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Abstract

The Beauchemin model is a simple particle-based description of stochastic lymphocyte migration in tissue, which
has been successfully applied to studying immunological questions. In addition to being easy to implement, the
model is also to a large extent mathematically tractable. This article provides a comprehensive overview of both
existing and new analytical results on the Beauchemin model within a common mathematical framework.
Specifically, we derive the motility coefficient, the mean square displacement, and the confinement ratio, and
discuss four different methods for simulating biased migration of pre-defined speed. The results provide new
insight into published studies and a reference point for future research based on this simple and popular
lymphocyte migration model.

Background
A unique property of the immune system is that it mainly
consists of constantly moving cells. Technological progress
has facilitated the study of lymphocyte migration at
increasingly higher resolutions, culminating in the applica-
tion of two-photon microscopy to tracking single lympho-
cytes in the living animal [1-3]. Accompanying this
progress, mathematical and computational models of lym-
phocyte migration have been developed and applied to
both qualitative and quantitative questions. These models
can be roughly categorized as follows according to their
level of detail: Whole-population models, usually formu-
lated using ordinary or partial differential equations, do
not distinguish between individual cells, but treat cell sub-
populations as continuous quantities. Particle-based mod-
els do consider each cell individually, but treat cells as
freely moving particles without mass, volume, and shape.
Finally, whole-cell models such as the Cellular Potts
Model [4] explicitly represent the cell and its interaction
with the environment. In the present paper, we analyze a
particle-based model that was introduced by Beauchemin,

Dixit, and Perelson [5]. Throughout the paper, we refer to
this model as the “Beauchemin Model”.
Particle-based approaches such as the Beauchemin

model are used for studying questions where a whole-
population approach does not provide sufficient informa-
tion, but a whole-cell model is not necessary, not feasible
for computational reasons or would require too many
assumptions on unknown parameters. For instance,
Grigorova et al. [6] and ourselves [7] recently used the
Beauchemin model to study the transit of T cells through
a lymph node in the absence of antigen, and we used it to
determine the amount of directional bias that could be
detected in random T cell migration using contemporary
two-photon imaging techniques [7].
The Beauchemin model is defined by three parameters -

a speed vfree, a time interval tfree, and another time interval
tpause. The model describes a particle moving freely in a
three-dimensional space according to the following rules:
The particle starts at a fixed position and turns in a ran-
dom direction (more precisely, a direction is sampled from
a uniform distribution on the unit sphere). The turn takes
a fixed time tpause, during which the cell does not move.
This reflects the time it takes to “displace the internal
structure which brings about motion” [4]. Then, the cell
moves in the chosen direction with velocity vfree for a fixed
time tfree, after which it stops and restarts the process.
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The main distinguishing characteristic of the model is
the introduction of the pause phase. In this sense, it can
be seen as a generalization of the “ideal chain” model of
polymer physics [8], in which a chain of rigid rods of
fixed length ℓ is considered that are freely jointed to each
other. This is mathematically equivalent to the Beauche-
min model if we set vfree · tfree = ℓ and tpause = 0. In par-
ticular, analytical results e.g. on the mean square
displacement of the ideal chain [8] are directly transfer-
able to this case. As we shall see later on in this paper,
for some quantitative properties even the more general
case with tpause ≥ 0 can be reduced to the ideal chain
model.
This paper is structured as follows: In the upcoming sec-

tion, we begin by formulating a mathematical framework
for our analysis, which explicates sufficiently but not
overly general notions of random walks and Brownian
motion. We deliberately include a fairly large amount of
detail, including proofs, in order to present our results in a
self-contained fashion. Thereafter, we present analytical
results about random motion in the Beauchmin model,
and discuss four different ways for simulating biased
migration with pre-defined speed. We wrap up with con-
cluding remarks.
We point out that around half of the results discussed

in this paper originate from our recent study that used
the Beauchemin model [7]. We chose to integrate these
results into the present paper in rewritten and extended
form because they were formerly only published in con-
densed form as supporting online material. In this man-
ner, we hope to provide a coherent account of all
available analytical results, which we anticipate to serve
as a useful reference for future users of the model. We
mark results that have appeared earlier in our previous
study or elsewhere (e.g. Proposion 10) by giving the
appropriate reference in proposition or theorem state-
ments, while propositions or theorems stated without
such a reference (e.g. Proposion 12) have, to our knowl-
edge, not been published before.

Mathematical foundations
In this section, we outline the basic mathematical frame-
work that we use to describe stochastic cell motion and,
later on, the Beauchemin model. A similar, but slightly
less general framework (based on random walk on a lat-
tice) is used in Berg’s textbook Random Walks in Biology
[9], while a much more general account of random walks
than given here is usually presented in probability text-
books (e.g., [10]). At the end of this section, we will outline
the connection of this random walk to the corresponding
macroscopic partial differential equation model, which is
the convection-diffusion-equation.
First of all, we introduce some notational conventions.

We denote the expectation of a random variable ξ by E

[ξ], its variance by Var(ξ) = E [(ξ − E[ξ])2] and its prob-
ability density function by fξ. Elementary random vari-
ables are written in lowercase Greek letters (usually ξi)
while derived random variables that are functions of ele-
mentary random variables are written in capital Latin let-
ters. All random variables are assumed to be continuous
and real-valued. Mean and variance of random variables
will also be written as μ and s2, if the referenced variable
is clear from context.

Observed tracks and associated measures
The Beauchemin model is usually validated against, or
used to generate, cell tracking data as it would be
recorded in a two-photon microscopy experiment. As
we will see later, there can be subtle differences between
the real underlying state and the observed state of a cell.
We thus make this difference explicit in our analysis by
means of the following definitions for cell tracking
terminology.
Definition 1 (Cell track). A d-dimensional cell track is

a finite sequence

(x(1), t(1)) , . . . , (x(k), t(k))

consisting of positions x(1) , . . . , x(k) ∈ R
d and increas-

ing time points t(1), . . . , t(k) ∈ R.
The time indices are written in brackets to indicate

that the positions are discrete-time observations of an
underlying continuous motion process. For population-
based cell track analysis, it is common to align a set of
tracks to a common starting point.
Definition 2 (Aligned cell track sets). For a cell track

T = (x(1), t(1)) , ..., (x(k), t(k)), the track that results
from subtracting the first element from all elements in
the sequence, i.e.

