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A necessary criterion for obtaining 
accurate lattice parameters by 
Rietveld method
Masami Tsubota1 & Jiro Kitagawa   2

To obtain the lattice parameters accurately by the Rietveld method, the relationship between the 
lattice parameters and the peak-shift, which is the deviation in diffraction angle from the theoretical 
Bragg position, was studied. We show that the fitting accuracy of lattice parameters is related directly 
to the well reproducibility of the peak-shift. This study unveils that the peak-shift consists of the 
experimental and the analytical ones. The analytical peak-shift erroneously lowers a reliability factor 
Rwp, which has, so far, been the conventional criterion of fit. The conventional Rietveld method obtains 
a unit-cell which is a homothetic (proportional) unit-cell of the true one. We propose an additional 
criterion based on the peak-shift to obtain the true lattice parameters accurately. Our criterion can 
achieve reproducibility reasonably well for the experimental peak-shift, leading to highly improved 
accuracy of the lattice parameters.

Structural study for powder materials relies on the Rietveld method, which is capable of refining the structural 
and magnetic parameters from diffraction data1–3. However, it is fundamentally difficult to determine accurately 
the refinement parameters4–7. In the Rietveld method, the weighted sum of squares residual, Sr, between the 
observed and the calculated intensities of powder diffraction data is minimized in a nonlinear least-squares 
method. The calculated intensity includes the peak-shift that is absolutely inevitable in the experiment. To evalu-
ate quantitatively the best fit of the data, several reliability-factors such as Rwp, Rp, Re, RF, S and χ2 are proposed3,4. 
The most accepted factor is the weighted-profile R, termed as Rwp, where the numerator includes Sr that is min-
imized during the refinements. The goodness-of-fit, S or χ2 ≡ S2, is used as another useful numerical criterion4. 
The S-value of 1.3 or less is empirically considered to be satisfactory. However, a poor counting statistics or a high 
background also makes S smaller; the S-value sometimes turns out to be less than 1.0. On the other hand, S may 
possibly be larger than 1.3 even for the best fitting with an appropriate model. Young and co-workers have sug-
gested that these values to be given in publication8.

Strictly speaking, there is no general agreement on these criteria in the Rietveld method. Other studies have 
concluded that viewing the profile-plots is more effective than R-values to determine the quality of a refine-
ment5–7. As such, the refined structural parameters have been found to differ from researcher to researcher. For 
instance, Hill summarized the results of Rietveld refinements on the project undertaken by the Commission 
on Powder Diffraction of the International Union of Crystallography7. Several specialists analysed the standard 
PbSO4 powder diffraction pattern, measured by a conventional Bragg–Brentano diffractometer using Cu Kα radi-
ation. The lattice parameters a, b and c are in the range of 8.4764–8.4859 Å, 5.3962–5.4024 Å and 6.9568–6.9650 Å, 
respectively. The accuracy of the lattice parameters is of an order of 0.01 Å (=10 × 10−3 Å), which is incomparably 
large considering that the linear thermal expansion coefficient is of an order of 10−5 K−1 to 10−6 K−1 for general 
solid materials9. Furthermore, the weighted mean parameters for a-, b- and c-axes are 8.4804(4) Å, 5.3989(3) Å 
and 6.9605(2) Å, respectively. They are in good agreement with those determined from single-crystal X-ray dif-
fraction data7,10 which is generally accepted to be high-accuracy. These facts mean that either smaller or larger lat-
tice parameter compared to the true one is possibly obtained depending on a researcher by the Rietveld method. 
This is a critical disadvantage to study the dependences of lattice parameters on temperature, composition, pres-
sure and so on. A technique to determine refinement parameters accurately is needed for the Rietveld method.
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We shed light on the peak-shift that tends to be overlooked. This paper proposes an additional criterion, 
focusing on a fitting accuracy along the horizontal-axis of powder diffraction data, to determine the lattice 
parameters accurately. In the following, we demonstrate that our criterion enables the well reproducibility of the 
peak-shift, leading to highly improved accuracy of the lattice parameter by two or more digits lower compared to 
that obtained by the conventional Rietveld method.

The X-ray diffraction pattern of standard reference material (SRM) 660a (lanthanum hexaboride)11 from the 
National Institute of Standards and Technology (NIST) collected with Cu Kα1 radiation was used in this study. 
We focused on the maximum diffraction angle (2θmax) of the data used in the analysis. We conducted several con-
ventional Rietveld refinements in the 2θ-range from 18° to 2θmax, where 2θmax was in between 52° and 152°. There 
were five Bragg-peaks for 2θmax = 52° and twenty-four Bragg-peaks for 2θmax = 152°. The representative results for 
2θmax = 152° and 92° are demonstrated.

