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Causal inference and the evolution of
opposite neurons
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A pesky mosquito continues to annoy you and you are
poised to swat it. You see it hovering above your arm,
and feel a gentle tickle, but in a slightly different spot
(Fig. 1A). Where should you strike? The mathemati-
cally optimal solution is to average the locations indi-
cated by vision and touch, with greater weight given
to the more reliable signal, the one that typically leads
to smaller errors. A substantial literature indicates that
for most modality pairings and perceptual tasks hu-
mans behave in accordance with this optimal prescrip-
tion for sensory integration (1–4). However, if vision
and touch indicate very different locations, the tickle
might be due to another cause such as an old mos-
quito bite (Fig. 1B). In this case, it makes sense to
segregate the sensory signals, ignore touch, and swat
at the location indicated by vision. This decision re-
quires making a “causal inference,” that is, an infer-
ence as to whether two sensory signals derive from a
common source or separate sources. Humans (5, 6)
and monkeys (7, 8) behave as if they perform causal
inference; they do not integrate signals unlikely to
come from the same source. The challenging question
is, how are sensory cue integration and causal infer-
ence implemented in the brain?

In PNAS, Rideaux et al. (9) demonstrate how the
interplay between different types of neurons could ac-
complish both optimal integration and causal-inference
judgments. They simulate a particularly puzzling but
also well-researched case of multisensory perception,
visual and vestibular signals of self-motion. These sig-
nals converge in brain areas that include the dorsal me-
dial superior temporal area (MSTd) and the ventral
intraparietal area (VIP). Neurons in these areas are often
tuned for heading direction, that is, these neurons fire
the most when sensory cues indicate a particular direc-
tion, and fire less and less the more the signaled direc-
tion differs from their preferred one. Many of the
neurons that receive input from both modalities are
congruent neurons: They have similar tuning for the
twomodalities (Fig. 1C). Thus, congruent neurons seem
predestined to perform multisensory integration (10,

11). Curiously, many other neurons in MSTd and VIP
are opposite neurons (Fig. 1D): They are tuned to visual
and vestibular information indicating opposite heading
directions, e.g., rightward motion signaled by visual
stimuli and leftward motion signaled by vestibular stim-
uli (10, 12). Opposite neurons appear to be ideally
equipped to detect when sensory signals arise from
different sources. In turn, the interplay of congruent
and opposite neurons might enable the brain to per-
form causal inference (10, 13). A direct test of this hy-
pothesis would require simultaneous recordings of
congruent and opposite neurons in MSTd and VIP as
well as the neurons they project to, which is a near-
impossible task. However, artificial neural networks
make it easy to inspect the interconnected behavior
of neurons across different brain areas.

Rideaux et al. (9) used a particularly clever ap-
proach to this problem. Rather than constructing an
artificial neural network with a layer of hand-tuned
congruent and opposite neurons, they trained an un-
constrained artificial neural network to perform causal-
inference judgments as well as self- and world-motion
estimation and afterward inspected the tuning and
connectivity of multisensory neurons. This multilayer,
feedforward network had two sets of inputs, visual and
vestibular. The visual inputs were short sequences of
natural images that translated at various velocities in
four directions (left–right, up–down, toward–away,
and rotations about the line of sight). The vestibular
inputs were from units tuned to velocities along each
of these four axes and slightly corrupted by noise.
Separately for each motion direction, the output neu-
rons of the neural network determined motion velocity
(trained to match the average of the vestibular and
visual input velocities; Fig. 1E), world-motion velocity
(trained to match the difference between the two in-
put velocities; Fig. 1F), and a common-source judgment
(trained to match a binary categorization of whether the
difference between the two input velocities was large or
small; Fig. 1G). Notably, the world-motion estimation
task differs from multisensory integration in other
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domains, where integration is typically contrasted against segrega-
tion, i.e., reliance on one modality alone (compare Fig. 1 A and B).
Thus, it is interesting how the network would generalize to multi-
sensory perception of spatial, temporal, or other features.

