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In the context of binary class-modelling techniques, the paper presents the computation in
the input space of linear boundaries of a class-model constructed with given values of
sensitivity and specificity. This is done by inversion of a decision threshold, set with these
values of sensitivity and specificity, in the probabilistic class-models computed by means
of PLS-CM (Partial Least Squares for Class-Modelling). The characterization of the
boundary hyperplanes, in the latent space (space spanned by the selected latent
variables of the fitted PLS model) or in the input space, makes it possible to calculate
directions that can be followed to move objects toward the class-model of interest.
Different points computed along these directions will show how to modify the input
variables (provided they can be manipulated) so that, eventually, a computed ‘object’
would be inside the class-model, in terms of the prediction with the PLS model. When the
class of interest is that of “adequate” objects, as for example in some process control or
product formulation, the proposed procedure helps in answering the question about how
to modify the input variables so that a defective object would be inside the class-model of
the adequate (non-defective) ones. This is the situation illustrated with some examples,
taken from the literature when modelling the class of adequate objects.

Keywords: process analytical technology, partial least squares, class-modelling, sensitivity/specificity, latent
variables model inversion, authentication, attributes

INTRODUCTION

Class-modelling techniques (Forina et al., 2008) focus on the ability of the built class-models for
recognizing their own objects (sensitivity of the computed class-model) and rejecting all others
(specificity). The additional information that the class-models provide about the categories being
modelled, as against a pure discriminant rule, is relevant for authentication of products (Rodionova
et al., 2016a), for example, to characterize foods or beverages with recognized quality, such as
denomination of origin wines or oil (Barbaste et al., 2002; Marini et al., 2006; Forina et al., 2009;
Ruisánchez et al., 2021) combined with spectroscopic and chromatographic techniques to
characterize green tea (Casale et al., 2018) with near infrared spectroscopy to antibiotic
authentication (Chen et al., 2020) to identify bands for functional spectral data (Hermane et al.,
2021) for food-authenticity claims (Oliveri and Downey, 2012) for detection of cold chain breaks in
tuna (Reguera et al., 2019), or adulterations (Xu et al., 2013a), or nitro explosive vapors (Pablos et al.,
2015). Also, a procedure based on band limits are successfully used as probabilistic one-class classifier
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(Avohou et al., 2021), among several other applications that can
be found in a recent tutorial (Oliveri et al., 2021). In fact, the area
is very active: a search in Scopus with key terms “Classification
model” OR “Class-modelling” limited to the last five years
(2016–2021) and in Chemistry as subject area return 1,013
documents. By reducing the search to (“Classification model”
OR “Class-modelling”) AND “Chemometrics”, there were still
431 resulting documents.

The concept of pattern recognition has evolved since the birth
of chemometrics (Brereton, 2015) resulting, more than a decade
ago, in the classification of the techniques as either discriminant
or one-class classifiers (when modelling the categories
independently to one another) (Brereton, 2009). A more
flexible taxonomy (Rodionova et al., 2016b) distinguishes
between “rigorous” (equivalent to one-class classifiers) and
“compliant” class-modelling techniques. To build the class-
model only objects of the modelled class are considered in the
former case while in the latter, objects of different classes are also
used. Alternative denominations make distinction between hard
or soft models (Brereton, 2011), as those that do not allow or
allow overlap between classes, respectively. This division is also
used in ref. (Pomerantsev and Rodionova, 2018) for the particular
case of PLS-DA (Partial Least Squares Discriminant Analysis
(Ståhle and Wold, 1987; Barker and Rayens, 2003), making a
distinction between hard and soft PLS-DA models depending on
whether they use LDA or QDA (UNEQ) on the PCA-scores of the
PLS-predicted responses.

The assumption under the name “one-class classifier” is that
each class is modelled independently of any other class, context
that covers the situation where in fact there is a single class, e.g.,
for authentication purposes (Oliveri and Downey, 2012;
Rodionova et al., 2016a). In this case, the quality criterion
(figure of merit) of the class-model is only its sensitivity,
though it can be possible to estimate the specificity as against
other samples by using a different set of objects that do not belong
to the modelled class (a so-called specificity set in ref. (Forina
et al., 2008)). To obtain an unbiased estimate, the specificity set
should be representative of all possible “alternative” classes.

Partial Least Squares for Class-Modelling (PLS-CM), first
proposed in ref. (Ortiz et al., 1993), is one class-modelling
technique that works by implicitly defining probabilistic class-
models with predefined values of sensitivity and specificity or, at
least, the closest possible to the desired ones with the data at hand.
Unlike PLS-DA that also uses a PLS regression model with binary
response, PLS-CM first fits probability density functions to the
predicted values, separately in each class, which act as
probabilistic class-models. For given values of sensitivity or
specificity, a decision threshold can be defined as the critical
value computed with the fitted distributions. Since the two class-
models are fitted together to estimate both sensitivity and
specificity, with the distinction in ref. (Rodionova et al.,
2016b), the method would be a “compliant” class-modelling
method.

