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Single-cell RNA sequencing is a powerful tool to investigate the cellular makeup of tumor samples. 
However, due to the sparse data and the complex tumor microenvironment, it can be challenging 
to identify neoplastic cells that play important roles in tumor growth and disease progression. 
This is especially relevant for blood cancers, where neoplastic cells may be highly similar to normal 
cells. To address this challenge, we have developed partCNV and partCNVH, two methods for 
rapid and accurate detection of aneuploid cells with local copy number deletion or amplification. 
PartCNV uses an expectation-maximization (EM) algorithm with mixtures of Poisson distributions 
and incorporates cytogenetic information to guide the classification. PartCNVH further improves 
partCNV by integrating a hidden Markov model for feature selection. We have thoroughly evaluated 
the performance of partCNV and partCNVH through simulation studies and real data analysis using 
three scRNA-seq datasets from blood cancer patients. Our results show that partCNV and partCNVH 
have favorable accuracy and provide more interpretable results compared to existing methods. In 
the real data analysis, we have identified multiple biological processes involved in the oncogenesis of 
myelodysplastic syndromes and acute myeloid leukemia.

Abbreviations
EM  Expectation-maximization
CNV  Copy number variation
HMM  Hidden markov model
PCA  Principal component analysis
TNBC  Triple negative breast cancer
AML  Acute myeloid leukemia
MDS  Myelodysplastic syndrome

Single-cell RNA sequencing (scRNA-seq) has greatly improved our ability to understand the cellular composition 
of the tissues and organs of interest, identify phenotype-associated cell groups, and elucidate the mechanisms 
behind many biological processes1–3. These advantages make scRNA-seq a powerful tool for studying a wide 
range of human diseases, including Alzheimer’s disease4, cardiovascular disease5, and cancer6. In cancer research, 
a crucial step of scRNA-seq data analysis is to delineate tumor cells or neoplastic cells from other cell types7,8. 
The tumors of each patient have their unique tumoral and microenvironmental evolution, and thus the scRNA-
seq data from cancer patients tend to be more heterogeneous. Such heterogeneity is an exciting opportunity for 
improving our understanding of cancer with scRNA-seq, but it also imposes computational challenges to dissect 
composing cell types9.

Neoplastic cells are abnormal cells that are undergoing excessive and uncontrolled proliferation10. These cells, 
which may or may not be malignant, can be extracted experimentally through cell sorting, although this is not 
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always possible due to a lack of suitable markers or the high cost and labor requirements associated with these 
experiments11. In fact, it may be more useful to study all cells from a sequencing experiment simultaneously 
in order to understand the characteristics of neoplastic cells within their surrounding microenvironment. 
Neoplastic cells in certain types of cancer often have distinct features compared to non-neoplastic cells, such 
as high expression of certain cell type markers or genes belonging to some oncogenic pathways12. However, 
identifying neoplastic cells based on these markers or pathways can be difficult due to inter-individual 
heterogeneity, technical artifacts, and noise from the tumor microenvironment13.

Recently, computational methods have been developed to identify large-scale copy number variations 
(CNVs) by comparing the smoothed scRNA-seq data against an internal or external normal reference, such 
as inferCNV, HoneyBADGER, and copyKAT3,14,15. For example, inferCNV is a popular visualization method 
for identifying large-scale CNVs. It uses smoothed averages over gene windows and compares the expression 
magnitude to the average over a set of reference ‘normal’ cells. CopyKat is a recently developed tool serving a 
similar purpose15. CopyKAT uses an integrative Bayesian segmentation approach combining CNV inference 
and hierarchical clustering, which has been shown to achieve high accuracy in distinguishing cancer cells from 
normal cells in multiple cancer types. Both inferCNV and CopyKAT generally work well with tumor cells that 
demonstrate extensive chromosomal alterations, but they do not work well for cancer types that have fewer 
and shorter CNVs. This is often the case in hematologic cancers such as myelodysplastic syndromes and acute 
myeloid leukemia16. Moreover, they couldn’t incorporate additional clinical information for detecting specific 
CNVs. There are also methods that sought to integrate scRNA-seq data with bulk DNA sequencing (DNA-seq) 
or single-cell DNA-seq (scDNA-seq) data, such as CONGAS, clonealign, and CCNMF17–19. These methods serve 
a different purpose: to cluster cells based on CNV or mutation information.

In this paper, we propose to exploit cytogenetic information to improve the sensitivity and specificity for 
CNV identification. Cytogenetic data are routinely measured and recorded for patients with hematologic 
cancers20 and they provide useful information to identify CNVs21. In the case of myelodysplastic syndromes, 
cytogenetic features, along with other factors such as morphology, immunophenotype, and clinical features, 
are included in the World Health Organization (WHO)-classification-based Prognostic Score System (WPSS) 
for myelodysplastic syndromes22 and its revised version23. Similar risk scoring systems also exist for other types 
of hematologic malignancies24,25. For example, Leukemia patients with certain cytogenetic features, such as 
deletion of chromosome 7 or 7q, deletion of 3q, or amplification of chromosome 8, have been shown to have 
a poor prognosis26. Cytogenetic data provide location information of each CNV and the proportion of cells 
with specific CNVs based on the analysis of 20 metaphases. For example, if a patient has cytogenetic data as 
“46,XY,del(20)(q11.1q13.1)[5]/46,XY[15],” this means that approximately 25% percent of cells (5 out of 20) have 
a deletion of chromosome 20 in the region q11.1 to q13.1, while the rest of the cells have normal chromosomal 
features. Cytogenetic data are typically cheaper and more readily available in clinical settings compared to DNA-
seq or scDNA-seq experiments. While the proportion in cytogenetic data is a crude estimate of the aberrant 
cells, they can still be useful in classifying cell status and identifying cells with chromosomal abnormalities, 
which may be markers for neoplastic cells27. None of the existing computational methods is able to incorporate 
such cytogenetic information in the analysis of scRNA-seq data.

