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Abstract

Motivation: Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical
variability that disrupts inference. These in situ methods are valuable in understanding cell–cell interactions, but few
standardized processing steps or normalization techniques of multiplexed imaging data are available.

Results: We implement and compare data transformations and normalization algorithms in multiplexed imaging
data. Our methods adapt the ComBat and functional data registration methods to remove slide effects in this do-
main, and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-
slide variation in the raw, unadjusted data and show that many of the proposed normalization methods reduce this
variation while preserving and improving the biological signal. Furthermore, we find that dividing multiplexed imag-
ing data by its slide mean, and the functional data registration methods, perform the best under our proposed evalu-
ation framework. In summary, this approach provides a foundation for better data quality and evaluation criteria in
multiplexed imaging.

Availability and implementation: Source code is provided at: https://github.com/statimagcoll/MultiplexedNormalization
and an R package to implement these methods is available here: https://github.com/ColemanRHarris/mxnorm.

Contact: coleman.r.harris@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell assays are increasingly valued for their ability to provide
information about the cell micro-environment and cell population
interactions in healthy and cancerous tissues (Islam et al., 2020;
McKinley et al., 2019; Shrubsole et al., 2008). Multiplexed imaging
methods such as multiplexed immunofluorescence (MxIF) (Gerdes
et al., 2013), multiplexed immunohistochemistry (IHC) (Tsujikawa
et al., 2017) and CODEX (Goltsev et al., 2018) are in situ analyses
of multiple marker channels over a large number of cells within a
given tissue sample. These methods build upon dissociative single-
cell analysis methods like flow cytometry (Bradford et al., 2004) and

single-cell RNA sequencing (Chen et al., 2019) to allow scientists to
better understand spatial cell–cell interactions in biological samples.

One significant issue in multiplexed imaging data is the presence
of systematic noise at a variety of levels, related to batch and slide
effects, imaging variables and optical effects (Berry et al., 2021;
Chang et al., 2020). A single experiment may contain hundreds of
slides and terabytes of data across which a researcher seeks to make
inference (Maric et al., 2021). However, this data complexity and
the within-slide dependencies induce complex effects that can dis-
rupt inference. This technical variability can be compounded
through the complex image pre-processing pipeline and may con-
tribute to biases that increase type 1 or type 2 error. Furthermore, it
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is difficult to develop a standardized pre-processing pipeline because
of substantial variability in the markers used across different studies,
as target proteins differ across organs and cancer types (Schapiro
et al., 2021; Yapp et al., 2021).

Image normalization is a technique used to adjust the input
pixel- or image-level values of an image to remove noise and im-
prove image quality. Due to the nascent development of multiplexed
imaging, there are few established statistical tools that address chal-
lenges related to technical variation in this dataset (Chang et al.,
2020). Normalization methods may improve similarity across
images by removing the unknown effect of technical variability.
Moreover, statistical methods for batch correction and image nor-
malization can be modified to fit this complex data structure to ul-
timately reduce systematic noise and improve statistical inference.

Extensive work has been done in other fields to adjust for batch
effects and systematic noise, particularly with regards to neuroimag-
ing and genetic sequencing data. One primary method employed in
both of these fields is the ComBat method, introduced for genetic
micro-array data (Johnson et al., 2007) and then adapted to neuroi-
maging in the analysis of magnetic resonance imaging (MRI) data
(Fortin et al., 2017; Yu et al., 2018). The ComBat method is a
location-scale model that implements an empirical Bayes algorithm
to adjust for batch effects and is robust to outliers in small sample
sizes. Curve registration, a non-parametric tool from functional data
analysis (FDA), has been used in recent work to adjust for systematic
variability in accelerometry and MRI data (Marron et al., 2015;
Wrobel et al., 2020, 2019). In the neuroimaging context, curve
registration is used to normalize the imaging data by non-linearly
transform the image intensity domain so that it is similar across
images from different subjects, potentially collected on different
scanners. Multiplexed imaging data are further complicated because
it is non-negative, which other groups have remarked upon in simi-
lar imaging applications like spatial transcriptomics (Elosua-Bayes
et al., 2021)—this requires unique derivations and/or applications of
normalization methods to ensure no contradictions arise from nega-
tive marker intensities.