T0 = (0, 0), (x(2) − x(1), t(2) − t(1)) , ...., (x(k) − x(1), t(k) − t(1))

is called the zero-aligned version of T .
Throughout the paper, we will assume that all cell

track sets are zero-aligned.
Definition 3 (Mean displacement and mean square

displacement). Let x1(t) , ..., xn (t) be the positions of n
zero-aligned cell tracks at some fixed time t. Then the
mean displacement D(t) for S is defined by

D(t) =
||x1(t)|| + · · · + ||xn(t)||

n

where || · || is the d-dimensional euclidian norm or
vector length, and the mean square displacement D2(t) is
defined by

D2(t) =
||x1(t)||2 + · · · + ||xn(t)||2

n
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Beauchemin et al. [5] estimated the three parameters
vfree, tfree and tpause of their model by fitting it to mean
displacement data: For each combination of parameters,
106 simulations of the model were run, and the mean dis-
placement data was recorded and averaged over all simu-
lations. The resulting mean displacement curve was
compared to real data from several publications. The
parameter triplets were ranked according to their
squared sum of errors to the real data (see Table 1). It
was found that the values tfree = 2.0 min, tpause = 0.5 min
and vfree = 18.8 μm/min gave the best agreement to the
real data. These values are biologically reasonable and
similar to those estimated by Miller et al. [1].

Microscopic random walk with bias
In this section, we will define the notion of a one-dimen-
sional random walk used in this paper and derive its rela-
tion to a one-dimensional convection-diffusion process.
These concepts can be easily generalized to higher dimen-
sions under the assumption that the dimensions are pair-
wise uncorrelated, while stochastic independence in the
strict sense is not necessary. This assumption holds for the
particular random walks we analyze in this paper.
Definition 4 (One-dimensional random walk [9,11]).

Let ξi, i ∈ N, be independent, identically distributed real-
valued random variables with mean μ and variance s2.
Then the sequence (St), i ∈ N, defined by

St =
t∑

i=1

ξi

is called a random walk with step bias μ and step var-
iance s2. If μ =0, (St) is called an unbiased random
walk.
Intuitively, the sequence (St) is the random walk tra-

jectory and the ξi are the individual steps. The above
definition is a slightly generalized version of the com-
monly used entirely discrete random walk with fixed
steps to the left and the right: We assume that each

step is sampled from a (possibly continuous) random
variable with finite first and second moments. The fol-
lowing corollary provides an important characteristic of
this random walk:
Corollary 5 (Mean and variance of a random walk).

For a random walk (St) as given by Definition 4,

E[St] = tμ and Var(St) = tσ 2.

Proof. Since the ξi are independent and thus uncorre-
lated, this is a direct consequence of the linearity of var-
iance and expectation. □
If the random walk is unbiased, Var(St) can be geome-

trically interpreted as the expected mean square squared
displacement of the particles at time t (Definition 3).
This leads to an important characteristic of the unbiased
random walk: In a particle ensemble, the particles will
go nowhere on average, and their expected mean square
displacement is linear in time. This characterization is
often used in the immunological literature [2] to convey
the difference between a random walk versus directed
migration, where the root mean square displacement is
linear in time (Figure 1).
For sufficiently long observations, we do not only

know the variance and mean of a random walk, but can
furthermore obtain a good approximation of the entire
particle distribution from the central limit theorem.
Theorem 6 (Central limit theorem [9,10]). Let (St) be

a random walk as given in Definition 4. Then as t ® ∞,
the distribution of the random variable

Zt =
St − tμ√

t

converges to a normal distribution with mean 0 and
variance s2 .
Thus, after a sufficiently long time, the distribution of

the random walk (St) at fixed times is approximately
normal. Of course, the terms “sufficiently long” and
“approximately normal” are rather vague. In the context
of intravital two-photon imaging, which is limited to a
finite, often axially thin imaging region, we can usually
not safely assume that we are in the range of validity of
the normal distribution approximation: We are obser-
ving only a few “steps” (prolonged periods of rather per-
sistent motion followed by short pauses) of a random
walk. Beltman et al. [3] and ourselves [7] have discussed
the implications of this technical limitation for detecting
directional bias and estimating the motility coefficient.
We now generalize the random walk to higher

dimensions.
Definition 7 (Multi-dimensional random walk [7]). Let

d ∈ N. Suppose (ξ (1)
i , . . . , ξ (d)

i ), i ∈ N are independent,

identically distributed R
d-valued random vectors

Table 1 Different parameters can lead to similar motility
coefficients.

Rank tpause tfree vfree M SSR

min min μm/min μm2/min

1st 0.5 2.0 18.8 94.25 1.00

2nd 0.5 2.5 16.6 95.68 1.01

3rd 0.25 2.0 17.6 91.78 1.02

4th 1.5 1.5 26.1 92.89 1.03

5th 0.75 1.5 23.8 94.41 1.03

Parameter triplets of the 3D cell random walk model that were found to best
fit in vivo data by Beauchemin et al. [5] along with their corresponding
motility coefficients as per equation (2). Beauchemin et al. calculated sums of
squared residuals (SSR) to a set of in vivo mean displacement data from four
publications [24,25,1,26]. The SSR values shown here are normalized to the
best ranking triplet.
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with ξ
(1)
i , . . . , ξ (d)

i
pairwise uncorrelated,

E[ξ (1)
i ] = μ(1), . . . , E[ξ (d)

i ] = μ(d) and Var(ξ (1)
i ) = . . . = Var(ξ (d)

i ) = σ 2.