Here, we introduce two methods, partCNV and partCNVH, for identifying cells with regional chromosomal 
abnormalities from scRNA-seq data by integrating cytogenetic information. Both methods are based on a 
statistical framework that models the count expression matrix of scRNA-seq data using a mixture of Poisson 
distributions while incorporating the cytogenetic information through prior specification. PartCNVH is 
built on partCNV and it further includes a hidden Markov model (HMM) to improve feature selection and 
clustering accuracy. It should be noted that our proposal is complementary to the existing methods such as 
copyKAT and inferCNV, as they focus on identifying large-scale CNVs while we detect smaller variations with 
the incorporation of external information. We implement our proposed methods in a computationally efficient 
expectation-maximization (EM) algorithm28 and evaluate their performance through extensive simulation 
studies. We then apply them to three scRNA-seq data sets from patients with hematologic malignancies and 
show that they can identify cells with chromosomal deletions or amplifications in specific regions suggested 
by the cytogenetic data. We also perform additional analysis to understand the changes in the pathways and 
biologic processes in the identified aneuploid cells. Compared to existing methods, partCNV and partCNVH 
provide more interpretable results and additional findings. With the widespread use of single-cell technology 
in hematologic cancer research and clinical care of cancer patients, our methods offer a useful solution for fully 
leveraging cytogenetic data to identify cells with specific chromosomal abnormalities.

Method overview
PartCNV is a statistical framework that uses a hierarchical Poisson mixture model to differentiate two mixture 
components corresponding to normal and aberrant cells. PartCNVH is an extension of partCNV with the 
addition of HMM when there is a sufficient number of genes that allow feature selection. Figure 1 provides a 
schematic overview of the proposed methods. Our methods start with the normalized expression counts from 
the region with a known chromosomal deletion or amplification and explicitly incorporate the prior knowledge 
from cytogenetic data through imposing a Bernoulli prior on the cell status (i.e., normal or aberrant). We 
develop an EM algorithm that treats cell status as the missing variable and efficiently solves the mixture model. 
The inferred cell status from this step is the output of partCNV.

Taking the ouptut from partCNV, partCNVH further refines it by a HMM. Specifically, a group average is 
taken for the inferred two groups of cells and the rolling average of the ratios between the two groups is used to 
infer the hidden status of the regions by a HMM. There are two reasons that we adopt this combination of rolling 
average and HMM in partCNVH. First, as shown in our later results, the group mean and rolling average can 
effectively magnify the signal of the regional deletion or amplification on the expression level. This is especially 
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important when the signal of copy number alternations is weak related to noise in gene expression measurement. 
Second, it is possible that only a subset of the regions of interest has copy number changes. HMM can identify 
regions that are more likely to contain the chromosomal changes, which in turn improves the performance 
of aneuploid/diploid cell classification. After this HMM-based feature selection step, partCNVH performs a 
second round of the EM algorithm using the Poisson mixture model and reports the inferred cell status.

Simulations
We design comprehensive simulation settings to evaluate the performance of partCNV and partCNVH. As 
comparisons, we also consider existing methods using dimension reduction by principal component analysis 
(PCA) followed by Louvain or Leiden clustering. Previous literature has reported that the Leiden algorithm 
can generate better connected communities through including an extra refinement step and run faster than 
Louvain29. Additionally, we include two widely used machine learning clustering algorithms, K-means clustering 
and hierarchical clustering. All the previous mentioned methods can be applied to detect locally aneuploid cells. 
Although our proposed method is not directly comparable to existing methods that classify cells based on 
whole-genome CNV inference, we still design a separate simulation study to compare the proposed methods 
versus the two large-scale CNV detection-based methods, inferCNV and copyKAT14,15.

We consider two settings where the first one studies aneuploid cells with deletions and the second one studies 
amplifications: redSimulation data 1 and 2. The mean expression for these genes is generated by taking a ratio 
of the normal expression. This ratio (or log fold change) is randomly drawn from a Uniform distribution with 
different base levels (0.5/0.6 for Setting 1 and 1.5/1.4 in Setting 2) and different noise levels. A larger noise level 
makes the expression from the aneuploid cells similar to the normal cells, and thus creates harder scenarios 
for the methods. The evaluation criteria is the accuracy of the classification results of the proposed method 
evaluated by the true cell status (i.e., being aneuploid or normal). More details of the simulation settings are 
provided in the Methods section.First consider simulation data 1, where 500 out of 3000 cells have deletions. 
Our proposed methods partCNV and partCNVH have the highest accuracy among all the methods in all 
scenarios (Figure 2A-B). Using the same normalized gene expression counts input as our methods, K-means 
and hierarchical clustering have the lowest accuracy ranging from 0.5 to 0.7. PCA plus Louvain and Leiden 
have higher accuracy than K-means and hierarchical clustering. When the signal is strong (ratio = 0.5 in panel 
A) and noise is small, PCA plus Louvain/Leiden also have similar high accuracy as the proposed methods. But 
with the increase of the noise level, the accuracy of PCA plus Louvain or Leiden decreases. The advantage of 
the proposed methods becomes more obvious when the ratio is 0.6 and the noise level is high. For example, 
the mean accuracy of PCA plus Leiden is around 0.75 while partCNVH can achieve a high accuracy of 0.9. 
This is understandable since the proposed methods specifically model the data through two components for 
normal and aneuploid cells, and they allow mixtures of regions with and without deletions. Second, partCNV 
and partCNVH have similarly good performance with accuracy higher than 0.9, and partCNVH generally has 
higher accuracy than partCNV. To better understand the role of the HMM step of partCNVH and the result of 
feature selection, we use one simulation data set as an example and visualize the mean gene expression across 
the region (Figure 3A), ratios of the mean expressions of the two groups inferred by partCNV (Figure 3B), the 
rolling average of the mean expression ratios (Figure 3C), and the inferred status from HMM (Figure 3D). It can 
be seen that the rolling average of mean expression ratios between the two groups can effectively magnify the 
signal, and a majority of the HMM selected genes are located in the region with deletion. Figure 3E shows that 
our proposed method partCNVH has greater accuracy in classifying cells than the other methods.

Evaluation of PartCNV & PartCNVH for different prior information: amplification regions
Next we evaluate different methods in simulation data 2 with amplifications (Figure 4). Note that for cells with 
deletion, the expression change odds is 2 (from 1 to 0.5) while in cells with amplification the odds is 0.67 (from 1 
to 1.5) or its inverse 1.5. Thus the signals from the amplified regions can be harder to detect than the first setting 
with deleted regions. In Figure 4(A), we observe the performance of all methods decrease, especially for PCA 

Fig. 1. Schematic of PartCNV and PartCNVH. With the input of normalized expression counts from scRNA-
seq experiments and the cytogenetic information from the patient, we develop an EM algorithm with mixtures 
of two Poisson distributions to infer the aneuploid/diploid status for the regions of interest. We further include 
a hidden Markov model to improve feature selection and the classification accuracy.
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Fig. 3. Illustrating the procedure of the feature selection step using HMM in a simulation data set. (A) The 
log-transformed mean gene expression levels for the genes located in regions without and with deletion. Each 
dot is a gene. (B) The log-transformed ratio of the mean expression levels for cells without versus with deletion 
inferred by partCNV. (C) The expression mean ratio for the two groups of cells by partCNV after applying 
the rolling average with a bandwidth of 50. (D) The latent states inferred by HMM based on the rolling 
average from panel (C). (E) The results of classification accuracy of partCNVH, PCA plus Leiden, hierarchical 
clustering, and K-means clustering. The red dots are the cells incorrectly classified and the blue dots are the 
correct ones.

