural extension of multinomial logistic regres-

sion and another which instead models the expected cumu-

lative proportion of cases reported. Though we present the

framework in terms of a general temporal index 𝑡 ∈ 𝑇 , it

is also in principle applicable to spatially structured data.

Future research is needed to investigate how models for spa-

tial dependence can be incorporated in the models for the total

count and the delay mechanism.

We presented a case study of data on reported dengue fever

cases in Rio de Janeiro. We used in-sample predictive model

checking to assess the models with respect to how well the dis-

tribution of the total number of cases was captured and out-of-

sample predictive checking to assess performance when now-

casting and forecasting. We found that in every test, models

based on the GDM framework had the strongest performance,

while the GLM had excessive predictive uncertainty. We also

demonstrated in a more comprehensive prediction experiment

that the GDM models are both reliable and powerful predic-

tive tools for practitioners.

For these data, it was possible to capture structured tempo-

ral variability in the total number of dengue cases simply by
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combining a seasonal spline and a temporal spline. For data

with more complex temporal structures, for example, where

disease outbreaks of varying sizes occur at random times

throughout the year, a more sophisticated temporal structure

may be necessary, which may still be possible within the

general model for 𝜆𝑡 given by (6).

Depending on the experiment, we had 74-114 weeks of

fully observed total counts, plus 26 weeks of partial counts.

Predictions were driven by a strong seasonal effect on dengue

incidence, which requires at least a year’s data to be distin-

guishable from the temporal effect. Furthermore, we assumed

𝑦𝑡 is fully reported after 27 weeks, so it is reasonable to con-

sider this the very minimum number of weeks for modeling,

with more data desirable. Where the available time series is

shorter than the assumed maximum delay 𝐷, it may be prag-

matic to redefine 𝑦𝑡 as the number of reported cases after a

number of weeks 𝐷′′
< 𝐷.

In addition to considering the performance of each model

for this particular data set, it is also important to consider

other reasons why one might be preferable over the others.

The GLM model, for instance, is by far the easiest to imple-

ment, especially in a non-Bayesian setting such as the general-

ized additive model framework or in an approximate Bayesian

setting such as INLA. The GDM framework, however, lends

itself more to a full Bayesian treatment, using MCMC. This

is because the effects associated with the total count and the

effects associated with the delay mechanism are separated into

different parts of the model and are related to different parts

of the data (the total counts and the partial counts, respec-

tively). In the GLM framework, meanwhile, all of the effects

are in the same model and they can end up competing with

each other.

In our view, approaches based on the GDM framework are

the most interpretable of all of the frameworks discussed here.

This is because the delay mechanism, and any associated vari-

ability, is completely separated from the process which gen-

erates total counts. This in turn makes it easier to adapt the

model for a given data set. For example, we can see some evi-

dence in Figure 2 that variability in the relative proportions

is higher in some parts of the time series than others. To cap-

ture this, it is a fairly trivial modification to model the log-

arithm of the dispersion parameters 𝜙𝑡,𝑑 , as defined in (12),

using a penalized spline in time. Knowing that variability in

the delay mechanism at a certain time is likely to be lower or

higher than usual could further improve nowcasting precision.

In the GLM framework, there is no equivalent way of separat-

ing temporal structure in the variance of the total counts from

structure in the variance of the delay mechanism, as is possi-

ble in the GDM framework.

Of the two GDM framework variants we presented, we pre-

fer the survivor as it is more intuitive and easier to simplify.

Compellingly, in our case study the survivor model performed

as well as the hazard model, despite substantially reduced

complexity in the prior model for the delay mechanism. On

the other hand, disparate coverage results for narrow predic-

tion intervals in the prediction experiment presented in Sec-

tion 6 of Web Appendix A suggest care should be taken when

specifying the complexity of the delay mechanism.

The GDM framework can also be easily integrated into a

hierarchical framework for correcting underreporting, which

may be essential in scenarios where the final observed total

count is still a substantial underrepresentation of the true

count. In such situations, allowing for both the delay mecha-

nism and the underreporting mechanism simultaneously may

be crucial for well-informed decision making.
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