While adaptable, existing methods for normalizing data from
other domains cannot be directly applied within multiplexed imag-
ing due to the unusual format of the data (cell populations can differ
substantially across samples), and the heavy skewness of the image
histogram. The few algorithms adapted specifically for normalizing
multiplex imaging data still could benefit from upstream normaliza-
tion using algorithms adapted from other domains (Chang et al.,
2020; Raza et al., 2016). For example, the RESTORE algorithm is a
method developed for multiplexed imaging that uses negative con-
trol cells to remove unwanted variation across slides (Chang et al.,
2020). However, this method relies on clustering mutually exclusive
marker pairs using cell-level labels that are defined using unnormal-
ized marker intensities and thus embed biases as detailed in this art-
icle. Raza et al. (2016) also introduced normalization methods in
the multiplexed imaging that implement a procedure of image filters
and transformations. These methods show improvements at the
pixel and image level, but do not correct for slide or batch effects
that are prevalent as detailed in this work. Hence, the normalization
methods proposed here can be applied early in the image processing
pipeline to reduce bias in subsequent steps like phenotyping and spa-
tial correlation analyses.

In this article, we introduce and compare normalization and
data transformation methods for multiplexed imaging data. These
techniques combine transformations of the scale of the data from its
raw form with algorithms (namely, ComBat and functional data
registration) adapted to remove slide effects from the data. We fur-
ther develop multiple novel metrics to quantify and measure the re-
moval of technical variation in these data, where cell populations
can differ across slides. We use data from the Human Tumor Atlas
Network to evaluate the methods we compare here (Rozenblatt-
Rosen et al., 2020). While we apply the methods here to segmented
and quantified single-cell data from multiplexed imaging, they can
also be applied at the pixel level.

2 Materials and methods

2.1 Implementation
We compare three data transformations: log10, mean division (div-
ision by the slide-level mean) and mean division with log10, and
three normalization procedures: no normalization, ComBat and
functional data registration, for a total of nine potential multiplex
image normalization algorithms (Table 1).

2.1.1 Transformations

Let YicðuÞ denote the raw intensity of unit u on slide i for marker
channel c (here u corresponds to segmented cell intensities). We con-
sider the following transformations: the log10 transformation,
log10ðYicðuÞ þ 1Þ, where the addition of 1 follows since YicðuÞ is

integer-valued; the mean division transformation: YicðuÞ
lic

, where lic is

the mean intensity value on slide i for channel c; and the mean div-

ision log10 transformation, log10
YicðuÞ

lic
þ 1

2

� �
, where again lic is the

mean intensity value on slide i for channel c. Here, the data are no

longer integer-valued, and the addition of 1
2 ensures values greater

than 1
2 are positive and less than 1

2 are negative to properly adjust this

scale of data. Other transformations, including a Z-score transform-
ation, can be found in the Supplementary Material.

2.1.2 Combat normalization

We adapted the empirical Bayes framework of the ComBat algo-
rithm (Fortin et al., 2017; Johnson et al., 2007) for multiplexed
imaging data. We parameterize mean and variance of the slide-level
batch effects, with the location-scale model

YicðuÞ ¼ ac þ cic þ diceicðuÞ;

where we define YicðuÞ as the intensity of unit u on slide i for marker
channel c and ac as the grand mean of YicðuÞ for channel c. Though
in principle, units can be at the pixel or cell level, in our application,
YicðuÞ is the median cell intensity (or its transformed counterpart) of
a selected marker for a given segmented cell on a specific slide in the
dataset. Here cic is the mean batch effect of slide i for channel c and
we assume cic � Nðcc; s