 

Fig. 2. Results of simulation Setting 1 with deletions. The methods that are compared include K-means 
clustering (Kmeans), hierarchical clustering (HClust), dimension reduction using PCA plus Louvain clustering 
(PCA+Louv), and dimension reduction using PCA and Leiden clustering (PCA+Leid). Each simulation 
dataset contains a total of 3000 cells: 2500 normal cells and 500 with deletions. (A) The accuracy of these 
methods when the ratio of gene expression in a deletion region versus normal expression is 0.5 at different 
noise levels (0.1: low, 0.2: medium, 0.3: high). (B) The results of the setting with ratio = 0.6 at different noise 
levels. All results are summarized over 100 Monte Carlo iterations.
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plus Louvain and Leiden. When the noise level is high (0.3), PCA plus Leiden only reaches an accuracy of 0.74. 
In comparison, our proposed method still has a high accuracy of around 0.95. With the ratio level set as 1.4 in 
panel B, the signal level becomes lower and the existing methods have even lower accuracy ranging from 0.5 
to 0.6, while the proposed methods still stay at a reasonable accuracy level around 0.9. These demonstrate the 
robustness of the proposed methods and highlight the importance of applying partCNV or partCNVH instead 
of existing methods when the region of interest has amplifications.

Evaluation of PartCNV & PartCNVH for different prior information: cell numbers
Our current simulation design considers a total of 3000 cells. When we study a region of interest suggested by 
cytogenetic data, more cells generally provide more information, and thus identifying signals from fewer cells 
can be more challenging. To evaluate the proposed methods under this scenario, we generate simulation data 
3 by fixing the cell number as 1300, where 1000 cells are normal and 300 are aneuploid cells. Figure S1 shows 

Fig. 5. Simulation results of evaluating the impact of different prior information on the classification accuracy 
of the proposed methods. The dark and light blue bars correspond to the results with and without correct 
specification of the prior information (true prior: 0.17). Panel (A) and (B) are the simulation results based 
on the first simulation setting with ratios = 0.5, 0.6, respectively. Panel (C) and (D) are based on the second 
simulation setting with ratios = 1.5, 1.4, respectively. All results are summarized over 100 Monte Carlo 
iterations.

 

Fig. 4. Results of simulation Setting 2 with amplifications. Each simulation dataset contains a total of 3000 
cells: 2500 normal cells and 500 with amplifications. (A) The accuracy of the methods compared when the ratio 
= 1.5 at different noise levels (0.1: low, 0.2: medium, 0.3: high). (B) The results when the ratio = 1.4 at different 
noise levels. All results are summarized over 100 Monte Carlo iterations.
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the simulation results with 1300 total cells and the region of interest (200 out of 600 genes) has a deletion in 
the aneuploid cells. Compared with the results in Figure 2, all the existing methods have worse performance 
for the same ratio and noise combinations. For example, both PCA plus Louvain and PCA plus Leiden have 
a high accuracy of around 0.90 when the ratio is 0.6 with a medium noise of 0.2 using 3000 total cells, while 
the accuracy decreases to around 0.8 using 1300 cells. The variation of the classification results also increases. 
Although our proposed methods have slightly decreased performance when the ratio is 0.6 and the noise is 0.3, 
their overall performance remains similar in other scenarios (ratio = 0.5 at all noise levels, ratio = 0.6 with low 
and medium noise levels).

Similar patterns can be observed in amplification settings by comparing the results in Figure S2 versus 
the results in Figure 4. Surprisingly, PCA plus Louvain or Leiden has even worse median accuracy than the 
hierarchical clustering, even though they all have quite low classification accuracy. These results suggest that our 
proposed methods tend to have more robust performance even with fewer cell numbers in the analyzed dataset, 
while the existing methods have decreased accuracy and more varied results, especially when the noise level is 
high.

Evaluation of PartCNV & PartCNVH for different prior information: proportions of aneuploid cells
As a methodology advantage, partCNV and partCNVH are able to incorporate the prior knowledge of an 
estimated proportion of aneuploid cells. If the prior is misspecified, we seek to understand the impact on the 
results. We generate simulation data 4 with the same data generation procedure but the prior information is 
specified as correct (0.17 for total cell number 3000 and 0.23 for total cell number 1300) and incorrect (0.5), and 
we examine the results of our proposed methods.

Figures 5 and S3 illustrate the accuracy for the total cell numbers 3000 and 1300. First, it is clear that the correct 
prior knowledge improves the classification accuracy than a non-informative prior of 0.5. This improvement is 
small when the ratio is 0.5 or 1.5, but it can be substantial when the signal is harder to detect (ratio = 0.6 or 
1.4) and the noise level is high. For example, when the ratio is 1.4 and the noise is 0.3, the improvement of the 
accuracy for both partCNV and partCNVH using a correct prior can be about 10% compared to using the 
incorrect prior. Second, both Figures 5 and S3 demonstrate the robustness of the proposed methods against 
incorrect prior information, especially in panels A and C where the ratios are 0.5 and 1.5, respectively. In these 
experiments, we choose 0.5 as the incorrect prior knowledge, which is far from the true proportion 0.17 and 
illustrate a worst scenario that the prior is completely non-informative. In reality, when a closer prior such as 
0.20 or 0.15 is used, the impact would be much smaller. Even in the worst scenario, with an amplification ratio 
1.4 and a high noise level 0.3, our method with an incorrect prior still reaches a median accuracy above 0.75, 
which is better than the existing methods under the same scenario. These results highlight the advantage of the 
proposed methods in accurately identifying aneuploid cells.