Results
Rietveld refinements.  In the conventional Rietveld refinement, the lattice parameters are 
acnv,(152) = 4.15655(1) Å with Rwp

cnv,(152) = 8.203% and acnv,(92) = 4.15811(22) Å with Rwp
cnv,(92) = 8.610%, where the 

superscripts ‘cnv’, (152) and (92) refer to the “conventional”, 2θmax = 152° and 92°, respectively. Here, acnv,(152) and 
acnv,(92) are 0.37 × 10−3 Å (or 0.0089%) smaller and 1.19 × 10−3 Å (or 0.0286%) larger than aSRM ≃ 4.15692(1) Å, 
respectively11. The Rietveld refinements with a fixed value of aSRM were conducted. The reliability factors Rwp

fix,(152) 
and Rwp

fix,(92) are 8.355% and 8.623%, respectively, where the superscript ‘fix’ refers to the “fixed”. Significantly, 
Rwp

fix is larger than Rwp
cnv, implying that Rwp is an incomplete criterion of fit. Note that a difference between Rwp

fix 
and Rwp

cnv is not caused by the difference of the number of parameters in each refinement because Re, which cor-
responds to mathematically expected Rwp, is Re

fix,(152) = Re
cnv,(152) = 8.203% and Re

fix,(92) = Re
cnv,(92) = 4.090%, and are 

the same with each other independent on the number of parameters.
Figure 1a and b show the 2θ-dependence of the peak-shift Δ2θR computed with the following equation12:

θ θ θΔ = + +Z D T2 cos sin 2 , (1)R s s

where Z is the zero-point shift (also known as the zero error), Ds the specimen-displacement parameter and Ts the 
specimen-transparency parameter. Manually estimated peak-shift, Δ2θm, is also plotted. Note that the 2θ-regions 
with grey background in Fig. 1 are not used in the Rietveld refinement. Clearly, Δ2θR

fix and Δ2θm correspond well 
with each other within an error bar in the analysis 2θ-region (white area). In contrast, Δ2θR

cnv differs from Δ2θR
fix 

and Δ2θm especially in the large 2θ-region.
Figure 1c and d show the 2θ-dependence of the difference, Δ2θdif ≡ Δ2θR

cnv − Δ2θR
fix, which could be zero 

when a = aSRM. Otherwise, the absolute value of Δ2θdif increases with 2θ. Moreover, Δ2θdif is not negligible with 
respect to the magnitude compared to Δ2θR

fix and Δ2θm (Fig. 1a and b). Note that Δ2θdif can be expressed by 
Eq. (1) with a different set of values of (Zcnv, Ds

cnv, Ts
cnv) and (Zfix, Ds

fix, Ts
fix). Most importantly, in the analysis 

2θ-range, the 2θ-dependence of Δ2θdif corresponds well with that of Δ2θana, which is expressed as:
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where A is the proportional coefficient. Here, Eq. (2) is not obtained by fitting the experimental data but is formu-
lated by rearranging the following two Bragg’s equations and, therefore holds for any crystal system:
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The coefficients Acnv,(152) and Acnv,(92) are acnv,(152)/aSRM = 0.999911 and acnv,(92)/aSRM = 1.000286, respectively. Equally 
important is that Δ2θm + Δ2θana as well as Δ2θR

fix + Δ2θana are in good agreement with Δ2θR
cnv in the analysis 

2θ-range and enhance against Δ2θR
cnv beyond 2θmax (Fig. 1e and f).

Criteria of fit.  To investigate a criterion of fit in detail and study how the peak-shift affects the result, we have 
conducted several Rietveld refinements with a fixed value of Z. Figure 2 shows the Z- and a-dependences in the 
conventional criterion as well as by the criteria set in this study. The sums are carried out over all the Bragg-peaks 
in the analysis 2θ-range for Σ|Δ2θR| and the whole 2θ-range for Σall|Δ2θR|. Note that Σ|Δ2θR| and Σall|Δ2θR| 
are calculated from the result after the refinement. The convergence in the refinement is judged by using Rwp. 
For Σ|Δ2θR|, the number of Bragg-peaks in the sum depends on 2θmax, and is 24 for 2θmax = 152° and 13 for 
2θmax = 92°. In contrast, the number of Bragg-peaks is always 25 for Σall|Δ2θR|, including a reflection with the 
Miller indices of 432 and 520 (lattice spacing d ≃ 0.772 Å) at 2θ ≃ 172° that is measureable in principle but is not 
observed in the data.