2
c Þ; d2

ic is the variance batch effect of slide i
for channel c and we assume d2

ic � IGðxc; bcÞ, and we assume the
random errors eicðuÞ � Nð0; 1Þ. We use the data to estimate âc and
then estimate ĉic ¼ 1

Uic

P
u YicðuÞ, or the sample mean intensity on

slide i for channel c. We further define r̂c ¼ 1
N

P
icðYicðuÞ � âc �

ĉ icÞ2 and let:

ZicðuÞ ¼
YicðuÞ � âc

r̂2
c

;

where we assume ZicðuÞ � Nðcic; d
2
icÞ. Based on the posterior condi-

tional means, we find the following empirical Bayes estimators of
the two batch effect parameters (a detailed derivation of these esti-
mators can be found in the Supplementary Material):

d2�
ic ¼

bc þ 1
2

P
uðZicðuÞ � c�icÞ

2

Uic

2 þxc � 1
; c�ic ¼

Uic � s2
c � ĉ ic þ d2�

ic � cc

Uic � s2
c þ d2�

ic

Where we define Uic as the number of quantified cells present on
a particular slide i for a given channel c. We calculate the hyper-
parameter estimates of bc;xc; s2

c ; cc using the method of moments
and iterate between estimating the hyper-parameters and batch ef-
fect parameters until convergence (Dempster et al., 1977; Johnson
et al., 2007). Upon convergence, we use these batch effects to adjust
the data,

Y�icðuÞ ¼
r̂2

c

d̂
�
ic

ZicðuÞ � ĉ�icÞ þ âc:
�

This model adjusts the Z-normalized intensity data, ZicðuÞ, by
the mean and variance batch effects, and re-scales back to the initial
scale of the data with the mean and variance of the raw marker in-
tensity values. Note that zeroes were left in the data prior to the
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ComBat normalization, since for each scale transformation we per-
form on the data the zeroes are meaningful rather than an absence
of signal.

2.1.3 Functional data registration

For the second normalization algorithm, we implemented functional
data registration using the fda R package (Ramsay et al., 2020;
Ramsay and Silverman, 2005). This approach uses FDA methods to
approximate the histograms for each slide and channel as smooth
densities, and uses functional registration to align the densities to
their average at the slide-level. Functional registration is performed
by estimating a monotonic warping function for each density that
stretches and compresses the intensities such that densities are
aligned. These warping functions are then used to transform the
marker intensity values in the images so that non-biological variabil-
ity is reduced across slides.

Here, let our observed cell intensity values YicðuÞ have density
YicðuÞ � f ðyji; cÞ. Our goal is to remove technical variation related
to the slide by estimating a warping function, /icðyÞ, which is a
monotonic transformation of the intensities. We first use a 21 degree
of freedom cubic B-spline basis to approximate the densities of the
median cell intensities for each slide and marker, f ðyji; cÞ � bTgðyÞ
where b 2 R21 is an unknown coefficient vector and g(y) is a vector
of known basis functions. We then register the approximated histo-
grams to the average, restricting the warping function to be a 2 de-
gree of freedom linear B-spline basis for some functions h1ðyÞ and
h2ðyÞ and for constants C0 and C1 to be estimated from the data,

/icðxÞ ¼ C0 þC1

ðx

0

exp fb1ich1ðyÞ þ b2ich2ðyÞgdy;

such that the transformation is monotonic (Ramsay and Silverman,
2005). Unknown parameters b1ic and b2ic are estimated to minimize,ð

y

kficð/icðyÞÞ � f ðyÞk2dy

Where f(y) is the average density across slides. We then use
/icðyÞ to calculate the normalized intensity values, Y�icðuÞ:

Y�icðuÞ ¼ /icðYicðuÞÞ

Note that the warping function /icðyÞ is a map that takes in the
raw median cell intensity value and outputs a new, normalized in-
tensity value. Images are then normalized by taking the original in-
tensity values in the image, and transforming them using the map
defined by the warping function. This combined process can be sum-
marized as first taking the raw data, smoothing the histogram of
these data using a B-spline basis expansion, and then calculating a
warping function to transform the smoothed data so that densities
across slides within marker channel c are approximately aligned.