Comparison with genome-wide CNV detection methods
  Lastly, we compare the proposed methods with two widely used genome-wide CNV detection methods, 
inferCNV, copyKAT as well as the regional versions of inferCNV and copyKAT. For the regional versions, we 
applied hierarchical clustering on the normalized expression matrix by inferCNV/copyKAT for the regions of 
interest only. One example of simulation data 4 is visualized in Figure 6A. As inferCNV requires the input of 
normal cells, we use an additional 100 normal cells as the reference for inferCNV. Both inferCNV and copyKAT 
generally are much more computationally intensive. We summarize the accuracy of 20 Monte Carlo simulations. 
It can be observed that neither inferCNV/copyKat nor the regional versions of these methods is able to accurately 
infer aneuploid/diploid cell status (Figure 6B-D), since the regional aneuploid signal is too weak compared to 
genome-wide copy number alterations that inferCNV and copyKAT are designed to detect. It is also interesting 
that when we re-cluster the cells based on the normalized expression from the sub-regions of chromosome 20, 
the performance of copyKAT increased but not inferCNV. These findings highlight the need for region-specific 
detection tools with the considerations of cell type mixtures to distinguishing between aneuploid and diploid 
cells.

Real data application
We demonstrate the usage of the proposed methods on three real data applications. For each application, the 
scRNA-seq data from one patient were collected by the 10X genomics platform and the cytogenetic data were 
collected from patients’ medical records. All three patients have a subset of the cells with regional copy number 
variations, and the rest are normal cells. The three applications have different complexity levels. The first subject 
(patient 1) is the most straightforward one, as a very long region (the whole chromosome Y) was reported as lost 
in a subset of the cells according to the patient’s cytogenetic data. The second subject (patient 2) has a subset of 
cells with partial chromosome 20 lost. The third subject (patient 3) has a complicated situation as this patient has 
cells with partial deletions, as well as cells with partial amplifications.

Patient 1: MDS with loss of chromosome Y
We obtain the scRNA-seq data of a bone marrow sample from an MDS patient treated at MD Anderson Cancer 
Center. The data, after alignment and quality control, contains a total of 33,538 genes and 655 cells. For this 
patient, the bone marrow sample has been specifically sorted for CD34+ cells to enrich hematopoietic stem and 
progenitor cells (HSPCs). As a result, the cell number is smaller than regular scRNA-seq experiments. Based on 
the clinically obtained cytogenetic data, this patient has around 35% of cells with the loss of chromosome Y and 
our goal is to identify these aneuploid cells. We first apply copyKAT to the whole transcriptome data from this 
sample to infer copy number variations. As shown in Figure S4, copyKAT clusters the cells based on the inferred 
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CNV statuses across the whole genome, but it could not take regional data or the cytogenetic information into 
consideration when identifying the neoplastic cells.

To specifically identify cells with the chromosome Y loss, we apply the proposed methods and the five existing 
methods (PCA plus Louvain, PCA plus Leiden, K-means clustering, hierarchical clustering, and CopyKAT) 
on this dataset. The input data are the normalized counts from the genes located on chromosome Y. In this 
application, the HMM step from partCNVH selects the whole set of genes so we only present the results from 
partCNV. Since the CNV in this dataset encompasses the entire chromosome Y, we expect some of the existing 
methods also work well for this analysis. We find that partCNV, PCA plus Louvain, PCA plus Leiden, and 
K-means clustering all have proportions of aneuploid cells close to 35% (40.9%, 39.5%, and 39.5%, respectively) 
(Figure 7 A-E). Hierarchical clustering identifies a much smaller number of aneuploid cells (9.31%). From 
visualizing the pairwise ARI values of these results, we find that partCNV, PCA plus Louvain/Leiden have 
very similar results, while K-means clustering and hierarchical clustering have very different results (Figure 7 
F). As the UMAP coordinates in Figure 7(A-E) are obtained using the whole transcriptome data, the fact that 
copyKAT-identified aneuploid cells cluster together suggests that copyKAT captures the whole transcriptome 
pattern instead of chromosome Y specific changes.

We further examine the average gene expression of chromosome Y genes among the aneuploid/normal 
cells identified by partCNV, copyKAT, K-means, and hierarchical clustering (Figure 7 G-I). It is apparent that 
partCNV-labeled aneuploid cells have much lower expression than the cells labeled as aneuploid by other 
methods but normal per partCNV, confirming that partCNV correctly identifies the cells with deletion on 
chromosome Y.

In summary, these results suggest that partCNV and the PCA plus Louvain or Leiden clustering have 
identified the cells with the chromosome Y loss. In contrast, K-means clustering, hierarchical clustering, and 
copyKAT failed to do so.

Patient 2: MDS with partial deletion of chromosome 20
We obtain the scRNA-seq data from the bone marrow sample for a different MDS patient. The data were also 
generated by the 10X genomics scRNA-seq technology. This sample was sequenced directly without the cell 
sorting step, and thus both HSPC and immune cells can be potentially identified. After alignment, preprocessing, 
and quality control, a total of 24,519 genes and 3,643 cells are kept for the analysis. Based on the cytogenetic 
data, about 20% of cells in the sample have deletions in chromosome 20 at regions q11.1 to q13.1, which is 
about 24.2 Mb long. We also apply CopyKAT to this data and present the heatmap result in Figure S5. Although 
cytogenetics reported deletions in chromosome 20, the log copy number ratio heatmap does not have an obvious 

Fig. 6. Simulation results to compare the proposed method versus existing whole-genome based 
methods, InferCNV and CopyKAT. (A) Heatmap of the simulated expression values for genes in region 
Chr20(q11.1-q13.1), where the rows are the cells and columns are the genes. Logarithmic of the expression 
values plus one are used for visualization. Rows are labeled by the true aneuploid/diploid status and the 
inferred status by partCNV and partCNVH. (B) CopyKAT output of the aneuploid/diploid prediction versus 
the true cell status. The heatmap includes all the chromosomes. (C) Copy number results using InferCNV. (D) 
Boxplot of the aneuploid/diploid inference of the methods averaged over 20 Monte Carlo simulations. Regional 
InferCNV and Regional CopyKat are the hierarchical clustering results based on the normalized expression of 
the region of interest from InferCNV and CopyKAT.
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deletion pattern in the suggested regions. Based on the whole genome copy number inference, copyKAT only 
reports about 500 aneuploid cells (∼5.5%).