Then the sequence (St), t ∈ N, defined by

St = (S(1)
t , . . . , S(d)

t ) =
t∑

i=1

(ξ (1)
i , . . . , ξ (d)

i )

is called a d-dimensional random walk with step bias
(μ(1), ..., μ(d)) and step variance s2. If μ(1) = ... = μ(d) = 0,
then (St) is called an unbiased d-dimensional random
walk.
The following theorem gives the limit distribution of

suitably scaled multi-dimensional random walks within
our framework.
Theorem 8 (Multi-dimensional central limit theorem

[7]). Let (St) be a d-dimensional random walk as given
in Definition 7. Then as t ® ∞, the distribution of the
random vector

Zt =
(S(1)

t − tμ(1), . . . , S(d)
t − tμ(d))√

t
converges to a d-dimensional normal distribution with

zero means and covariance matrix

� = σ 2E

Proof. Let a1, . . . , ad ∈ R. According to the Cramér-
Wold Theorem, it suffices to show that
(a1(S(1)

t − tμ(1)) + . . . + ad(S(d)
t − tμ(d)))/

√
t converges

in distribution to a normal random variable with zero
mean and variance (a2

1 + . . . + a2
d)σ 2 (see [12]). Note that

the random variables a1ξ
(1)
i + . . . + adξ

(d)
i
, i ∈ N, are

independent, identically distributed and have mean
a1μ

(1) + ... + adμ
(d). Furthermore, since ξ

(1)
i , . . . , ξ

(d)
i

are
pairwise uncorrelated,

Var(a1ξ
(1)
i , . . . , adξ

(d)
i ) = (a2

1 + . . . + a2
d)σ 2.

Hence, the result follows from the central limit theo-
rem for one-dimensional random walks. □
The central limit argument shows that even complex

cell migration processes might have a simple description
when observed for a sufficiently long time: The diffusion
coefficient is a function of all “microscopic” cell motility
parameters such as persistence time, speed, turning
angle distributions and so on. In the scaling limit, this
single coefficient describes an unbiased random walk
completely. Therefore, it is more common to describe
random walk processes on such timescales in terms of a
differential equation instead of a stochastic process. This
can be done using a scale transition, as we will explain
below.

The convection-diffusion equation
The random walk (St) introduced in Definition 4 is a
plausible microscopic model for the position of particles.
However, if the positions are observed on large time
scales (e.g., only every 20th state of the random walk
can be observed due to a limited temporal resolution),
then a macroscopic continuous model can be used to
describe the migration. This continuous model no
longer depends on the detailed characteristics of the
microscopic model such as the turning angle distribu-
tion or persistence length (i.e., the precise shape of
the ξi).
Mathematically, we construct the continuous model as

follows: For n ∈ N let (Zn(t)) with t ≥ 0 be given by

Zn(t) =
1√
n

�tn�∑
i=1

(ξi − μ) + tμ. (1)

We write the time index t in brackets in order to
emphasize that the processes are given in continuous
time. The process (Zn (t)) is obtained by observing n steps
of the random walk (St) in every time interval (t − 1, t]
with t ∈ N. It is scaled such that E [Zn (t)] = E [St] = tμ

(R
M
S
)
d
is
p
la
ce
m
en
t

time

(R
M
S
)
d
is
p
la
ce
m
en
t

√
time

directed
random

Figure 1 Directed vs. random motion. Traveled distance (directed movement) and root mean square displacement (random movement) of
directed and random motion plotted as functions of time (left) and square root of time (right). On the left hand side, directed motion yields a
straight line, with a slope given by its speed. On the right hand side, random motion yields a straight line, with a slope given by its diffusion
coefficient (also called motility coefficient in this paper).
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and Var(Zn(t)) = Var(St) = ts2 for every t ∈ N. Between
two successive steps, the process is constant.
Let (Z(t)), t ≥ 0, denote the limiting process obtained

as n, the number of steps per time interval, tends to
infinity. According to the Functional central limit theo-
rem (sometimes also referred to as Donsker’s Theorem,
see [12]), (Z(t)) has the following two properties:

• Any finite-dimensional distribution of (Z(t)) is
Gaussian.
• E[Z(t)] = tμ and Cov(Z(s), Z(t)) = min(s, t)s2 for s,
t ≥ 0.

A process with these properties is called Brownian
motion with drift μ. If t>0, then Z(t) has a probability
density j(x, t) given by

φ(x, t) =
1√

2π tσ
exp

(
−(x − tμ)2

2tσ 2

)

for x ∈ R.
As one can easily verify, this probability density func-

tion solves the following well-known differential equa-
tion for the initial condition j(x, 0) = δ(x), where δ
denotes the Dirac delta distribution.
Theorem 9 (Convection-diffusion equation [11,13]).

Let C = μ and M = s2/2. Then

∂

∂t
φ(x, t) =

[
−C

∂

∂x
+ M

∂2

∂x2

]
φ(x, t).

Taken the initial condition given above, the solution
of the convection-diffusion-equation exists and is unique
[13].
As the sum of independent Brownian motions is again

a Brownian motion, the convection-diffusion equation
describes the dynamics of single diffusing particles as
well as of ensembles of particles carrying out motions
independently: Assuming the ensemble is large enough
such that stochastic perturbations can be ignored, the
convection-diffusion-equation describes the evolution of
the particle concentration over time. This scaling argu-
ment justifies the use of the convection-diffusion equa-
tion for simulating large cell populations on timescales
that are substantially longer than the rhythmicity of the
cell migration process. For example, we used the con-
vection-diffusion equation to simulate the transit of
T cells through the lymph node, which takes approxi-
mately half a day [7].
Note that in the context of molecular motion, the

quantity M is usually called diffusion coefficient.
Throughout this paper we will use the term motility
coefficient to indicate that we are talking about particles
that are substantially larger than molecules; this is

common in the immunological literature since Miller et
al.’s early work [1].
Similarly as for the discrete model, the continuous

model can be generalized to multiple dimensions. In
this case, (Zn (t)) is obtained by observing n steps of a
d-dimensional random walk (St) in every time interval
of unit length. For n tending to infinity, the Functional
central limit theorem yields convergence to a d-dimen-
sional Brownian motion with independent components
and convection coefficients C(1) = μ(1) , ..., C(d) = μ(d).
The motility coefficient is equal to M = ds2 /2, where d
is the number of observed dimensions.