The key contribution of the paper is that after successful
training, the network developed neurons with the same charac-
teristics as congruent and opposite neurons in macaque MSTd
and VIP. More specifically, in the “MSTd” layer of the network,
neurons had clear tuning for heading direction (where direction
was computed from velocity along the left–right and forward–
backward axes), and most neurons had either congruent visual
and vestibular tuning or showed opposite motion direction tuning
for the two modalities. Both types of neurons provided significant
input for causal-inference judgments, confirming the initial hy-
pothesis that the balance between congruent and opposite neu-
rons is crucial for inferring whether two signals originate from the
same source. Regarding the network’s motion velocity percepts,
congruent cells provided stronger input for self-motion estimates
and opposite cells provided stronger input for world-motion esti-
mates. Both types of neurons were also able to contribute to the
other perceptual estimate, but to a lesser degree. Previous com-
putational models with hand-tuned congruent and opposite
neurons had already demonstrated that such networks are able
to perform causal inference (13, 14). However, so are artificial
neural networks without these properties (15). In contrast to
these top–down approaches, Rideaux et al. (9) show that the
requirement to make both perceptual and causal-inference judg-
ments leads to the development of congruent and opposite neu-
rons, suggesting that this neural substrate is the optimal solution for
the computation.

The network’s performance in the perceptual tasks qualitatively
mirrored human and monkey behavior in heading-discrimination

tasks (11). After successful training, the network was presented with
visual and vestibular motion inputs with a small cross-modal dis-
crepancy. For these tests, the visual stimulus was changed to a
collection of moving dots; its reliability was manipulated by varying
the proportion of dots moving in the same direction. The network
integrated visual and vestibular inputs according to their reliabil-
ities: Self-motion estimates agreed more with the vestibular input if
the visual input was less reliable and toward the visual input, if it was
more reliable. Notably, during training, self-motion estimates were
reinforced to match the 50–50 average of the visual and vestibular
signals, raising the question whether the ability to perform
reliability-weighted integration emerged from the combined train-
ing of several tasks or was due to the architecture of the network.
The influence of visual input on self-motion estimates was lower
when the network inferred separate causes than when it inferred
a common source of the two signals. Such a difference in cross-
modal biases automatically emerges if one input modality is
noisy, that is, if the same stimulus results in slightly different
internal measurements across trials (6). However, in its current
form, the network will not be able to reproduce the behavioral
hallmark of causal inference: the reduction of cross-modal biases
when the signals are more discrepant and thus less likely to have
emerged from the same source. Given that the model is strictly
feedforward, with separate outputs for causal inference and self-
and world-motion estimates, the model is essentially unable to have
the causal-inference judgment affect self-motion estimates. In other
words, the model is unable to ignore the tickling sensation from the
old mosquito bite in our introductory example. In contrast, Bayesian
causal-inference models (6) replicate the nonlinear dependency of
cross-modal biases on the discrepancy between the two signals (6,
16). They achieve this by summing the integrated and segregated
estimates, weighted by the inferred probability of a common and
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Fig. 1. Multisensory integration and causal inference. (A) When a common cause is inferred, sensory signals are integrated; (B) when separate
sources are inferred, the segregated visual signal is used. (C) Congruent neurons have similar tuning for heading direction across modalities;
(D) opposite neurons’ preferred directions differ across modalities. Both types of neurons contribute to (E) self- and (F ) world-motion estimation
as well as (G) causal-inference judgments, but to different degrees. (H) In Bayesian estimation, the integrated and segregated estimates are
combined with weights equal to the probabilities of each causal scenario.
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separate sources, respectively (Fig. 1H). In this view, the neural net-
work model by Rideaux et al. (9) encompasses the first stage of a
two-stage perceptual process. In fact, human brain activity in a mul-
tisensory context is consistent with separate representations for in-
tegrated, segregated, and the combined final estimates (17, 18).
Another key component of the Bayesian approach to causal infer-
ence is the assumed prior probability of a common source. In
the model of Rideaux et al. (9), this prior might be reflected in
the weights of the connections between the multisensory MSTd
layer and the output layer. However, this common-cause prior
changes with the experimental context (19, 20), suggesting the
need for additional input to the causal-inference process. Thus, a
more complete model of multisensory integration and causal
inference will require room for representations of both same-

and separate-source perceptual estimates along with flexible
common-source priors.

Rideaux et al. (9) provide a convincing solution to the puzzle of
the role of congruent and opposite neurons in causal inference.
Training an artificial neural network to concurrently derive esti-
mates of self- and world-motion as well as causal-inference judg-
ments resulted in the development of congruent and opposite
neurons. Whether the brain implements these inferences in this
simple feedforward manner, and how causal inference is involved
in perceptual judgments, are important future questions. Simi-
larly, it would be fascinating to explore whether sensory experi-
ence is required for the development of opposite neurons during
ontogenesis, or whether the processes invoked by training of this
artificial neural network have played out during evolution.
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