Under the same acronym PLSCM, Xu et al. (Xu et al., 2011)
build class-models for a single class. The class-model is a kind of
confidence interval of the form (1 − μ̂r) ± z1−α/2σ̂r where μ̂r , σ̂r ,
are estimates computed with Monte Carlo Crossvalidation, of the

mean and standard deviation of the residuals of a PLS model
with constant response (response matrix Y is a vector of
ones), assuming that they follow a normal distribution.
Accordingly, z1-α/2 is the critical value of the standard
normal distribution for 1—α confidence. A new sample is
inside the class-model if its predicted response ŷun belongs to
the interval. Two years later (Xu et al., 2013b), with the new
name OCPLS (one-class partial least squares) classifier, the
authors add bounds on the allowed variation of the T2

statistic as well as on a transformation of the residuals of
the regression (difference between one and the predicted
responses) to create an outlier identification plot.

Comparing OCPLS (Xu et al., 2013b) with PLSCM (Ortiz
et al., 1993), the differences are in the use of one-class (an interval
as class-model) or two-classes (probability density functions as
class-models) for modelling and that in PLSCM the bounds are
imposed as hard constraints in the values of T2 and Q-residual
statistics to reject objects from both class-models.

The membership of an object x to a given class-model can be
posed as a hypothesis test with null hypothesis H0: object x
belongs to the class-model as against H1: it does not. With the
usual notation, α is the significance level of the test, that is, the
probability of type I error (wrongly rejecting the null hypothesis),
and β is the probability of type II error (fail to reject the null
hypothesis). Then, sensitivity of the class-model is 1—α and
specificity is 1—β, the power of the test. The general notion of
type I and type II errors (with probabilities α and β, respectively)
is usually adapted to the context (Ortiz et al., 2010), and becomes
false non-compliance/compliance or false positive/negative,
whose meaning is clear once undoubtedly established the
hypothesis being tested (the meaning of the “class” we are
studying in the class-modelling framework). Speaking in
positive, the terms sensitivity, specificity, true positive/negative
rates, confidence level or power can also be used.

To avoid misunderstanding and facilitate the reading of the
paper, in what follows, we will always speak about sensitivity and
specificity, which will be estimated as the probabilities that
characterize the corresponding class-model, computed with the
fitted distributions.

In the illustrative examples in the present work, the class to be
modelled is the class of some adequate objects, again, understood
in a general sense. Besides authentication or fraud detection,
another particular situation that fits this framework could be the
modelling or monitoring of a process where the class-model of
interest is the one for non-defective objects and, clearly, the
probability of detecting a defective object (specificity) is
important. Furthermore, it can be assumed that the expected
failures are known, in other words, that there will be samples
representative of the usual defective objects acting as the
alternative class. Therefore, the training set for fitting the PLS
model has samples representative of both situations: usual
defective objects and non-defective ones.

It has been said that with PLSCM, the class-models are defined
in the space of the predicted responses. To backpropagate them
into the input domain requires the inversion of the prediction
model. Briefly, the inversion of a model refers to the situation
where we have the values of the characteristics we want to achieve
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(output space), and the aim is to find the values of the predictor
variables (input space) to attain them.

The inversion of PLSCM is a LVMI (Latent Variables Model
Inversion), term used more frequently in the field of process
industry after the seminal papers by Jaeckle and MacGregor
(Jaeckle and MacGregor, 1996; Jaeckle and MacGregor,
2000a). A general formulation for LVMI when the latent
variables are computed with PLS is in ref. (Tomba et al., 2012)
with a through discussion and also a revision of available
literature and applications at that time. There, 95% confidence
limits on T2 and Q statistics are already applied to the PLS model
fitted with historical data, so that the operating conditions
obtained with PLS model inversion must be interior to it. The
region defined with these hard constraints on the solutions was
later called PLSbox in ref. (Ruiz et al., 2020) where also the explicit
consideration of two existing null spaces (one due to the
projection into the latent space and the other from the
mapping of the scores onto the responses) in PLS model
inversion is described. Some more developments about LVMI
can be found in refs. (Tomba et al., 2013; Ottavian et al., 2016;
Palací-López et al., 2020), and (Zhao et al., 2019a; Zhao et al.,
2019b) where the authors propose a modification called the total
projection in latent structures of PLS model inversion to take into
account that latent variables of a PLS model may contain
information irrelevant to the response. Also, by imposing hard
constraints on the input domain further to the PLSbox, a different
approach to the inversion is in ref. (Ruiz et al., 2018), similar to
the one in Lakshminarayanan et al. (Lakshminarayanan et al.,
2000) but for inverting PLS2 models. The use of PLS model
inversion for product formulation is also noteworthy, especially
in the context of Process Analytical Technology with
pharmaceutical processes (Tomba et al., 2014; Bano et al.,
2017; Palací-López et al., 2019).

In the present work, with PLS-CM, given values of sensitivity
and specificity determine a decision threshold yd to be imposed in
the predicted responses, threshold that acts as the boundary of the
class-model. The inversion of the built PLS model for yd would
provide values of predictor variables xd (a vector in the input
domain) whose prediction is exactly yd.

In general, the solution xd is not unique, due to the null space
of the PLS model (Jaeckle andMacGregor, 2000b). The null space
contains the values of the predictor variables xnull (vectors in the
input space) that are mapped into zero by the linear model, so
that any point xd + xnull have the same predicted response yd.