Summary
As a microscopic model for stochastic motility of parti-
cles, we have first introduced one-dimensional random
walks. According to this model, particles move by taking
independent and identically distributed steps at equidi-
stant discrete time points. Therefore, just like in the
Beauchemin model, our framework does not consider
persistence to last longer than the duration of a single
step; the model is fully characterized by the absolute
time between successive steps and the distribution of
steps. Important characteristics of the step distribution
are the step bias μ and the step variance s2. The ran-
dom walk is called unbiased if μ = 0, and biased, other-
wise. If we observe many particles carrying out
simultaneous unbiased random walks, the particles will
go nowhere on the average, but they will spread out
increasingly, their distribution being approximately nor-
mal. The model can be easily generalized to d dimen-
sions if we assume that the steps are dimension-wise
uncorrelated (not necessarily statistically independent).
Essentially, we can then treat the d dimensions like d
separate one-dimensional random walks.
On the macroscopic scale, (biased) random walks can

be approximated by Brownian motion (with drift). In
this case the motion of particles is described sufficiently
well by only two parameters, namely the motility coeffi-
cient M = s2 /2 and the convection coefficient C = μ.
The motility coefficient M quantifies the random com-
ponent of a biased random walk, while the convection
coefficient C (which can be interpreted as a velocity)
characterizes the directed component, if there is any
(Figure 2). Convergence to Brownian motion can also be
obtained for much more general random walk models
using appropriate central limit theorems. However, the
particular random walk chosen here is general enough
for our purpose of analyzing the Beauchemin model.

The Beauchemin model
In this section, we analytically derive three quantitative
characteristics of the particular random walk defined by
the Beauchemin model, namely the motility coefficient,
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the mean square displacement, and the confinement
ratio.

Motility coefficient
The fact that the model is three-dimensional might
seem to complicate our analysis. However, fortunately, it
is possible to decouple the dimensions of the model, as
will be shown in the following. The upcoming result
was stated by ourselves [7] and, more recently, by Dono-
van and Lythe [14].
Proposition 10 (Motility Coefficient of the Beauche-

min model [7,14]). Let (ξi, vi, ζi) ∈ R
3, i ∈ N, be indepen-

dent random vectors distributed uniformly on a sphere
with radius r. Set (Xt , Yt , Zt) =

∑t
i=1 (ξi, vi, ζi). Then Xt,

Yt and Zt are unbiased random walks as defined in 4,
and as t ® ∞, the distribution of (Xt , Yt , Zt)/

√
t con-

verges to a 3-variate normal distribution with zero mean
and covariance matrix

∑
=

⎛
⎝σ 2 0 0

0 σ 2 0
0 0 σ 2

⎞
⎠, σ 2 = r2/3.

Proof. The key ingredients to the proof are

(i) ξi, υi, ζi are uniformly distributed on [−r, r].
(ii) Cov(ξi, υi) = Cov(ξi, ζi) = Cov(υi, ζi) = 0.

In order to establish (i), note that P (ξi < h), i.e., the
probability that ξi lies below the height h in the sphere,
is proportional to the part of the sphere’s surface area
lying below the plane ξi = h. The surface of a spherical
cap is proportional to its height, and thus ξi must be
uniformly distributed on [−r, r] (see [15]). By isotropy,
the same arguments hold for υi and ζi. The statement
(ii) on pairwise uncorrelatedness is obtained by (ii) is
obtained by observing that (ξi, υi) is uniformly distribu-
ted on a circle with radius r − |z| given that ζi = z, and
hence Cov(ξi, υi) = 0.

Now, (i) implies E [ξi] = E [υi] = E [ζi] = 0, and hence
(Xt), (Yt) and (Zt) are unbiased random walks. The state-
ment on the asymptotic distribution of (Xt, Yt, Zt) follows
by (ii) together with Theorem 8, and the fact that a ran-
dom variable with uniform distribution on [−r, r] has
variance r2/3. □
Hence, particles in the Beauchemin model behave

exactly like the superposition of three uncorrelated ran-
dom walks with uniformly distributed steps.

Mean square displacement
Putting together our result from the last section with
the relationship between the motility coefficient M and
the dimension-wise step variance s2 of a random walk,
we obtain the following relation between the diffusion
coefficient and the microscopic parameters:

M =
(vfree × tfree)2

6(tfree + tpause)
(2)

The corresponding diffusion coefficients for the 5
best-fitting parameter triplets determined by Beauche-
min et al. are given in Table 1. It turns out that all the
best-fitting triplets have very similar motility coefficients.
On the other hand, the microscopic motility parameters
vary quite a lot: For example, the pause time of the 4th
best fitting triplet is 5 times longer than that of the 3rd
best fitting triplet. The triplets were ranked by Beauche-
min et al. according to the sum of squared residuals
(SSR) to the experimental data. However, the SSR of the
5th best fitting triplet is only less than 4% higher than
that of the best fitting triplet. Our upcoming analysis
will provide some insight why this occurs.
The next two propositions will yield a precise charac-

terization of the variance - and with it the mean square
displacement - of the position of single particles and
ensembles of observed particles in the Beauchemin
model. It is mathematically more convenient to analyze
the mean square displacement rather than the mean dis-
placement because, as we have shown above, the

x0

√
2Mt

−Ct x0

√
2Mt

Figure 2 Position distributions for biased random walks. Expected distribution of zero-aligned cell displacements measured in one
dimension in the case of an unbiased random walk with motility coefficient M (left) and a biased random walk with convection coefficient C
(right) as per theorem 9. In both cases, the distribution is Gaussian with standard deviation