We analyze the whole-transcriptome data using Seurat2 through identifying highly variable genes, extracting 
top principal components (PCs) based on these genes, and we perform UMAP and clustering analysis (Figure 
8). UMAP is used for dimension reduction and unsupervised clustering is performed with the default Louvain 
clustering using the top PCs. A total of 10 clusters are identified, and the cluster specific markers are used 
for annotating the cell type labels based on biological knowledge by our MDS biologist. We also apply the 
proposed methods and existing methods targeting the region on chromosome 20 with known chromosomal 
deletions. Figure 8 A-E shows cell type labels and the aneuploid/diploid inference result using partCNVH, 
PCA plus Louvain, K-means clustering, and hierarchical clustering. The results for partCNV and PCA plus 
Leiden are presented in Figure S6. We find that the proposed methods have the closest proportion of aneuploid 
cells to the cytogenetics reported proportion; the other methods all have much lower or higher proportions. 
The major difference between our proposed method and PCA plus Louvain is in the cycling RBC progenitors 
(Figure 8 B, C, and F). Our method reports high proportions in all three MDS-related cell groups (i.e., HSPCs, 
RBC progenitors, and cycling RBC progenitors), while PCA plus Louvain only reports aneuploid cells in the 
former two clusters. Previous literature found impaired erythroid-proliferating capacities to be a prominent 
characteristic in patients with MDS30,31. Both RBC progenitors and cycling RBC progenitors are major cell types 
involved in the erythroid-proliferating function, and thus it makes sense to identify neoplastic cells in both cell 
types.

To understand the differences between the identified locally aneuploid cells and the normal cells, we conduct 
differential expression analysis for each cluster to compare the aneuploid versus diploid cells identified by our 
method32. A total of 177 cluster-specific differentially expressed genes were identified using a cutoff of 0.05 for 
adjusted p values. We also perform over-representation analysis using GO Biological Process database33,34 and 
identify several functional categories over-represented by differential expression signals, including neutrophil 

Fig. 7. Results of applying different methods to the scRNA-seq data using the bone marrow CD34 positive 
cells from patient 1. Cytogenetic information shows that ∼ 35% of the cells from the sample have chromosome 
Y loss. (A-E) The cell classification based on the inference of chromosome Y loss using different methods. 
Panel F shows the heatmap of the ARI values from comparing the classification results using different methods. 
(G) The expression of chromosome Y genes for cells that are labeled as normal in partCNV (partCNV:0) and 
aneuploid in CopyKAT (CopyKat:1), and three similar groups. (H,I) The expression of chromosome Y genes 
comparing partCNV versus k-means clustering and comparing partCNV and Hierarchical clustering.
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degranulation, a few immune system related terms, and interleukin 4 and interleukin 13 signals (Figure 8 G). 
Many of these terms have been reported in previous literature to be related with MDS. For example, neutrophil 
degranulation and migration has been reported to be associated with MDS compared with normal controls35. 
The important role of the immune system and innate immune signaling in MDS has also been reported in 
multiple publications36–38. The over-representation results using the Reactome pathway and Hallmark database 
are presented in Figure S739,40. In the Reactome pathway enrichment results, we also find several immune 
response-related and lymphocyte activation related terms. In Hallmark analysis, allograft rejection, complement, 
interferon gamma response, and TNFA signaling via NFKB are the top findings, which also have been associated 
with MDS pathogenesis41–43. There are also some terms that have not been reported in previous MDS studies, 
such as generation of second messenger molecules, hemostasis, defense response, and cell activation, which 
could be promising targets for future research.

Patient 3: AML with partial gain and partial deletion of chromosome 8
Lastly, we study the scRNA-seq data from an AML patient with complicated chromosomal variations44. 
Specifically, this patient has amplifications of the whole chromosome 8 in 25% of the cells, deletion of 
chromosome 8 at region q21.2 to q24.3 in 40% of the cells, and normal karyotype in the rest of the cells. We are 
interested in identifying which cells contain the chromosome 8 gain and which have del(8)(q21.2q24.3). The 
scRNA-seq data were generated using the 10X genomics technology platform. After preprocessing, the data 
contain a total of 20,521 genes from 4294 cells. Since there are overlaps between the deletion and amplification 
regions, we apply partCNVH through a two-step approach. We first focus on the region of chromosome 8 before 
q21.2 where about 25% of the cells have amplification; the rest of the cells are normal in the area. After the cells 
with chromosome 8 gain are detected, we apply partCNVH again to the rest of the cells, which contain del(8)
(q21.2q24.3) in around 53.3% (= 40%/(1− 25%)) of the cells. In the two steps, 25% and 53.3% are used as the 
prior knowledge of the aneuploid cell proportions in partCNVH.

Fig. 8. Application results of the proposed method and existing methods using the scRNA-seq data from 
patient 2. (A) The cell type annotation based on marker genes’ expression and biological knowledge. RBC 
progenitor: red blood cell progenitors. HSPC: hematopoietic stem and progenitor cells. NK: natural killer. 
(B-E) The inferred aneuploid cells with deletion chr20(q11.1q13.1) using different methods (B, partCNV; C, 
PCA+Louvian; D, K Means clustering; E, Hierarchical clustering). The proportions in the title bracket are 
the proportions of cells that are inferred as cells with this specific deletion. (F) The comparisons of results by 
partCNVH and PCA plus Louvain versus cell type labels. (G) Gene set enrichment analysis results for the 
genes that are differential expressed between the cells with and without deletion chr(20)(q11.1q13.1). Gene sets 
are defined using the Reactome Pathway Database.
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We find that the majority of the inferred cells with chromosome 8 amplification are from the erythroid 
cells, while the cells with del(8)(q21.1q24.3) are mostly AML cells (Figure 9 A-B). The proportions of cells 
with chromosome 8 amplification and del(8)(q21.1.q24.3) are about 13% and 60%, which are close to the prior 
knowledge from cytogenetics. We visualize the normalized expression for the region of interest on chromosome 
8 in Figure S8A. We also present the results by inferCNV and copyKAT in Figure S8B and Figure S9, respectively. 
We observe that the patterns for chromosome 8 varies between the three cell groups in Figure S8A. However, 
whether the pattern shows gain or loss is not easy to identify due to data sparsity. Neither CopyKAT nor InferCNV 
can be applied to regional data, and thus they couldn’t reproduce the patterns we observed in Figure S8A.

To understand the different molecular mechanisms related to chromosome changes, we perform differential 
analysis for comparing the AML cells with del(8)(q21.2q24.3) versus diploid AML cells and obtain 266 
differentially expressed genes (DEGs). Similarly, we compare the erythroid cells with a gain of chromosome 
8 versus diploid erythroid cells and obtain 426 DEGs. Gene set enrichment analysis identify a few shared 
significant terms between AML and erythroid cells (Figure 9C-D), including multiple immune system related 
terms, neutrophil degranulation, and cellular responses to stimuli. Some unique terms in AML are hemostasis, 
platelet activation signaling and aggregation, and arachidonic acid metabolism. Hemostatic and thrombotic 
complications are prevalent symptoms in AML patients and hemostasis has been studied before for AML 
pathogenesis-related mechanisms45. The term platelet activation signaling and aggregation is also consistent 
with the previous literature that the platelet defects and other hemorrhagic symptoms are widely observed in 
AML patients46. The arachidonic acid metabolism is a process highlighted in a few cancer research publications, 
but the evidence for their involvement in AML is still accumulating47,48. Overall, our results are consistent with 
literature and provide some novel disease-related biological processes for future research.