Since there is a single response (dimension 1), the
consideration of the null space when inverting the PLS model
would define a (subset inside a) hyperplane in the input space.
The objects lying on that hyperplane are at the boundary of the
class-model but already in the input space. Moreover, the
characterization of this boundary would give indications on
how to manipulate or to modify the input variables so that a
rejected object can become an accepted one. The details on how to
do that are explained in section Materials and methods. The
computation and possible utility are illustrated in section Results
and discussion with some data sets taken from the literature. The
paper finishes with some conclusions.

MATERIALS AND METHODS

Partial Least Squares for Class-Modelling
Let X (n × p) be a data matrix with p variables measured on n
objects, which belong to two categories, class A and B. This set
would be the training set, so that it is assumed that it contains
representative samples of these two categories or classes.

The PLSCMmethod consists of fitting a PLS model to a binary
response that codifies the categories. If they are coded as −1 and
+1, respectively, the n-dimensional vector of responses, y, is made
up of as many “−1” as objects belonging to category A and as
many “+1” as objects of category B in the training set.

The selection of the proper number of latent variables for
the PLS model is based on crossvalidation estimates.
Throughout the fitting, objects that surpass the 95%
confidence limits on both Q and T2 statistics, if any, are
removed and the model is rebuilt.

During the application phase (i.e. when predicting with the
fitted model), the predictions are calculated only for the objects
with values in both statistics less than the limits stablished (hard
constraints, which are restrictions that determine the envelope of
the subspace of acceptable solutions (Palací-López et al., 2020).
Along the paper, to illustrate the methodology, the usual 95%
confidence levels are used. Reducing this level would probably
shrink the class-models, or the contrary if it is increased, yet in the
present work no sensitivity analysis of the results on the
confidence levels has been performed.

As PLS models are regression models for fitting quantitative
variables, the individual predicted responses ŷi are neither −1 nor
1 but different values spreading around −1 and 1. The method
then consists on separating these predicted values, according to
the class each object belongs to, and probability distributions are
fitted independently to each class. Thus, random variable XA

related to PLS prediction for class A follows a FA distribution and
XB, related to class B, follows a FB distribution.

Several normality tests are conducted to fit FA and FB. If the
normal distribution is not adequate, an alternative distribution
will be selected, based on the maximum likelihood.

Without loss of generality, let us suppose that we focus on the
class-model of class B (coded as ‘1’). This could be the situation
for the particular case of modelling defective/non-defective

TABLE 1 | Settings of the computed plastic pellets following the direction signaled
in Figure 6.

# Situation Size5 Size10 Size15 TGA DSC TMA

1 Rejected 14.24 10.07 34.43 622.00 18.73 52.08
2 Rejected 13.51 8.91 32.15 638.47 18.67 53.60
3 Rejected 13.03 8.13 30.63 649.45 18.63 54.61
4 Accepted 12.66 7.55 29.49 657.69 18.60 55.37
5 Accepted 12.29 6.96 28.35 665.92 18.56 56.13
6 Accepted 11.93 6.38 27.21 674.16 18.53 56.89
7 Accepted 11.56 5.80 26.07 682.39 18.50 57.65
8 Accepted 11.20 5.22 24.93 690.63 18.47 58.42
9 Accepted 10.83 4.64 23.79 698.87 18.44 59.18
10 Accepted 10.47 4.05 22.65 707.10 18.41 59.94
11 Accepted 10.10 3.47 21.51 715.34 18.38 60.70
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objects, for example, where class B would be the category of non-
defective objects.

In any case, for a given sensitivity s in [0, 1], we use the
cumulative distribution function of FB to compute the critical
value yc so that P(XB ≤ yc) � 1 − s � α. This critical value will act
as a decision threshold, that is, object i-th is assigned to the model
of class B when ŷi ≥ yc and to class A otherwise. Consequently, yc
defines the boundary of the class-model. It is worth remembering
that alien objects (outside both class-modes) are previously
removed with the hard constraints imposed on Q and T2

statistics.
Finally, the specificity sp of the class-model as against class A is

given by P(XA ≤ yc), which is computed with the cumulative
distribution function FA. In this way, as expressed in Table 1 of
(Rodionova et al., 2016a) for class-modelling techniques, PLSCM
gives a decision rule for a given α as a result of the modelling, and
sensitivity and specificity can be computed as the usual figures
of merit.

Inversion of a Partial Least Squares Model
Once fitted a PLS model, its typical use is to predict values of y
given x (p-dimensional vector of predictor variables). The
reverse situation, looking for the values of x whose
prediction is a predefined y requires the inversion of the
regression model.

In the context of process control or product formulation
with a PLS prediction model, its direct use means predicting
quality characteristics of the product manufactured with given
settings x of input variables (process variables, characteristics
of material including their amounts mixed, environmental
variables, etc.). Thus, the inversion of the PLS model would
refer to the situation where we have the desired characteristics
and need to find the settings of the input variables, if any, to
attain them.

In the following, we will introduce the inversion of the PLS
model for a single response, which is the only situation that
applies here. With the notation stablished in the previous section,
X (n × p) is the matrix of predictor variables and y is the response
vector with the n binary values. In the class-modelling situation,
the PLS model fitted to X-y leads to defining different threshold
values yd, each one related to a pair (sensitivity, specificity) that
qualifies the corresponding class-model.