√
2tM. In the biased case, the mean of the

distribution moves away from the origin with time.
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dimensions can be decoupled. For mean displacement,
this does not hold, and we would have to take into
account the stochastical dependence between
dimensions.
We start out with the variance of the position of one

particle that starts its random walk at time t = 0. For sim-
plicity, we will derive the following equations assuming
that one dimension is observed. Due to the independence
of the dimensions discussed above, multi-dimensional
versions of these results are obtained simply by multiply-
ing the derived quantity (i.e., mean square displacement
or confinement ratio) with the number of observed
dimensions.
Proposition 11 (Expected square displacement of sin-

gle particles in the Beauchemin model). A particle starts
at time t = 0 in position x(0) = 0 to carry out a random
walk as defined by the Beauchemin model with fixed
parameters tpause,tfree,vfree. Let x(t + τ) denote the position
of the particle observed in one dimension at time t + τ
where t is an integer multiple of tfree + tpause and 0 ≤ τ <
tfree + tpause. Then the expected square displacement of
the particle is given by:

E [D2(t + τ )] = Var(x(t + τ )) = 2Mt +
v2

free

3
(max(τ − tpause, 0))2

with M as defined in equation (2).
Proof. The term 2Mt follows directly from Proposition

10 and the linearity of variance (see also Corollary 5).
Thus we continue with t = 0. Then we have from Pro-
position 10 that the position at time tfree + tpause is

uniformly distributed on the interval [−vfreetfree, vfreetfree],
having variance 2M(tfree + tpause).
For τ ≤ tpause, the particle’s position does not change,

hence its variance is equal to 0. For τ > tpause, the posi-
tion is uniformly distributed on an interval with a size
proportional to τ − tpause. Hence the variance has quad-
ratic form y = a(τ − tpause)

2. Inserting τ = tfree + tpause,
we obtain

2M(tfree + tpause) = a t2
free

Inserting the definition of M from above, this results
in

a =
(vfree)2

3
(3)

Combining the cases τ ≤ tpause and τ > tpause, we arrive
at the proposition. □
A plot of the expected square displacement shows a

series of iterated pulses that approaches the linear pro-
gression described by the diffusion equation from below
(see Figure 3). However, we will most likely not see
such phasic behaviour if we take the average of several
observed particles, since the particles will in general not
be synchronized and the pulses that are caused by the
free runs between turns will average out. Consequently,
the next step in our analysis is to derive the expected
mean square displacement for a particle ensemble. We
do this by assigning to each observed particle a phase,
which reflects the particle’s state at the time when we

0
0 tpause

va
ri
an

ce

time

exact variance
diffusion equation

Figure 3 The Beauchemin model and the diffusion equation. The expected square displacement (or position variance) of a single particle
along with the approximation by the diffusion equation.

Textor et al. BMC Bioinformatics 2013, 14(Suppl 6):S10
http://www.biomedcentral.com/1471-2105/14/S6/S10

Page 7 of 15



start our observation. Then we average over all possible
phases.
Proposition 12 (Empirical mean square displacement

of the Beauchemin model). Set trun = tfree + tpause. A par-
ticle starts at a uniformly distributed random time −t0,
−trun <−t0 ≤ 0 in some position to carry out a random
walk as defined by the Beauchemin model with fixed
parameters tpause, tfree, vfree. Let x(t) ∈ R denote the posi-
tion of this particle observed in one dimension at time t,
where we choose the coordinate system such that x(0) =
0. Then the expected square displacement of the particle
at time t is given by

E[D2(t)] =
1

trun

∫ 0

−trun

Var(x(t − t0) − x(t0)) dt0

= 2Mt − 2Mtfree ×
{ 1

3 t ≥ tfree
1
3

(
t

tfree

)3
−

(
t

tfree

)2
+

(
t

tfree

)
t < tfree

.

Proof. See Figure 4 for an illustration of how the para-
meter δ affects the variance of the observed particle
position during the initial observation time. For δ ≤ 0,
the cell is resting at the beginning of observation time
and remains paused for time tpause − δ. For δ >0, the
cell is moving at the beginning of observation time and
keeps moving for time δ. Let us write Var(Sδ(t)) for the
position variance of a particle with phase shift δ.
Denote by τ0 the time that the particle was already

moving when we started observing it. Hence,

x̂(t) = x(t + τ0) − x(τ0)

where x̂(t) denotes our observed position. We are
interested in the variance Var[x̂(t)], for which the follow-
ing holds:

Var[x̂(t)] (4)

= Var[x(t + τ0) − x(τ0)] (5)

= Var[x(t + τ0)] + Var[x(τ0)] − 2Cov[x(t + τ0, x(τ0)] (6)

What we are deriving is the expectation of expression 6,
which is a function of the random variable τ0. Due to the
markov property of the random walk, only the last
observed step matters and we can take τ0 as uniformly dis-
tributed over [0, tfree + tpause). Thus,

E[Var[x̂(t)]] =
1

tfree + tpause

∫ tfree+tpause

τ=0
Var[x(t + τ0)] − Var[x(τ0)]dτ0

We start by integrating the two variance terms. Some
algebra yields

1
tfree + tpause

∫ tfree+tpause

τ0=0
Var[x(t + τ0)] + Var[τ0]dτ0

=
(vfreetfree)2

3(tfree + tpause)

((
t +

tfree

3

)
+

tfree

3

)

= 2M
((

t +
tfree

3

)
+

tfree

3

)

0

0 tfree + tpause

va
ri
an

ce

time

δ ≤ 0

0

0 tfree + tpause

va
ri
an

ce

time

δ > 0

δ = −tpause
δ = 0

δ = 0
δ = tfree

Figure 4 Effect of the phase parameter on the variance. The plots illustrate how the phase parameter δ affects the variance of a single
observed cell in the Beauchemin model. The expected variance for a (large) ensemble of observed particles is obtained by averaging over all
values of δ.
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where M is the motility coefficient as defined in equa-
tion 2. For the covariance term it can be shown by
some case distinctions that