2.2 Evaluation framework
There is no accepted gold standard for evaluating normalization
methods in multiplexed imaging because the same tissue sample can-
not be imaged twice and there is substantial heterogeneity across
samples (Nadarajan et al., 2019; Rozenblatt-Rosen et al., 2020).
Here, our evaluation framework relies on the two following

conditions to be deemed successful: (i) reduction in slide-to-slide

variance in the cell intensity data and (ii) preservation (and potential
improvement) of existing biological signal in the data.

2.2.1 Alignment of marker densities

To determine if between-slide noise is visible when comparing den-
sities, we visually inspect the changes in density curves for each

transformation method. A priori, we expect that a successful trans-
formation method will align the density curves across slides, and
subsequently we inspect the placement of slide-level Otsu thresh-

olds, a commonly used thresholding algorithm used in imaging ana-
lysis (Otsu, 1979), to confirm a reduction in variability between

slides. To quantitatively measure the alignment of marker densities,
we implement the k-sample Anderson–Darling statistic to quantify
the likelihood that each slide is drawn from the same population

(Scholz and Stephens, 1987). A higher value of this test statistic indi-
cates greater evidence that the k-samples are drawn from different

distributions.

2.2.2 Threshold discordance and accuracy

Otsu thresholding is a commonly used thresholding algorithm that

defines an optimal threshold in gray-scale images and histograms,
maximizing the between-class variance of pixel values to separate
the data into two classes (Otsu, 1979). In this use case, we define

Otsu thresholds at the slide-level for each of the markers in the
study, where a cell with intensity value greater than the Otsu thresh-

old is deemed marker positive. We then compare this to a global
Otsu threshold, combining all slides, for each marker to calculate a
mean discordance score across all slides for a given marker. For

some marker channel c, slide i, and set of marker intensity values
YicðuÞ, define the indicator function for a given Otsu threshold o as
Oicðu;oÞ ¼ IðYicðuÞ > oÞ. Here, Oicðu; oÞ indicates which cells are in

the expressed category using threshold o. The discordance metric is
then defined as:

1

N

XN
i

P
y jOicðu;oicÞ �Ocðu; ocÞj

Uic

 !

Where Uic is the number of quantified cells present on a particu-

lar slide i for a given channel c, oic is the slide and channel-specific
Otsu threshold, and oc is the threshold estimated across all slides for

a given channel. Here we calculate a slide-level discordance score,
e.g. the proportion of cells misclassified on each slide, and take an
average of the score across slides for each marker channel. This

measures the slide-to-slide discordance across all markers and trans-
formation methods, to determine how similar Otsu thresholds are

across slides following transformation. In this framework, a lower
value of the threshold discordance score indicates better agreement
across slides in the data.

We further implemented Otsu thresholding across slides to com-
pare definitions of a marker positive cell with the manual labels of

CD3 and CD8 as marker positive cells (see Section 2.3). This metric
quantifies the accuracy of the Otsu thresholding method in recapitu-
lating the bronze standard labels for each transformation method.

Table 1. Summary of normalization procedures implemented

None ComBat Registration (fda)

log10 log10ðyþ 1Þ ComBatð log10ðyþ 1ÞÞ fdað log10ðyþ 1ÞÞ

Mean division y
lic

ComBat y
lic

� �
fda y

lic

� �
Mean division log10 log10

y
lic
þ 1

2

� �
ComBat log10

y
lic
þ 1

2

� �� �
fda log10

y
lic
þ 1

2

� �� �
Note: Transformations (rows) and normalization (columns) performed on the data. Here, y is the median cell intensity values for an arbitrary marker channel c, and

lic is the slide mean for slide i of the median cell intensity values for marker channel c.
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2.2.3 Proportions of variance

To further assess the removal of slide-related variance following
each transformation of the data, we fit a random effects model using
the lme4 R package (Bates et al., 2015) with a random intercept for

slide to assess what proportion of variance is present at the slide-
level for each marker. A successful normalization algorithm will

reduce the slide-level variance, ultimately removing technical vari-
ability to improve the quality of the data.