Consequently, by defining yd as the target value, the inversion
of a PLS-CMmodel would provide values of the predictor (input)
variables that are mapped exactly into yd via the PLS model,
i.e., the characteristics of the objects that are directly projected
into the class-model boundary. Therefore, setting aside the
uncertainty in the prediction of any data-driven model, these
objects would represent the boundary of the class-model already
in the input space. Since PLS is a linear model, the boundary thus
constructed is also linear. These ideas are developed in a more
precise way in the following lines.

With a single response in the response space, like in this case,
the inversion of the PLS model with a latent variables can be
computed algebraically because it consists on solving Eq. 1 in x.

ŷ � TQT � xTWQT (1)

where T (n × a) is the matrix of common scores,W (p × a) is the
weights matrix and Q (1 × a) is the y-loadings matrix (which is a
row vector in this case). As usual, superscript T means
transposing.

The input space of predictor variables has dimension p and the
dimension of the output (response) space is one. Therefore (Lay
et al., 2016), the kernel of the PLS model (null space of QWT),
which is the set of points with null response, has dimension
p—1 > 0 unless p � 1, which would be a very unrealistic
situation. Therefore, the null space is a hyperplane in the input
space passing through zero (p-dimensional vector of null
coordinates), that is, a linear subspace.

Because of their own definition, any vector in the null space
adds variability in the input space without modifying the
predicted value. That means that, given a desired yd, for any
p-dimensional solution of the inversion, that is, any vector xd with
xTdWQT � yd , all the remaining solutions of Eq. 1 can be
written as

{xd + x0 : xT0WQT � 0} (2)

Hence, the inversion has infinitely many solutions for yd,
although it suffices to consider one of them and characterize
the null space.

A sequential alternative for the inversion starts by finding the
vector of scores td (a-dimensional) such that

yd � tTdQ
T (3)

In this sequential approach, the dimension of the latent space
spanned by T is a so the null space inside the latent space has
dimension a—1 (which is positive for more than one latent
variable), i.e., for a > 1 the null space is also a hyperplane, but
inside the latent space.

Because of this null space, the solution of Eq. 3 is not unique
either, there are infinitely many solutions described from any
particular one, td, in the set in Eq. 4.

{td + t0 : tT0Q
T � 0} (4)

All a-dimensional vectors belonging to the set in Eq. 4,
solutions of Eq. 3, lie on a hyperplane in the a-dimensional
latent space that, contrary to the null space, does not contain the
null vector (unless, of course, yd � 0).

This property about null spaces of linear models has been
already used in ref. (Largoni et al., 2015). to divide the latent
space into two subspaces, one for on-spec batches and the
other for off-spec batches, depending on an end-point product
quality.

In the present context with PLSCM, given the threshold value
yd, the hyperplane in Eq. 4 is in fact the decision boundary of the
class-model in the latent space. Moreover, via the X-loadings
matrix P (p×a), Eq. 5 gives the objects in the input space whose
projection are the scores in Eq. 4.

x̂d � (td + t0)PT with tTdQ
T � yd , and tT0Q

T � 0 (5)

Because all the scores in Eq. 4 lie on the same hyperplane, the
corresponding input objects computed with Eq. 5 also belong to
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a subspace of dimension a−1 inside the p-dimensional input
space.

However, once in the input space and if p > a (which is usually
the case), there are still some more solutions of the inversion,
additional to the ones computed with Eq. 5. They correspond to a
(p—a)-dimensional subspace obtained when adding points
(p-dimensional vectors) that belong to what we have called the
W-null space (Ruiz et al., 2020), spanned by the loadings of the
latent variables discarded when building the PLS model.

Consequently, the solutions in x of Eq. 1 for ŷ � yd , described
in Eq. 2, are also described as in Eq. 6, where x̂d is defined in
Eq. 5.

{x̂d + xw0 : xTw0W � 0} (6)

A final consideration is worth mentioning. Although the PLS
prediction for all the points in either Eq. 2 or Eq. 6 will be yd, not
all of them define a feasible object or, in general, a valid solution of
the inversion. The valid solutions are those that belong to the
PLSbox (Ruiz et al., 2020), which is the region of applicability of
the model, characterized by the limits imposed on both theQ and
T2statistics when fitting the PLS model; and that also belong to a
given domain D inside the input space, that accounts for the
characteristics of the input variables in each particular
application. This domain should be explicitly defined since it
imposes additional hard constraints for the valid solutions of the
inversion.

For the present work, the PLSbox is defined with the limits at
95% confidence level. The domainD on its part is defined with the
range of the variables in the training set, which at least describes
the physical bounds on the predictor input variables (Tomba
et al., 2012).

In what follows, we will only consider valid (feasible) solutions
of the inversion, that is, points whose prediction is yd and that
belong to both D and the PLSbox.

If the situation were one that fits any form of process control,
or product formulation, the general principle in model inversion
problems is to manipulate the variables that can be manipulated
(in a process control sense or compositional variables) to obtain a
product as close as possible to the required specification (Dunn,
2020).