1
tfree + tpause

∫ tfree+tpause

τ0=0
Cov[x(t + τ0), τ0]dτ0

= M min(t, tfree) + M

(
min (t, tfree)2

tfree
+

min(t, tfree)3

3t2
free

+
2tfree

3

)
︸ ︷︷ ︸

=0 for t≥tfree

Combining the variance and covariance terms as per
expression 6, we obtain the claimed identity. □
As illustrated in Figure 5, the empirical mean square

displacement from time tfree onwards is thus perfectly
described by the linear equation

E [D2(t)] = αt + β (7)

with slope

α = 2M =
(vfree)2(tfree)2

3(tfree + tpause)
(8)

and intercept

β = −2tfree

3
M = − (vfree)2(tfree)3

9(tfree + tpause)
. (9)

This is an important difference to other models of
mean square displacement such as Fürth’s equation,

which is frequently applied to cell migration data
[16,17]. This equation reads

E [D2(t)] = 2M(t − P(1 − e−t/P)) (10)

where P is a parameter called the persistence length.
Hence, in the Beauchemin Model, the persistence of
migration carries on only for the predefined time tpause +
tfree, after which it is immediately and completely lost. On
the other hand, persistence in Fürth’s equation gradually
decays over time following an exponential term. This is
why we previously used Fürth’s equation to estimate the
cell motility coefficient from short-term migration data
[7]. However, whether this really leads to more accurate
results remains to be determined.
A second notable consequence of the above result is

that although the Beauchemin model has three micro-
scopic parameters, its step-wise variance has only two
degrees of freedom. Consequently, while the value of
tpause would become apparent when analyzing the track
of a single simulated cell at a very high resolution, it
does no longer matter when a large population of cells
that migrate asynchronously is analyzed, as shown by
Proposition 12: Given a fixed tfree, there are infinitely
many combinations of tpause and vfree that yield an iden-
tical motility coefficient and thereby an identical
expected square displacement of the population. For
example, the empirical mean square displacement of the
best-fitting triplet (0.5, 2.0, 18.8) is identical (up to some

−β

0

tfree

en
se
m
b
le

va
ri
a
n
ce

time

exact variance
αt− β

Figure 5 Forming the population average. Expected mean square displacement of observed particle ensembles as of Proposition 12. The
pulses of the individual variances (see Figure 4) average out, and the exact expression converges quickly to a linear form with slope a = 2M
and intercept b = 2Mtfree/3. One degree of freedom from the individual variance is lost due to the averaging process.
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rounding) to that of the triplet (9.32, 2.0, 40). Hence, we
cannot expect to get reliable estimates for all three para-
meters tfree,tpause and vfree from fitting the model to
mean square displacement data. This is consistent with
the observation by Beauchemin et al. that the parameter
tpause can always be set to 0 without much influence on
the quality of the best fit.
However, Beauchemin et al. fitted their simulations to

the mean displacement data, and the above result does
not imply that the mean displacement too has just two
degrees of freedom. Perhaps surprisingly, simulations
show that this is in fact not the case (Figure 6): While
mean square displacement plots generated with using the
above parameter triplets and our analytical solutions are
indeed consistent with each other, the mean displace-
ment plots are significantly different. Hence, the mean
displacement plot appears to preserve more information
on the underlying migration process than does the mean
square displacement plot, at least when applied to cell
tracks simulated using the Beauchemin model.

Confinement ratio
The confinement ratio is a measure of track straight-
ness. In the context of lymphocyte migration analysis,
it is also called “chemotactic index” or “meandering
index” [2,3]. The confinement ratio is usually defined
as the quotient of a path’s displacement from the ori-
gin versus the complete length of the path. If the cell
changes directions very often, the confinement ratio
will tend to zero over time, while for directed

migration without a random component, the confine-
ment ratio is equal to 1.
Instead of the confinement ratio, we consider here the

squared confinement ratio, which can be easily determined
for the Beauchemin model from the previous result.
Definition 13 (Squared confinement ratio). Consider a

particle moving according to the Beauchemin model and
let D2(t) denote the squared distance between the parti-
cle position at time t and its starting point. Then we
define the squared confinement ratio C2(t) as follows:

C2(t) =
D2(t)

t2v2
free

By assuming tpause = 0 and applying the results from
the previous section, we can determine the expected
confinement ratio of the Beauchemin model as follows:

E [C2(t)] =
1

t2v2
free

[
2Mt − 2Mtfree ×

{ 1
3 t ≥ tfree

1
3

(
t

tfree

)3
−

(
t

tfree

)2
+

(
t

tfree

)
t < tfree

]

=
1
t2

[
tfree

3
t − t2

free

3
×

{ 1
3 t ≥ tfree

1
3

(
t

tfree

)3
−

(
t

tfree

)2
+

(
t

tfree

)
t < tfree

]

=
tfree

3t
− t2

free

3t2
×

{ 1
3 t ≥ tfree

1
3

(
t

tfree

)3
−

(
t

tfree

)2
+

(
t

tfree

)
t < tfree

=
tfree

3t
− 1

9
×

{
1 t ≥ tfree

t
tfree

− 3 + 3tfree
t t < tfree

=
tfree

3t
− 1

9
×

{
1 t ≥ tfree
3t2

free+t2

tfreet − 3 t < tfree

= . . .