The conventional criterion Rwp shows a parabolic curve with the minimum values of 8.203% at 
acnv,(152) = 4.15655(1) Å and 8.610% at acnv,(92) = 4.15811(22) Å as shown in Fig. 2a and b. Importantly, the min-
imum of Rwp is not at aSRM, which is a strong evident that Rwp itself is an insufficient criterion to obtain the true 
lattice parameter. Further, the range of Rwp for 2θmax = 92° is much smaller than that for 2θmax = 152°. It suggests 
that for the smaller 2θmax, it is more difficult to distinguish the minimum Rwp correctly.

A potential criteria Σ|Δ2θR| shows a V-shaped curve with the minimum values at asum,(152) = 4.15684(0) Å and 
asum,(92) = 4.15625(2) Å, where the superscript ‘sum’ refers to the “sum” of the peak-shift (Fig. 2c and d). The lattice 
parameter asum is closer to aSRM compared with acnv. The magnitude of Σ|Δ2θR| for 2θmax = 92° is smaller than that 
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for 2θmax = 152°, which is reasonable considering the number of Bragg-peaks in the sum. Our proposed criterion 
Σall|Δ2θR| shows a sharper V-shaped curve than Σ|Δ2θR| with the minimum values at aall,(152) = 4.15686(0) Å 
and aall,(92) = 4.15696(2) Å, where the superscript ‘all’ refers to the sum of “all” values of Δ2θR (Fig. 2e and f). The 
lattice parameter aall is much closer to aSRM compared with acnv and asum. With decreasing 2θmax, the magnitude of 
Σall|Δ2θR| increases and the V-shape becomes sharper.

Figure 3a demonstrates the 2θmax-dependence of the lattice parameters obtained by several criteria. First, acnv, 
which is obtained by the conventional Rietveld method, shows a large deviation from aSRM and strong dependence 
on 2θmax. The maximum deviation from aSRM is >10 × 10−3 Å, which is in the same order as that in Hill’s report7. 
Next, asum, which is determined with the minimum of Σ|Δ2θR|, approaches toward aSRM with increasing 2θmax. 
The smallest deviation from aSRM is 0.08 × 10−3 Å at 2θmax = 152°. Subsequently, aall, which is determined by using 
Σall|Δ2θR|, corresponds well with aSRM even for the smaller 2θmax. The deviation from aSRM is 0.60 × 10−3 Å at the 
most and within 0.06 × 10−3 Å above 2θmax = 74°. The accuracy is improved by two or more orders of magnitude 
compared with that of the conventional Rietveld method.

Figure 3b shows the 2θmax-dependence of Rwp’s. It is clear that Rwp increases with decreasing 2θmax. For all 
2θmax, the values of Rwp

cnv are smaller than those of Rwp
all despite the fact that acnv does not correspond to aSRM. 

The difference, Rwp
all − Rwp

cnv, becomes smaller with decreasing 2θmax and is 0.02% or less below 2θmax = 120° as 
shown in Fig. 3c. It becomes zero at some 2θmax’s, implying the impossibility in distinguishing the true solution 
exclusively by the Rwp-value.

Figure 3d–f show the peak-shifts determined with the minima of Rwp, Σ|Δ2θR| and Σall|Δ2θR|. Clearly, 
Δ2θR

cnv does not reproduce Δ2θm, reflecting a mismatch of the lattice parameter between acnv and aSRM. Although 

Figure 1.  Diffraction angle dependence of the peak-shifts. (a,b) Δ2θR
cnv, Δ2θR

fix and Δ2θm. Δ2θR
cnv is obtained 

by conventional Rietveld refinement. Lattice parameter is fixed at aSRM in Rietveld refinement for Δ2θR
fix. 

Δ2θm is manually calculated by comparing 2θ-angle values of Bragg-peaks in the raw data and certification 
by NIST. (c,d) Difference Δ2θdif ≡ Δ2θR

cnv − Δ2θR
fix and analytical peak-shift Δ2θana. Horizontal dash line 

with zero intensity is drawn as visual guide. (e,f) Sums Δ2θm + Δ2θana and Δ2θR
fix + Δ2θana. Δ2θR

cnv is again 
plotted for comparison. For all the panels, open squares at approximately 2θ = 172° are the calculated data for a 
reflection with the Miller indices of 432 and 520 that is not observed in the data. Note that the 2θ-regions with 
grey background are not used in the Rietveld refinement. Left and right panels are for 2θmax = 152° and 92°, 
respectively. The error bars indicate the measurement error of the diffraction data in (a,b,e) and (f).
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Δ2θR
sum is closer to Δ2θm than Δ2θR

cnv, it deviates from Δ2θm above 2θmax as shown in the inset of Fig. 3e as an 
example. Additionally, Δ2θR

all well reproduces Δ2θm for the all 2θmax (Fig. 3f). These facts indicate that the fitting 
accuracy relates directly to the well reproducibility of the peak-shift.