2.2.4 UMAP embedding

The Uniform Manifold Approximation and Projection (UMAP) is a
technique for dimension reduction (McInnes et al., 2018) commonly
used in the biological sciences to distinguish differences in cell popu-

lations between single-cell data (Becht et al., 2019). Here we reduce
the data into two UMAP embeddings for each of the transformation
methods using only four markers in the dataset: vimentin, collagen,

pan-cytokeratin and Naþ/Kþ-ATPase. These markers were chosen
for their ability to easily distinguish epithelial and stromal cells. We

expect the UMAP embeddings to yield clear separation of the data
when using the epithelium label in our dataset (see Section 2.3). To
quantify this separation of groups, we implement a k-means cluster-

ing model on the UMAP embeddings to predict the class label, and
use the adjusted Rand index to measure the similarity with the true

labels (Hartigan and Wong, 1979; Hubert and Arabie, 1985).
Larger values of this index indicate better agreement between two
sets of labels, adjusted for the chance grouping of elements. Note

that across each slide in the dataset, approximately 10% of the data
was used to derive the UMAP embeddings to reduce computational

and visualization time.

2.3 Dataset
The data were collected from human colorectal cancer tissue sam-
ples from the Human Tumor Atlas Network (Rozenblatt-Rosen

et al., 2020). The final dataset comprises over 2.2 million cells in the
MxIF modality across over 2400 images on 43 different slides, with

single-cell segmentation performed using an algorithm developed in-
house (McKinley et al., 2019). Cell intensities for each marker were
quantified as the median pixel value within the segmented cell, with

tissue samples stained for 33 different marker channels. For the pur-
pose of evaluating the algorithms compared in the article, we

restricted our attention to the following markers: beta catenin
(BCATENIN), CD3D (CD3), CD8 (CD8), collagen (COLLAGEN),
Naþ/Kþ-ATPase (NAKATPASE), olfactomedin 4 (OLFM4), pan-

cytokeratin (PANCK), SRY-Box 9 (SOX9) and vimentin
(VIMENTIN). These markers were chosen because of their ability

to distinguish between epithelial and stromal cells, PANCK,
COLLAGEN, NAKATPASE and VIMENTIN (Blom et al., 2017;
Ijsselsteijn et al., 2019); as immune markers, CD3, CD8 (Galon

et al., 2006); as stem cell markers, OLFM4, SOX9 (Scott et al.,
2010; Van der Flier et al., 2009); and as implicated in colon cancer,
BCATENIN (Shang et al., 2017).

We used epithelial and stromal cell labels and manually labeled
marker positive cells as biological variables in order to quantify loss

or improvement of biological signal due to each normalization
method. The epithelial labels were created for each slide at the

image level using a random forest trained on all of the markers
included in the dataset (for a complete list, see the Supplementary
Material). A cell was labeled as being in a particular cell class if that

was the most likely class probability within the segmented cell area.
We defined marker positive cells by first manually thresholding the

immune marker images to create marker positive image masks.
Then, for each segmented cell, the cell was defined as marker posi-
tive if more than 30% of its area contained marker-positive pixels.

We refer to these as manual labels for CD3 and CD8. We also used
a tumor image mask to denote whether a cell is in a tumor-

containing region.