=
1

3 max(t, tfree)

(
tfree − t × tfree

3 max (t, tfree)2

)
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Figure 6 Mean displacement can be more informative than mean square displacement. The pause parameter of the Beauchemin model is
not essential for the mean square displacement, but for the mean displacement. Left: Root mean square displacement curves generated for two
populations with tfree = 2 min and tpause = 0.5 min, vfree = 18.8 μm/min (red squares and error bars) or tpause = 9.32 min, vfree = 40 μm/min (blue
circles and error bars). Simulations (N = 10000) with these two parameter yield the same results, as predicted by Proposition 12 (black line). Error
bars show the standard error of the mean. Right: Although there is no difference with respect to the mean square displacement, the mean
displacement curves of the two simulated populations differ.
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Note that E [C2(0)] = 1
3, because the path length tvfree

is measured in three dimensions while the expected
observed square distance is projected to one dimension.
Beltman et al. [3] have argued that the confinement

ratio is not well suited for comparisons between differ-
ent experiments because it tends to zero over time, and
is therefore sensitive to the duration of the experiment
from which it was estimated. They suggested to instead
normalize the confinement ratio by multiplying it with
the square root of time, such that it converges to a con-
stant value. Applying this normalization to the squared
confinement ratio of the Beauchemin model, we obtain

t × E [C2(t)] =
t

3 max(t, tfree)

(
tfree − t × tfree

3 max (t, tfree)2

)
, (11)

which for t ≥ tfree simplifies to

t × E [C2(t)] =
tfree(3t − 1)

9t
. (12)

Thus, the normalized squared confinement ratio con-
verges to tfree/3. When there is evidence that the
observed migration process really behaves roughly like
the Beauchemin model, this could be a good rule of
thumb for quick estimations of the persistence time
from experimental data.

Simulating biased migration
For our recent study of the detection limits of two-
photon imaging [7], we extended the Beauchemin model
for simulating three different types of biased migration,
for which we used the term taxis modes [18] to indicate
that such biased migration in cells usually occurs in
response to an external stimulus. These three taxis
modes were orthotaxis, where the movement speed is
adjusted, klinotaxis, where the duration of the “free runs”
is changed, and topotaxis, where the turning angle distri-
bution of the simulated cell is changed. Thus, these mod-
ifications can be viewed as semi-mechanistic ones that
attempt to describe ways in which a cell could re-adjust
its migration behaviour from pure random migration to
biased random migration in response to an external sti-
mulus. Before we review these modifications, we start by
presenting a fourth method to simulate biased migration
which is not mechanistically motivated, but is much
easier to analyze.
In all cases, taxis is spatially and temporarily uniform

and controlled by two parameters: The vector �b ∈ R
3,

assumed to have unitary length, sets the direction of the
taxis, and the parameter p Î [0, 1] determines the mag-
nitude of taxis, with p = 0 equivalent to an unbiased
random walk and p = 1 to a maximally biased random
walk; the precise meaning of the parameter p will be
defined for each case below.

Simple phenomenological model
A simple ad-hoc method to extend the Beauchemin model
for simulating biased migration is the following: During
the pause phase, the cell is no longer kept stationary, but
moves into the bias direction �b with speed p · vfree. This
model is very simple to analyze, because the modification
is deterministic and so changes only the mean, but not the
variance of each step. Hence, the motility coefficient
remains the same.
Proposition 14 (Taxis speed for the simple model).

The length of the convection coefficient, ||C||, of the sim-
ple biased migration model is given by

‖C‖ =
p · vfree · t2

pause

tfree + tpause
.

Proof. During each pause phase, the cell moves a dis-
tance p · vfree · tpause into the bias direction. ||C|| is then
simply the product of this distance and the total fraction
of time that the cell spends in the pause phase. □
There might be some use for the simple biased migra-

tion model in situations where it is necessary to study the
effect of bias independently of the motility coefficient.
However, it is difficult to imagine how such a situation
could arise biologically. Below we therefore discuss model
modifications that have a more realistic motivation. For
each of these modifications, it is possible to analytically
derive the convection coefficient, i.e., the expected speed
of the bias.
Throughout the rest of this section, we let the vector �d

denote the orientation vector of the Beauchemin model
(i.e., a vector randomly sampled from the unit sphere),
and �b the bias direction. Moreover, we let (ξ ′, v′, ζ ′)
denote the vector of random variables representing a step
of the modified model, while (ξ, υ, ζ) denotes a step in the
original model.

Orthotaxis model
In the orthotaxis model, the migration speed is no
longer constant but depends on the chosen target direc-
tion. The more consistent this direction is with the tar-
get direction, the faster the simulated cell will move.
Such bias could occur for instance in response to some
external dragging force, and might be illustrated by ima-
gining a random stroll through a city on a very windy
day.
Formally, we define the adjusted speed as follows:

v′
free = vfree

(
1 + p 〈�b, �d〉

)
Here 〈·,·〉 denotes the scalar product and p the bias

strength parameter. Note that the movement perpendi-
cular to �bis not affected at all, while movement against
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the direction �b is slower and in direction �b it is faster.
More precisely, the relation between p and the bias
speed vtaxis is given by the following proposition.
Proposition 15 (Speed of orthotaxis [7]). The convec-

tion coefficient ||C|| of the orthotaxis model is given by

‖C‖ = vfree · p tfree
3(tfree + tpause)

.

Proof. We can assume without loss of generality that
the bias is along the first dimension, i.e. �d = (1, 0, 0),
and thus 〈�b, �d〉 = ξ. We are interested in the expecta-
tion E [ξ ′]; it is easy to see that the expectations E [v′]
and E [ζ ′] are still 0. Then we get

ξ ′ = v′
freeξ = vfree(1 + pξ)ξ

= vfree(ξ + pξ2).

Because ξ is uniformly distributed on [−1, 1] (see
proof of Proposition 10), the expected location E [ξ ′] at
the end of the step is

E [ξ ′] = E [vfree · tfree(ξ + pξ2)]

= vfree · tfree(E [ξ] + pE [ξ2])

= vfree · tfree · p/3.

Dividing this expected location E [ξ ′] by the step
duration tfree + tpause yields the claimed expression for
||C||. □

Topotaxis model
In the case of topotaxis, the cell adjusts its turning
behaviour but keeps the speed constant. This also affects
both the variance and the mean of the cell step distribu-
tion. Topotaxis could be a likely bias mechanism for
cells migrating on some sort of structural cell network
in the tissue, like it was suggested to be the case for
T cells in secondary lymphoid organs [19].
We implement topotaxis by skewing the distribution

from which we pick the cell’s orientation �d = (ξ , v, ζ ).
Recall that this is a uniform distribution on a sphere in
the unbiased case. Such a distribution can also be gener-
ated by sampling ξ uniformly from [−1, 1] and then
picking υ, ζ uniformly from a circle with radius√

1 − ξ2. Thus, the probability density function fξ(x) is
defined as follows:

fξ (x) =
1
2

, x ∈ [−1, 1].