Discussion
The present study reveals several critical findings. Firstly, the 2θ-dependence of peak-shift does not obey Eq. (1) 
in the calculation; instead follows the equation:

Figure 2.  Conventional and candidate criteria of fit. Z- and a-dependences of (a), Rwp
fix for 2θmax = 152°, (b), 

Rwp
fix for 2θmax = 92°, (c), Σ|Δ2θR| for 2θmax = 152°, (d), Σ|Δ2θR| for 2θmax = 92°, (e), Σall|Δ2θR| for 2θmax = 152°, 

(f), Σall|Δ2θR| for 2θmax = 92°. Vertical dot line indicates a = aSRM. The minimum for each criterion is shown by 
the arrow. (a), Rwp

fix for 2θmax = 92° is also plotted for comparison (small dots). Note that relationship between Z 
and a for 2θmax = 152° (left panels) and that for 2θmax = 92° (right panels) are not the same.
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where ζ is the zero-point shift, δs the specimen-displacement parameter, τs the specimen-transparency parameter 
and A the proportional coefficient to lattice spacing (Fig. 1e and f). Equation (3) holds for any crystal system and 
can be simply rewritten as:

θ θ θΔ = Δ + Δ2 2 2 , (4)R exp ana

where Δ2θexp is the experimental peak-shift by the geometry (includes design-geometry of instrument as well 
as specimen-geometry) and Δ2θana is the analytical peak-shift caused by the mismatch of the lattice parameters. 
Notably, Δ2θana exists in the calculation only when A ≠ 1. Considering Eqs (3) and/or (4), one cannot obtain 
the true peak-shift when Δ2θana ≠ 0 (A ≠ 1). Secondly, Δ2θana can be fitted very well by Eq. (1) in the analysis 
2θ-range (Fig. 1c and d). The finite value of Δ2θana, therefore, induces a false peak-shift with irrelevant lower-Rwp 
(Fig. 2a and b). As a result, a homothetic unit-cell, which is proportional to the true one, is obtained in the 
conventional Rietveld method. To obtain the correct unit-cell, Δ2θana = 0 should be imposed. Finally, we have 
proposed an additional criterion, Σall|Δ2θR|, which measures the fitting accuracy along the horizontal-axis of the 
diffraction data and is capable of preventing Δ2θana from enhancing. By combining our criterion with Rwp, we can 
well reproduce the peak-shift (Fig. 3f). Consequently, we can determine the lattice parameter within the accuracy 
of 0.06 × 10−3 Å (Fig. 3a). Incidentally, we deduce that there was no need to consider too much detail about the 
peak-shift in the early stage of developing the method because the angle-dispersive neutron data was used3,13. 
Neutron has high transparency against the materials. Enough high-angle data, e.g. 2θmax = 144° (ref.3), with quite 
broad Bragg-peaks were generally obtained using an old-fashioned reactor source. As a result, the 2θ-dependence 
of peak-shift was approximately constant and could easily be reproduced. In fact, Rietveld applied a zero-shift 
parameter as the peak-shift function which is independent on 2θ (ref.3).

Figure 3.  Comparison of obtained lattice parameters and peak-shifts. (a), 2θmax-dependence of lattice 
parameters acnv, asum and aall. The error bars represent the standard error σ in the Rietveld refinement. 
Horizontal dot line indicates aSRM. Inset: Enlarged view of a in the range of 75° ≤ 2θmax ≤ 165°. (b), 2θmax-
dependence of reliability factors Rwp

cnv, Rwp
sum and Rwp

all. c, 2θmax-dependence of difference Rwp
all − Rwp

cnv. 
(d,e,f), 2θ-dependences of peak-shifts Δ2θR

cnv, Δ2θR
sum and Δ2θR

all. Bold dot lines and dash lines are for 
2θmax = 152° and 92°, respectively. (e), Inset: Enlarged view of Δ2θR

sum for 2θmax = 92°. Δ2θR
sum starts to deviate 

at approximately 2θmax as shown by the arrow with increasing 2θ.
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Our present findings possibly accelerate designing novel materials since a comparative study between the 
experiment and theory14 may be achieved with high-accuracy. The criterion we set in this report would be appli-
cable for structure determination from powder diffraction15–17 including indexing the diffraction peaks18–20 
and the profile decomposition21–23 as well as a quality management of mass production of materials in industry. 
Further study related to the structural parameters in the unit-cell is desirable.