Discussion
We introduce partCNV/partCNVH, a statistical framework that distinguishes neoplastic cells with copy number 
alterations from normal diploid cells based on regional chromosomal deletions or amplifications. Unlike existing 
methods, our statistical framework can incorporate prior knowledge from cytogenetic data that includes both 
chromosomal locations of aberrations and the observed proportion. As demonstrated in our simulation study, 
this prior information can effectively improve the classification accuracy when the signal is weak. Our framework 
also includes a feature selection step using the hidden Markov model, which is able to filter the genes when 
part(s) of the region are diploid. This step further improves the signals of chromosomal changes and results in 

Fig. 9. Results of applying the proposed method partCNVH to the scRNA-seq data from an AML patient 
with ∼ 25% cells having amplification of chromosome 8 and ∼ 40% cells having chromosome 8 deletion 
at region q21.2-q24.3. (A) The true cell type labels annotated by a clinician-scientist. (B) The inferred cells 
with amplification of 8 (“+8”) and the deletion of chromosome 8 at q21.2-q24.3 (“del(8)(q21.2q24.3)”). (C, 
D) The Reactome pathway enrichment analysis results using the DEGs by comparing the AML cells with 
del(8)(q21.2q24.3) versus diploid cells, and by comparing the erythroid cells with +8 versus diploid cells, 
respectively.
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higher accuracy to detect neoplastic cells. We have illustrated the benefits of partCNV and partCNVH through 
extensive simulation studies and in-depth analysis of three scRNA-seq datasets from MDS or AML patients.

Cytogenetic information is a key component of the scoring system of risk assessment, treatment selection, 
and outcome prediction for patients with hematologic malignancies49,50. In this work, we exemplify the use of 
the proposed methods in patients with MDS and AML. These methods can also be applied to other hematologic 
malignancies or even other cancer types if similar problems are encountered. As cytogenetic analysis is a mature 
technology and is widely used in clinical settings, the cytogenetic data should be fairly accessible from clinical 
collaborators who provide patient samples. Such cytogenetic data-guided analysis can be a useful tool for 
identifying subgroups of cells with the chromosomal changes of interest.

Implemented in an EM algorithm, our proposed methods have favorable computational performance. For 
a simulation dataset with 3000 cells and 600 genes, it takes 12 seconds and 21.5 seconds for partCNV and 
partCNVH to complete the analysis, respectively. This computation cost is similar to existing methods PCA plus 
Louvain (∼6.8 seconds) and PCA plus Leiden (∼30.7 seconds). In comparison, both inferCNV and CopyKAT 
take more than 10 minutes, sometimes more than an hour, to process a scRNA-seq dataset with a few thousand 
cells. Additionally, our proposed methods scale almost linearly to large datasets. If we increase the cell number 
from 3000 to 6000, partCNV takes about 26.5 seconds and partCNVH 41.5 seconds to complete the computation. 
Since cytogenetic data are generally unique for each subject, we expect that our methods are applied person by 
person in real applications. Thus, it is reasonable to assume a few thousand cells in the dataset, for which our 
methods can complete the computation within one minute.

For future work, the methods can be further extended to incorporate additional biological knowledge, such 
as the marker or mutation information mentioned in Fan et al9. Our method has the potential to be applied on 
multiple samples in parallel or even to borrow information across different samples from the same subject, such 
extension is not trivial and needs further evaluations. Moreover, due to the complexity of sequencing depth, 
gene expression variations, number of genes impacted by the aneuploid event, we have not evaluated the power 
of the proposed methods or the minimum required size for CNV events. These should be carefully evaluated in 
future works.

Previous work also developed machine learning models to predict the neoplastic/non-neoplastic status of 
the cells by splitting the annotated data and training a random forest model16. Such models usually rely on the 
training dataset and may not generalize well to other studies. With the accumulation of annotated single cell 
data, it is also possible to harness the power of deep learning algorithms to further improve existing models and 
achieve more accurate predictions. Our current methods assume a fixed prior based on the cytogenetic data. It is 
possible that different proportions of aneuploid cells have different confidence levels. The current method can be 
further extended to incorporate such confidence into the model to improve accuracy. When scDNA-seq data is 
available, it may be another prior knowledge to replace the cytogenetic information of clinical data as the input 
to PartCNV and PartCNHV. The method can be further extended to incorporate regions where the scDNA-seq 
data shows enriched hierarchical aneuploid CNVs with high resolution.

Methods
Details of partCNV
We aim to identify the cells with the known chromosomal deletion or amplification from the scRNA-seq data 
with incorporation of the prior cytogenetic knowledge. Assume a total of N cells were sequenced by scRNA-
seq and G genes fall in the region with deletion or amplification. The count matrix is denoted by Y = (ygi), 
which is a G×N  matrix with rows being the genes and columns being the samples. Without loss of generality, 
we assume the genes in Y  are ordered by their locations on the chromosome. As the observed data contain 
the mixture of cells with and without chromosomal changes, denote the underlying status of the cell i by ci. 
Assume the prior proportion of the aneuploid cells is q0 for the region of interest. In our motivating problem, 
q0 is calculated based on the number of metaphases observing the chromosomal changes divided by the total 
number of metaphases from an cytogenetics test. As shown in some recent literature regarding the distribution 
of the scRNA-seq count51,52, the scRNA-seq data may not be zero-inflated and the excessive zeros are due to 
low expression level of each single cell. Additionally, since the region of interest generally contains a limited 
number of genes, the estimated dispersion parameters are not accurate enough if we use a negative binomial 
distribution. Thus, we assume the expression count of gene i follows a Poisson distribution with mean θg1 if the 
cell is aneuploid or mean θg0 if diploid, i.e.,

 
Pr(ygi|θg1, ci = 1) =

θ
ygi
g1 exp(−θg1)

ygi!
and Pr(ygi|θg0, ci = 0) =

θ
ygi
g0 exp(−θg0)

ygi!
.