The specification in the situation being discussed is related to
sensitivity and specificity of the class-model, and the solutions of
the inversion give the boundary of the class-model. Thus,
different directions of manipulation (of scores inside the latent
space or of variables in the input space) can be defined, any of
them crossing the boundary at some point so that following the
direction allows moving in or out of the class-model.

In the latent space, the most easily computable direction is the
one defined by the normal vector of the boundary hyperplane
(i.e., the vector perpendicular to the hyperplane) which isQT. This
direction does not depend on the inversion of the model but the
precise position of the hyperplane does, that is, at least one solution
of the inversion is needed to have the boundary that allows
decidingwhether a given object is inside or outside the class-model.

The same idea can be applied directly in the domain D to
define a direction of movement/manipulation of the input
variables. In this case, it would be the straight line whose

director vector is QWT, orthogonal to the global null space of
the fitted PLS model and, thus, to any hyperplane computed as in
Eq. 2 or Eq. 6, that positions the boundary of the class-model in
the input space.

Data Sets
Two different data sets are considered to illustrate the proposed
method. The first one does not come from a process with
attributes data but illustrate other situations, provide some of
the variables can bemanipulated. The second one will emulate the
use of historical data to fit a model that helps in process control
and/or product formulation.

The first data seta contains samples of 128 red young wines
from Spanish DOC (Denominación de Origen Calificada) Rioja
(Ortiz et al., 1995). The wines are characterized by six variables
related to physical-chemical measures of color, namely red/green
chromaticity (a), yellow/blue chromaticity (b), lightness (L),
chroma (C), hue (H), and saturation (S). Expert tasters
visually assess the color of each wine and divide the objects
into two categories, acceptable or non-acceptable wines because
of their color.

The second data setb contains six characterizing
measurements for batches of plastic pellets, which will be the
predictor input variables, with 24 rows. The first three
characteristics, coded for confidentiality, are related to the
percentage material in the mixture with different size range
(size5, size10 and size15). The last three characteristics are
measurements from TGA (thermal gravimetric analysis), DSC
(differential scanning calorimetry) and TMA (thermomechanical
analysis) devices. The outcome when using this material is either
Poor or Adequate.

RESULTS AND DISCUSSION

Rioja Red Wines
Predictor matrix X is 128 × 6 and response y is a vector with
binary values, namely −1 for non-acceptable wines and one for
the acceptable ones. With autoscaled X and y and leave-one-out
crossvalidation, a three latent variables PLS-model is fitted that
explains 91.01% of variance in X with 72.86% in y (70.88% in
crossvalidation).

The predicted responses corresponding to non-acceptable
wines are fitted to a normal distribution with mean -0.95 and
standard deviation 0.45 (the smallest p-value among the tests
performed was greater than or equal to 0.10, thus, the idea that
the values come from a normal distribution cannot be rejected with
90% or greater confidence). On the contrary, the responses
corresponding to acceptable wines are not compatible with a
normal distribution. The minimum log likelihood was similar for a
beta distribution with four parameters and to a highly asymmetric
triangular distributionwith three. This was the one selectedwith lower
limit −0.57, center point 1.16 and upper limit 1.17.

aAvailable in RIUBU, at http://hdl.handle.net/10259/5753
bAvailable at http://openmv.net/info/raw-material-characterization

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 6819585

Ruiz et al. PLS Model Inversion in Class-Modelling

http://hdl.handle.net/10259/5753
http://openmv.net/info/raw-material-characterization
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Without loss of generality, let us focus in the class of acceptable
wines, codified as 1. The fitted probability distributions allow
setting different decision thresholds yd which, in turn, are related
to different values of sensitivity and specificity for the class-model
of the acceptable wines.

These values are depicted in Figure 1 (green continuous line
for sensitivity, brown dashed line for specificity) as a function of
the decision threshold. It is clear how larger threshold values
results in an increase of specificity (dashed line), linked to a
decrease of sensitivity (continuous line).

From the set of possible class-models computed with PLS-CM,
the more balanced one is the one indicated with the vertical red
dotted line, with little squares in Figure 1, for which we expect the
same values of sensitivity and specificity, 0.954 in this case, that
corresponds to yd � −0.196.

By using this yd as target value, the inversion of the PLS
model would provide points in the input space (where the
objects vary) whose predicted response will be exactly the
decision threshold yd, according to Eq. 1 with ŷ � yd � −0.196.
Working sequentially, the solutions of Eq. 3 are scores in the
latent space, some of them depicted in Figure 2A as red
squares.

By using the loadings as in Eq. 5, the corresponding points in
the input space are in six dimensions. Therefore, the usual
Cartesian representation is not available. Extensions to
visualize data in greater dimension includes the so-called
matrix plot, which consists of a set of two-by-two Cartesian
plots for any two variables. This matrix plot is usually more
informative when representing the scores of a PCA (Principal

Component Analysis) that better describe the internal correlation
structure of data.

Another alternative, whatever we are visualizing, the Parallel
Coordinates Plot also helps in describing the joint behavior of the
variables (the “coordinates” of the points). The value of each
coordinate is plotted as height above the ordinate axis, against its
position in the vector. Then, the values are linked together by a
broken line to follow each point. Therefore, rather than its usual
meaning, the abscissa axis only accommodates as many slots as
coordinates in the point. Although with this disposition there is
no limit to the dimension of the points depicted as Parallel
Coordinates Plot, it becomes messier when increasing the
number of coordinates.