In summary, an additional criterion, Σall|Δ2θR|, to determine accurately the lattice parameter by the Rietveld 
method from powder diffraction data has been proposed. The refinements of the same data with different 
fixed-values of peak-shift parameter lead to different values of reliability factor, Rwp. The refined lattice parameter 
at the minimum Rwp-value is different from the correct one. The peak-shift includes the analytical Δ2θana as well 
as the experimental Δ2θexp in the calculation. Δ2θana must be neutralized for the analysis because it results in a 
false unit-cell that is proportional to the true one with the incorrect lower Rwp-value when Δ2θana ≠ 0. Our crite-
rion allows well reproducibility of the peak-shift through the highly accurate determination of lattice parameter 
by two or more digits lower than that compared with the conventional Rietveld method.

Methods
Powder diffraction data.  Diffraction pattern used in this study was measured by Le Bail and distributed on 
the website24. The data file with a name of “660a-2.dat” in a compressed file, x-celerator.zip, was used. The X-ray 
diffraction pattern for SRM 660a11 was carefully collected in the range of 2θ = 18.003°−151.995° with a step of 
0.008° by using a conventional diffractometer (Philips X’Pert, equipped with an X’Celerator detector) with Cu 
Kα1 radiation. Twenty-four diffraction peaks were observed. Total measurement time was more than 17 h and 
the largest intensity was more than 100000 counts, realizing very good statistics and a high signal-to-background 
ratio. The diffraction peaks were very sharp as a full width at half-maximum (FWHM) of a diffraction peak 
were approximately 0.03° at the lowest angle and 0.17° at the highest angle. The peaks were fairly symmetric for 
the in-house data. The lattice parameter aSRM = 4.1569162(97) Å ≃ 4.15692(1) Å at 22.5 °C has been clarified by 
NIST11.

Data analysis approach.  Rietveld refinements.  The Rietveld program RIETAN-FP25 was selected to ana-
lyse the data in this study. Taking the rounding error of the program into consideration, a value of the wavelength 
λ (1.540593 Å for Cu Kα1 radiation) in RIETAN-FP is the same as that used in the computation for SRM 660a11 
by NIST (λ = 1.5405929(5) Å)26. Note that the other major Rietveld programs use a slightly different value for 
Cu Kα radiation as default. For example, in GSAS27, GSAS-II28, FullProf29, Z-Rietveld30 and TOPAS31, the wave-
lengths of Cu Kα1 are 1.5405 Å, 1.54051 Å, 1.54056 Å, 1.54056 Å and 1.540596 Å, respectively. The profile func-
tion of a Thompson-Cox-Hastings pseudo-Voigt function32 was used. Howard’s method33, which is based on the 
multi-term Simpson’s rule integration, was employed for the profile asymmetry. Profile cut-off was 0.001%. The 
background function was the sixth order of Legendre polynomials.

In addition to the conventional Rietveld refinement, several sets of Rietveld refinement, with different 
fixed-values for the first term Z of the peak-shift, were performed. Here, the other refinement parameters were 
refined. This is because we have assumed that a parameter Z, which is different from the true value Ztrue, gives Rwp 
larger than that for the true value Rwp

true. The range of Z between −0.2° and 0.2° was chosen considering a FWHM 
of a diffraction peak. For each set, a total of 157 calculation-steps were conducted to confirm that our procedure 
was enough to converge. Thus, our calculation is the fixed routine one that is applied to the same data set starting 
from different fixed Z-values for Rietveld refinement.

Peak-shift estimation.  The peak-shift Δ2θm ≡ 2θSRM − 2θobs was calculated by using the raw data. The list of ideal 
Bragg-peak angle, 2θSRM, was provided in the certificate of SRM 660a11. The observed diffraction angle 2θobs for 
each reflection was chosen at the strongest intensity in the diffraction data near 2θSRM. The measurement error of 
2θobs was assumed to be the same as the step of 0.008° in the data.

Data Availability.  The data that support the findings of this study are distributed by Prof. Armel Le Bail and 
available in the website, http://www.cristal.org/powdif/low_fwhm_and_rp.html.
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