We assume the cell status variable ci follows a Bernoulli distribution Pr(ci|qi) = qi(1− qi) where qi denotes the 
probability of cell i having the chromosomal changes at the region of interest, i.e., qi = Pr(ci = 1). The prior 
knowledge of the aneuploid cell proportion is best described through a beta distribution, which we approximate 
through a normal distribution. Though cytogenetic information is obtained based on 20 metaphases, the involved 
cells can number in the hundreds of thousands, and thus a normal distribution can adequately approximate the 
underlying beta distribution. We assume qi follows a prior Normal distribution with mean q0 and variance λ2:

 
Pr(qi|q0, λ) =

1

λ
√
2π

exp

(
−(qi − q0)

2

2λ2

)
.
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The variance λ2 represents the confidence about the prior information. Smaller variance indicates stronger 
confidence in the prior knowledge. However, in our experiments, we found that the actual value of λ has 
minimal impact on the classification results as long as the value is within a decent range (e.g., λ between 0.01 and 
1). Throughout our experiments, we use λ = 0.1. Together, the full likelihood of the problem can be written as

 
L(θ1,θ0, c, q|Y , q0, λ) =

∏
i

[
Pr(ygi|θg1)

]
�(ci=1)[

Pr(ygi|θg0)
]
�(ci=0)

Pr(ci|qi) Pr(qi|q0, λ) (1)

and the detailed log-likelihood is

 

l(θ1,θ0, c, q|Y , q0, λ) =
∑
i

�(ci = 1){ygi log(θg1)− θg1} +
∑
i

�(ci = 0){ygi log(θg0)− θg0}

+
∑
i

ci log(qi) +
∑
i

(1− ci) log(1− qi)−
∑
i

(qi − q0)
2

2λ2
.

Directly solving the likelihood (1) may not be feasible, and thus we use the EM algorithm by treating cell status 
{ci} as the missing variables. The objective function of the EM algorithm is

 

Q(θ1,θ0, c, q) =
∑
i

pi{ygi log(θg1)− θg1} +
∑
i

(1− pi){ygi log(θg0)− θg0} +
∑
i

ci log(qi)

+
∑
i

(1− ci) log(1− qi)−
∑
i

(qi − q0)
2

2λ2
.

 (2)

In the M step of the t-th iteration, we solve for θ(t)g0 , θ(t)g1 , and q(t)i  as follows:

 

θ
(t)
g1 =

∑
i q

(t−1)
i ygi∑
i q

(t−1)
i

,

θ
(t)
g0 =

∑
i

(
1− q

(t−1)
i

)
ygi

N −
∑

i q
(t−1)
i

,

q
(t)
i = argmax

qi

[(
q
(t−1)
i

)∑
i ci

(
1− q

(t−1)
i

)N−
∑

i ci
exp

(
−n(q

(t−1)
i − q0)

2

2λ2

)]
.

In the E step, we estimate the conditional expectation of the cell status by

 

p
(t)
i = Pr(ci = 1|ygi) =

Pr(ygi|ci = 1) Pr(ci = 1)

Pr(ygi, ci)

=

∏
g Pr(ygi|θg1) · q

(t)
i∏

g Pr(ygi|θg0) · q
(t)
i +

∏
g Pr(ygi|θg0) · (1− q

(t)
i )

.

The algorithm repeats the M step and E step until convergence. The convergence criteria is defined as the absolute 
difference between p(t) = (p

(t)
1 , · · · , p(t)N ) and p(t−1) smaller than 10−5. The core of partCNV is the described EM 

algorithm and the output is the inferred cell status. With the estimated probability p̂, the cells with p̂i ≥ 0.5 are 
assigned as aneuploid cells and the rest as diploid cells.

Details of partCNVH
Limited by the technology, cytogenetic data only provide crude information about the chromosomal deletion 
or amplification. When we include all the genes from the regions of interest, it is likely that not all of the genes 
have chromosomal changes in the aneuploid cells. It is helpful to select the genes that demonstrate chromosomal 
changing patterns. Motivated by this idea, we design partCNVH, the combination of partCNV and HMM for 
improving classification performance. Denote the underlying status for the observed G genes by Z = (z1, · · · , zG)
. The first step of partCNVH is to apply partCNV on the scRNA-seq data from the region of interest. Denote the 
obtained cell status from partCNV by {ĉi}. Then for each gene g, we compute the mean expression of this gene 
for the two groups, i.e.,

 
ȳ(1)g =

∑
j∈{i:ci=1}

ygi and ȳ(0)g =
∑

j∈{i:ci=0}

ygi.

Based on ȳ(1)g  and ȳ(0)g , we obtain the mean expression ratio for all the genes by rg = ȳ
(0)
g /ȳ

(1)
g  if the region has 

deletion and rg = ȳ
(1)
g /ȳ

(0)
g  if the region has amplification. As shown in Figure 3, the signals from the mean 

expression ratio are weak, and thus we apply a rolling average on the mean expression ratios to strengthen the 
signals. Denote the window size for the rolling average by K, and the rolling average at gene g becomes

Scientific Reports |        (2024) 14:24152 12| https://doi.org/10.1038/s41598-024-75226-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 
r̄rollingg =

1

K

g+[K/2]∑
i=g−[K/2]

ri.

In R, we implement the rolling average computation by function frollmean from the data.table package. We then 
build HMM using the rolling average of the genes. Denote the underlying state of gene g by zg, where zg = 1 is 
gene g with deletion or amplification in the aneuploid cells, and zg = 0 otherwise. HMM aims to infer the hidden 
status Z = {zg} through the observed sequence R̄rolling

= (r̄rollingg ) by solving the likelihood

 
Pr(R̄

rolling
,Z) = Pr(R̄

rolling|Z)× Pr(Z) =

G∏
g=1

Pr(r̄rollingg |zg)×
G∏
g=1

Pr(zg|zg−1).

We solve HMM using the depmix function from the depmixS4 package in R by specifying the initial transition 
matrix between the two states (“genes in aneuploid region” or “A”, “genes in diploid region” or “D”) as

 

(
A → A A → D

D → A D → D

)
=

(
0.9 0.1

0.1 0.9

)
.

The initial states of the genes are decided as zg = 1 if r̄rollingg ≥ median{r̄rollingg , g = 1, · · · , G}, and zg = 0 
otherwise. After the hidden states are inferred by HMM, we identify the states corresponding to the “genes 
in diploid region” by comparing the mean expression ratio of the two states, and the state with larger mean 
expression ratio is labeled as state “D”. Denote the expression count matrix for the selected genes by Ỹ . We apply 
the EM algorithm described in partCNV to Ỹ  and infer the final cell states.