In any case, the points in the input space that correspond to
the red squares in Figure 2A are depicted also in red in Figure 2C
in the form of a parallel coordinates plot. In both cases, we are
seeing points falling on the boundary of the class-model, whether
scores in Figure 2A or raw variables in Figure 2C.

If the requirements on the class-model change, the decision
threshold yd also changes. To illustrate this property, the
inversion procedure is repeated for another two different
threshold values, in blue and cyan vertical lines in Figure 1,
that correspond to the class-models with the usual 0.99 and 0.90
sensitivity, respectively.

Figure 2 also shows some new valid solutions predicting every
threshold in both the input and latent spaces. Figure 2B and
Figure 2D depict the raw variables in the input space (in the
domain D defined by the range in X) in the form of a parallel
coordinates plot. Figure 2A is the plot of their projection (scores)

FIGURE 1 | Sensitivity (green thick line) and specificity (brown dashed line) of the class-model of ‘acceptable’ wines as a function of the decision threshold. The
dotted vertical lines mark the decision thresholds for obtaining different class-models in terms of their sensitivity and specificity.
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in the 3D-latent space. In both cases, the solutions in blue (lines
and rhombuses) are for the class-model with sensitivity 0.99 (with
0.894 of specificity, see Figure 1); cyan lines and triangles are for
the class-model with sensitivity 0.90 (specificity 0.981).

As we have a single response, the null space in the latent space
is a plane because we have three latent variables. Consequently,
the projection of the computed solutions into the latent space will
be in the corresponding 2-dimensional subspace. The dotted lines
in Figure 2A are meant to help observing how the points of the
same color lie on the same plane, and different colors and symbols
define different parallel planes in the latent space.

It is less clear but the corresponding objects in the X-space in
Figures 2B–D are in a two-dimensional subspace inside the
boundary of the different class-models, and thus they
correspond to some kind of prototype discriminating objects.

To make graphs clearer, only around fifty points were calculated
for each threshold. However, any convex combination of any pair
of points in Figure 2 is also a valid solution and therefore belongs
to the boundary of the class-model at hand.

In any case, the solutions depicted have different values for the
variables, in particular, we see how the boundary objects for the
balanced class-model in red, that clearly occupy an intermediate
position among scores in Figure 2A, have not so clear differences
in Figure 2C, when comparing with Figures 2B,D.

Finally, there are some more possibilities that do not come
from the latent space or, in other words, that predict the same
threshold value but are projected into the origin of the latent
space. All points together, added to a particular solution as in Eq. 6,
define the boundary of the class-model (a hyperplane) in the
domain D of the input variables.

FIGURE 2 | Rioja wines. Boundary objects for different class-models (A) latent space (B–D) input space. Blue lines and rhombuses are for the class-model with
sensitivity 0.99 and 0.89 of specificity; red lines and squares are for the balanced class-model with both sensitivity and specificity equal to 0.954; cyan lines and triangles
are for the class-model with sensitivity 0.90 and 0.98 of specificity.
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From the practical point of view, it is probably more
interesting to notice that the probability of being inside the
class-model of accepted wines increases when moving in the
latent space, graphically in Figure 2A, from scores near the blue
rhombuses (which, in fact, define a plane), traversing the red
squares toward scores ‘above’ the cyan triangles which define
another plane.

Obviously, each wine is projected into a unique position in the
latent space and its acceptance or rejection depends on the
sensitivity and specificity selected to make the decision.
However, for a given class-model, we can compute scores
(ideal scores not necessarily corresponding to any of the wines
in the training set) moving in the direction of improving the color
toward the acceptance of the wine.

For example, let us consider the balanced class-model (in red
lines or squares in Figure 2 with sensitivity and specificity both
equal to 0.954) and let us take one of the wines rejected with the
class-model, xd, which is outside the class-model of the acceptable
wines, with a 0.046 probability (4.6%) of being wrongly rejected.

Its projection into the latent space is the filled red square in
Figure 3, where the boundary plane is depicted in grey extending
the convex hull of the red squares in Figure 2A to better illustrate

the indeterminacy due to the null space. For reference, the scores
of the training set are also depicted, red crosses for the non-
acceptable wines, green points for the acceptable ones.

Filled black arrows in the black line in Figure 3) mark an
ideal direction of improving the color, discretized by taking 10
points equally spaced along the line segment orthogonal to the
plane and starting in xd. Graphically, it is clear that, at some
point, the computed score crosses the plane and then, the
corresponding object would be inside the class-model of
acceptable wines.

The objects in the input space whose projections are the ten
scores along the black line in Figure 3 are the colored lines in the
Parallel Coordinates Plot in Figure 4, from the continuous red
line (that corresponds to the non-acceptable wine xd) to the dash-
dotted and dashed red lines, both still for rejected objects.