For the modified model version, we define a parame-
terized version of fξ (x) as follows:

fξ ′ (x) =
1 + px

2
, x ∈ [−1, 1].

Hence, for p = 0 we obtain the distribution
of the unbiased case, while for p = 0.5 we

get the slightly skewed distribution and for
p = 1 we obtain the maximally skewed distribution

.
This modification of the Beauchemin model yields the

same convection coefficient as in the previous case.
Proposition 16 (Speed of topotaxis [7]). The speed ||

C|| of the directional motion induced by the topotaxis
model is given by the equation

‖C‖ = vfree · p tfree
3(tfree + tpause)

.

Proof. This is simply shown by calculating E [ξ ′] for
the probability density function defined above. □

Klinotaxis model
Lastly, we can also induce bias by modifying the dura-
tion tfree of the free run depending on the picked orien-
tation �d. A well-known biological example of such bias
is the “run-and-tumble” motion by which E. Coli
searches for food: Because the bacterium is too small to
sense concentration gradients in situ, it is capable of
comparing concentration measurements along a persis-
tent path until it figures out whether it is going in the
right direction. When it senses that it is moving in the
right direction (run), it will try to keep going, while
otherwise it will stop its motion soon (tumble) and ori-
ent itself in a new random direction.
We implement klinotaxis by modifying the free run

duration tfree depending on the angle between �d and �b
as follows:

t′free = tfree(1 + p〈�b, �d〉)
Again, this modification leads to exactly the same bias

speed as found for the previous two models.
Proposition 17 (Speed of klinotaxis [7]). The speed

||C|| of the directional motion induced by the klinotactic
modification of the Beauchemin model is given by the
equation

‖C‖ = vfree · p tfree
3(tfree + tpause)

.

Proof. The proof follows along the lines of a similar
model of E. Coli run-and-tumble motion discussed by
de Gennes [20]. We start again by analyzing a single
free run of a cell projected onto the direction of bias,
which is assumed without loss of generality to be along
the first dimension ξ. Again we need to determine E [ξ ′].
We start by writing ξ ′ as

ξ ′ = vfree · ξ · tfree · (1 + pξ) .
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Now let us assume for a moment that tpause = 0. It is
easy to verify that E [t′free] = tfree. Thus, the average
speed towards the bias direction over many successive
steps is E [ξ ′/tfree]. A simular calculation as in the proof
of Proposition 15 yields

E[ξ ′/tfree] = vfree · p/3.

Now we arrive at the claimed expression by multiply-
ing the above with the overall fraction of time that the
particle spends in the free run phase, which is

tfree/(tfree + tpause).

□
Note that the klinotaxis model no longer fits within

our mathematical framework because the duration of a

step in the model is no longer constant. Thus, the cen-
tral limit theorem we applied in that section no longer
applies, and a different central theorem would be
needed to show formally that the model converges to a
Brownian motion.
Moreover, we point out that for all modifications

discussed in this section except for the simple phe-
nomenological one, the random motility component
changes. Therefore, these modifications cause as a
side-effect a modified motility coefficient. In general,
the random motility component are even affected in
a non-isotropic fashion, such that the motility coeffi-
cient would need to be described using a 3 × 3
matrix instead of a single scalar value. In Figure 7,
we show some simulation results that illustrate this
point.
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Figure 7 Taxis skews the random motility component. Displacement of in silico cells when applying the four different methods of simulating
biased migration along the X axis using the methods discussed in this paper, i.e., the simple phenomenological model (black), orthotaxis (red),
topotaxis (blue), and klinotaxis (green). For each panel, N = 1000 cells were simulated using the parameters tpause = 0.5 min, tfree = 2.0 min, and
vfree = 18.8 μm/min. Cell displacements are shown after one hour of simulation time, and the taxis parameters p are in each case set such that
the expected displacement is 300 μm per hour. The length of the scale bars is proportional to the dimension-wise variances of the cell
displacements, demonstrating that these variances change when biased migration is introduced.
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Conclusions
In this article, we have compiled both old and new analyti-
cal results on the Beauchemin model of lymphocyte
migration, which was originally a model of purely random
motility, but is now able to accommodate partially biased
migration as well. An important practical consequence of
these results is that validation of the model against experi-
mentally determined motility coefficient, mean square dis-
placement data, and confinement ratio curves does no
longer need to be performed by simulation, because these
quantities can be calculated directly from the model para-
meters. This also allows for the use of standard numerical
fitting procedures, such as implemented in popular com-
puter algebra packages, to estimate the model parameters
from such data by least-squares-fitting. An important
observation was that when simulating a large population
of unsynchronized cells, the model is equivalent to the
ideal chain model of polymer physics, which is however
only true with respect to the quantities named above and
not for others like the mean displacement. Interestingly,
this shows that we can sometimes infer information from
mean displacement data that we cannot infer from mean
square displacement data. However, an analytical deriva-
tion of the mean displacement of the model has not yet
been achieved, and can be expected to be complicated jud-
ging from the experiences with similar models [21]. For
now, we leave this as an important open problem.
Subtle biased migration of lymphocytes can point to

important biological functions or phenomena [22,23],
and the use of mathematical models has helped to under-
stand the quantitative impact of such effects [23,7]. The
modifications discussed above facilitate simulations of
such subtle biases with pre-defined speed, again remov-
ing the need for fitting the bias strength parameter to
data by using simulations. However, all but one of the
discussed modifications also affect the random migration
component, which is likely also true in biological scenar-
ios where randomly migrating cells respond to an exter-
nal stimulus. Therefore, another important task that
remains to be solved is to analytically derive the motility
coefficient matrices for the topotaxis, klinotaxis, and
orthotaxis models.
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