Simulation designs
To mimic the real data analysis, we generate the simulation datasets based on existing scRNA-seq data from 
patients with triple negative breast cancer (TNBC). The data were downloaded from the Gene Expression 
Omnibus (GEO) with accession number GSE148673. We compared the data characteristics between the TNBC 
dataset and the scRNA-seq data from our MDS patients. In Supplementary Figure S10, we presented the mean 
expression levels of genes and cells, as well as the dropout rate for the two datasets. We found that the data 
characteristics are similar between the two data sources. As a data processing step, genes with zero expression 
in all cells in the TNBC data are removed. We keep all of the normal cells based on the cell type annotation 
from the original study15. As our method focuses on the region with known deletion or amplification from the 
cytogenetic data and the region often covers tens or hundreds of genes, we generate the expression count for n0 
normal cells and n1 aneuploid cells with a total of G genes. For each iteration, we randomly draw the expression 
of G genes from the normal cells of the TNBC dataset. We compute the mean expression of these G genes and 
denote it by ξ̂ = (ξ1, · · · , ξG). For normal cells, the expression is generated from Poisson(ξ̂g) for g = 1, · · · , G. 
For aneuploid cells, assume G1 genes are located at the deleted or amplified regions and G0 = G−G1 are from 
the normal regions.

We assume half of the G0 genes are in the regions that are left-adjacent to a copy-number alteration and 
the other half are in regions right-adjacent that have normal expression in all cells. This partial chromosomal 
variation often happens in practice as cytogenetic data only provide a crude observation of the changed regions. 
Without loss of generality, we assume the beginning G1 genes are from the aneuploid region. For a gene g from 
this region for an aneuploid cell i, we generate the expression from

 ygi ∼ Poisson{λg · (r + η)} and the noise η ∼ Uniform(0, τ ),

where r is the ratio controlling the impact level of chromosomal deletion or amplification on the expression and 
η is the noise, in the first setting with deletion in aneuploid cells. r takes value 0.5 or 0.6 in this setting (Simulation 
data 1). In the second setting, we consider amplification in the aneuploid cells. The expression is generated from

 ygi ∼ Poisson{λg · (r − η)} and the noise η ∼ Uniform(0, τ ),

and r takes value 1.5 or 1.4. (Simulation data 2) The noise parameter η controls the heterogeneity of the impacts 
among all the interested genes, mimicking the fact that gene expressions are heterogeneous when the genes 
are located in deleted or amplified regions. Through our experiments, we specify η = 0.1, 0.2, and 0.3 for low, 
medium, and high noise levels, respectively.

To understand the impact of different sample sizes, we consider the combination of n1 = 500 and n0 = 2500 
in one scenario and n1 = 300 and n0 = 1000 in the other (Simulation data 3). We also evaluate the impact of 
prior specification in all the scenarios. In the first scenario, the true prior proportion of the aneuploid cell is 17% 
and we evaluate the method with both 17% and 50%. In the second scenario, the true proportion is 23% and 
we also compare the results with both 23% and 50% (Simulation data 4). To compare the proposed methods 
versus existing ones that only perform on whole genome data, we randomly sample 2000 normal cells from an 
existing scRNA-seq dataset (Simulation data 5). We then replace the expression of the genes located at the region 
chromosome 20 q11.1 to q13.1 using the simulated data as described above to mimic situations that 400 out of 
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2000 (20%) cells are locally aneuploid. The gene expressions in the region of interest are generated in the similar 
way as Simulation data 1. We then apply inferCNV and copyKAT using the suggested arguments as suggested by 
the original methods. All the simulation results are summarized over 100 Monte Carlo datasets.

Real data analysis
The data for the AML patient were downloaded from European Genome-phenome Archive (EGA) with accession 
EGAD0000100767244. The data from sample 7A were used for the analysis due to the available cytogenetic 
information. The raw data for the two MDS patients are currently not publicly available due to confidentiality 
regulations.

Data preprocessing
The raw sequencing data were preprocessed (demultiplexed cellular barcodes, read alignment, and generation of 
gene count matrix) using Cell Ranger Single Cell Software Suite (version 3.0, https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger) provided by 10X  Genomics using 
Human Genome GRCh38. Genes were detected in < 0.1% of total sequenced cells and cells where < 200 genes 
had nonzero counts were filtered out and not included in the analysis. Low quality cells where > 20% of the 
counts were derived from the mitochondrial genome were also discarded. The doublet cell status was inferred 
using DoubletFinder53 and only the singlet cells were kept for further analysis. Data were normalized using 
the total sequencing count per cell to adjust for differences in sequencing depth. The chromosome database 
associated with cytogenetic location is downloaded via the UCSC genome website.

Functional over-representation analysis
In the real data analysis section, after the aneuploid/diploid status has been inferred by the proposed or existing 
method, we perform cell type specific differential analysis using “MAST”32 (available in Seurat package2) to 
compare the diploid versus aneuploid cells. The genes with an adjusted p value smaller than 0.05 are included 
as the DEGs. We then perform functional over-representation analysis using the MSigDB platform33 (http://
www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) with the Reactome pathway39, GO Biological Process54, and 
Hallmark40 databases. We present the top 10 pathways or biological process terms regardless of the significance 
level.

Implementation of existing methods
All of the existing methods take the normalized expression counts for the genes located in the region of interest 
as input. K-means and hierarchical clustering are implemented using the functions kmeans and hclust from the 
stat package in R, respectively. The PCA plus Louvain55 and Leiden methods29 are implemented using the Seurat 
package in function FindClusters with arguments algorithm= 1 and 4. Since the Seurat clustering function does 
not allow specification of cluster numbers, we design a loop with a precision parameter ranging from 0.001 
to 0.5 with distance 0.005 until the algorithm identifies exactly two clusters. All the analyses and plotting are 
performed in R v4.0.3.

Data availability
The TNBC scRNA-seq data are downloaded from GEO with accession number GSE148673. The AML scRNA-seq 
data were donwloaded from European Genome-phenome Archive (EGA) with accession EGAD00001007672. 
The raw data for the two MDS patients are currently not publicly available due to confidentiality regulations. The 
processed data are available from the investigators upon reasonable request. Our software is publicly available at 
GitHub (https://github.com/ziyili20/partCNV) and the Bioconductor site (https://bioconductor.org/packages/
devel/bioc/html/partCNV.html).
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