Following further the same direction pointed in Figure 3, we
have the continuous green line, already inside the class-model
and the remaining green lines (dot dashed, dashed, dotted and
thinner continuous, dot-dashed and dashed green lines) depicting
objects that would be “more and more clearly” inside the defined
class-model and, hence, accepted. For reference, the light grey
lines in Figure 4 are the wines of the training set accepted with the

FIGURE 3 | Latent space for the Rioja wines. Green points are for acceptable wines, red crosses and the red filled square for non-acceptable ones. The grey plane
is the boundary plane for the class-model when sensitivity and specificity both equal to 0.954. The black triangles are along the direction of improving the color of
the wine.
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class-model. It is clear that the green lines are, more and more,
among the real values of the acceptable wines.

We have already said that, except for the red continuous line,
the remaining colored lines in Figure 4 are computed points.
Nevertheless, they show how the movement along the line in
Figure 3 is related to a systematic variation of the input variables.
Following the different lines in Figure 4, we see that to improve
the color of the wine toward its acceptance, it is necessary to
increase a and (to a lesser extent) b, decrease L, increase also C,
decrease H and slightly increase S, but always maintaining the
exact relation (relative systematic variation) shown in Figure 4.

Although there is more than one direction to exert the same
effect, with the one selected, it is clear that moving the
colorimetric parameters in the adequate range and relation,
which is viable for an expert oenologist by mixing different
wines, it is possible to get closer to and eventually inside the
class-model of acceptable wines, based on their color.

Plastic Pellets
In this case, matrixX of predictor variables is 24 x 6. The outcome
when using the corresponding material, either poor or adequate,
is coded into −1 and 1, respectively, to form the matrix of binary
responses to be predicted.

With autoscaled predictors inX and binary responses in y, also
autoscaled, a PLS model is fitted with two latent variables that
explain 73.64% of the variance in X and 66.17% of the variance in
y, with R2

cv � 56.65% (obtained with venetian blinds, ten data
splits, one sample per blind).

The low predictive ability of the model could be due to the
small number of samples at our disposal. This implies that the
conclusions obtained can carry great uncertainty, which is one
the reasons why the results should be experimentally validated,
whenever possible. However, the example is still valid to show
how to proceed.

The PLS-predictions for the class adequate are fitted to a
N(0.42, 0.48), with the smallest p-value for several normality
hypothesis tests being greater than 0.10. The small number of
samples in the class poor prevent testing the normality, though

FIGURE 4 | Rioja wines. Parallel Coordinates Plot for objects in the input
space. In grey the wines inside the class-model with sensitivity and specificity
0.954. The red continuous line is xd, the remaining colored lines are for the
points computed, rejected in red, and accepted in green.

FIGURE 5 | Plastic pellets. Probability density functions of the normal
distributions fitted to the PLS predictions, red and dashed for the poor
category, green for the adequate one. The vertical dotted line marks the
decision threshold for equal sensitivity and specificity.

FIGURE 6 | Plastic pellets. Second vs. first latent variables. Green points
for adequate objects, red crosses, and the square, for the poor ones. The
thicker grey line is the decision line with 93% sensitivity and specificity and the
black dotted line is the direction of ‘repairing’ the poor object to become
adequate. Red filled downward-pointing triangles for poor, black filled right-
pointing triangles for adequate. Empty rhombuses are outside the domain.
The blue dashed line is the 95% confidence limit of the PLSbox inside the
latent space.
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the points are well aligned in the ‘normal probability plot’.
Therefore, for the computation of sensitivity and specificity
the N (−1.01, 0.49) is used for the poor class.

The corresponding probability density functions of the fitted
distributions are depicted in Figure 5, red dashed line for the poor
category, green continuous line for the adequate one. Again, we
focus on the class of adequate pellets, coded as 1, that mimics the
situation of a process control with attributes data: one minus the
sensitivity of the class-model would be the probability of false
alarm and the specificity would be the power to detect a true
defective (poor) object.

Choosing a threshold value for PLS predictions, for instance
the one marked with the vertical dotted line in Figure 5, means
defining a class-model whose sensitivity is the probability under
the green curve to the right of the line, whereas the specificity
would be the probability under the red dashed curve to the left of
the black vertical dotted line.

In fact, usually, first the sensitivity and specificity required for
the decision are set, and then, taking into account the fitted
distributions, the decision limit yd is computed. In the illustration
of Figure 5, the value yd � -0.2913 corresponds to the class-model
with the same sensitivity as specificity, namely 92.9%.

As we have already pointed out, the inversion of yd up to the latent
variables space has infinitelymany solutions, all obtainedwhen adding
points belonging to the null space (Jaeckle and MacGregor, 2000b),
precisely, in what we have called the Q-null space (Ruiz et al., 2020).
Therefore, the set of solutions defined in Eq. 4 is a subspace (a
hyperplane) in the latent space, the grey straight line in Figure 6,
representing the boundary line for the chosen class-model.

Graphically, all the objects whose scores are “to the right” of
the grey line will be inside the class-model of adequate objects.
On the contrary, those whose projections are “to the left” of the
grey line will be predicted as poor (or, more precisely, they are
predicted to be outside the class-model of adequate pellets).

However, it is clear that if the scores move along, for example, the
black dotted line (orthogonal to the decision line), eventually, they will
fall inside the class-model of the adequate objects. This is the situation
illustrated with the different symbols superimposed on the line that
starts at one of the poor pellets, the empty square, followed by
(computed) scores, red filled downward-pointing triangles, still
rejected by the class-model, up to the black filled right-pointing
triangles corresponding to points inside the class-model.

Undoubtedly, we can go on moving along the line in the
mentioned direction. However, only the valid solutions should
be considered, that is, those scores corresponding to objects inside
the PLSbox (whose boundary in terms of the 95% confidence level
for the T2 statistic is depicted as the blue dashed line in Figure 6)
and inside the input domain. For example, the three empty
rhombuses in Figure 6 follow the right direction, but their
corresponding points in the input space, though inside the
PLSbox, are outside the domain defined with the range of the
variables in the training set, and they should be discarded.

By multiplying by the loading on P, as in Eq. 5, the valid scores
can be seen in the domain inside the space of the input variables
where some of them can be manipulated. The computed solutions
are written in Table 1, whose rows follow the order along the
direction of improvement in Figure 6. Accordingly, the first three

computed objects are rejected by the class-model, the remaining
objects are accepted, i.e., inside the class-model of the adequate pellets.

In general, when seeing the computed values in the order of
Table 1, in each individual variable, it is shown that to improve
the characteristics of the poor object to become adequate the
percentage material of all sizes should be reduced as well as the
DSC measurements and, at the same time, the TGA and TMA
measurements should increase.

Table 1 shows that, following the selected direction from a
poor pellet (rejected by the class-model) to an accepted
object (inside the class-model) by theoretically modifying
its formulation, there is also bounds for these six variables
for adequate pellets, namely, Size5 must be less than 12.66,
the upper bound of Size10 is 7.55 and 29.49 for Size15,
whereas the DSC measurements slowly decrease from 18.60.
Similarly, from row four inTable 1, TGAmeasurements should be
greater than 657.69 and TMA measurements start from 55.37.
Taking into account the actual domain, defined with the data at
hand, the restriction of being in both the PLSbox and the domain
also imposes upper bounds for TGA and TMAmeasurements and
lower bounds for the other four variables.

In any case, the variables cannot be varied in the sense of
Table 1 independently of each other, they should follow the
relation shown in the different rows of Table 1, or any convex
combination of any of those rows.

A principal component analysis (PCA) onX (autoscaled) shows
that the first two principal components, depicted in Figure 7A, also
contain information to reasonably distinguish the two classes, in
green the adequate pellets and in red crosses the poor ones. It is
seen that, qualitatively, to improve the characteristics of the poor
objects to become adequate ones is to move in this plane to the left
and up, that is, decrease the scores on the first principal component
and increase the ones on the second principal component.

Figure 7B shows the loadings on the two principal components,
blue for the first, orange for the second. Similar to the previous
analysis with Table 1, with the loadings in the first three variables
(percentage in the three different size ranges), the manipulation
should be done clearly decreasing the values of the three variables.
The loadings on the last three variables (measurements in different
devices) is less clear, but, as the loadings on the second principal
component are larger (in absolute value), TGA and TMA should be
increased, and DSC decreased.

Nevertheless, questions still remain, such as how much of any
one, in which proportion, whether any given relation must be
maintained among variables, etc. These questions are answered in
the solutions inTable 1, which define the joint combination among
all input variables that guarantee a given property.

CONCLUSION

PLS-CM models are computed by setting a threshold decision limit
in the space of predictions obtained when fitting a binary response
that codifies the categories. This limit is selected based on the
sensitivity and specificity that are needed in each specific application.

For one of such threshold values, the inversion of the fitted
PLS model with a single response defines hyperplanes in both the
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latent and input spaces that, when observed in the input space,
correspond to a kind of prototype of the object belonging to the
boundary of the class-model being computed.

For cases where the classes are ‘fail/no fail’, (‘defective/non-
defective’) a vector normal to the boundary hyperplane in the
latent space defines one direction to move the scores along,
exiting the ‘fail’ class to enter the other. In that case, the
computed points in the domain corresponding to these scores
provide information on how to modify the input variables to
improve defective objects. Alternatively, if there is no need of
working in the latent space, a direction with the same properties
can be obtained directly in the domain by using the boundary
hyperplane in the input space.

In that sense, the proposed procedure can be used as a
diagnostic tool since it gives the characteristics of the predictor
variables (input space) that allow the valid objects to be separated
from the invalid ones. The characteristics are precisely those of
the objects on the boundary hyperplane of the corresponding
class-model. With PLS, contribution plots are common
descriptive tools, that allow identification of the variables with
the greatest relative influence to discriminate objects of a class in
relation to the other. With respect to them, the boundary
computed in the latent space with the proposed procedure
provides, additionally, estimations of sensitivity and specificity.
Furthermore, by “moving” this boundary to the input space, the
information about the predictor variables is direct, for example,
about how to modify them together pursuing a given goal.

The paper shows some possibilities of acting in specific situations,
based on theoretical properties of both the fitted model and its

inversion. The theoretical solutions developed in the present work
apply in class-modelling contexts, where at least one ‘alternative’
class is adequately represented in the training set together with the
target class, and the input variables (at least some of them) can be
manipulated. In addition, good predictive PLS models need to be
fitted and validated and, whenever possible, the predicted solutions
should be experimentally validated.
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