3 Results

3.1 Removal of slide-to-slide variation
3.1.1 Alignment of marker densities

Density curves of the marker vimentin for each transformation algo-

rithm and corresponding slide-level Otsu thresholds, along with test
statistics from the k-sample Anderson–Darling test were compared
to determine alignment of curves across slides after transformation

(Fig. 1, Table 2). Beginning with the unnormalized transformed val-
ues, the log10 transformation produces density curves that are some-

what well-aligned (AD Test: 130.08), while the mean division and
mean division log10 methods both compress the scale of the data
and align well across slides (AD Test: 125.45, 89.90). Furthermore,

each ComBat method performs poorly at aligning and reducing
noise in the data, yielding the largest statistics from the Anderson–
Darling test and visually noisy density curves. This is likely due to

the Gaussian assumptions of the ComBat model that are not met in
either the bi-modal ( log10, mean division log10) or right-skewed

(mean division) methods. The functional data registration aligns the
log10 and mean division log10 well, and the algorithm yields mar-
ginal improvements for some of these transformations.

The best performing methods for this metric are the mean div-
ision, mean division log10, and mean division log10 combined with

the functional data registration algorithm: the data is well-aligned
across slides and when averaging Anderson–Darling statistics across

all marker channels (Table 2), we see these methods yield the lowest
values presenting stronger evidence these values are derived from
the same parent distribution. We also compared density curves of

the markers CD3 and CD8 for each transformation algorithm,
which largely present the same results (Supplementary Figs S1
and S2).

3.1.2 Threshold discordance score

In order to quantify how the normalization methods impact cell
classification, we compared Otsu thresholding estimated at the slide

level and across slides for each method to generate a discordance
score and compare this to raw data (Fig. 2A). Compared to the epi-

thelium/stromal markers in the dataset, less identifiable markers like
CD3 and CD8 yield the worst performance across nearly all meth-
ods, with large increases in the discordance score. Most methods in-

crease the mean discordance score relative to the unadjusted data,
with the exception of the mean division, mean division log10 and

the mean division log10 with functional data registration. This
evaluation again aligns with earlier assessments and suggests that
these methods present improvements in the slide-to-slide agreement

across all markers compared to the unadjusted data. We also ob-
serve that when comparing threshold discordance scores across all
markers, these three methods yield the lowest values and are the

only methods to reduce this rate relative to the raw data (Table 2).

3.1.3 Proportions of variance

To understand how well each method removes slide-related variabil-

ity, we fit a random effects model on the median cell intensities after
applying each combination of transformation and normalization.

The ComBat algorithm, by design, removed all of the variability
related to slide across all methods (Fig. 3, Table 2). The only other
method that entirely removes all slide-to-slide variance across all

marker channels is the mean division method—for the mean division
log10 and mean division log10 with functional data registration

methods, we also observe reduction in variance (though not com-
pletely removed) relative to the unnormalized data. And while
ComBat reduces slide variability, it completely removes slide effects

that may include biological differences. In short, the results of this
metric suggest the utility of the mean division methods in removing
slide-level variance across marker channels.
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Fig. 1. Visual comparison of vimentin marker densities for each transformation method. Density plots for the median cell intensity of the marker vimentin, where each color

represents a different slide in the dataset. Each row is aligned with the scale transformations present in Table 1, where each column also matches with the normalization algo-

rithms in Table 1. The ticks on the x-axis represent the Otsu thresholds for each slide for that transformed data, where the color again corresponds to the slide (such that the

colors are one-to-one between threshold and density plot). Anderson–Darling test statistics for the marker vimentin are presented for each method in the top right corner

Table 2. Quantitative metrics comparing normalization methods

Method Mean AD

test statistic

Mean Otsu

discordance score

Adj. Rand index

(slide ID)

Mean variance proportion

(slide ID)

None; None 275.019 0.085 0.033 0.138

log10; None 225.413 0.134 0.083 0.301

log10; ComBat 291.900 0.138 0.089 0.000

log10; Registration 217.649 0.110 0.037 0.232

Mean division; None 138.774 0.041 0.007 0.000

Mean division; ComBat 247.612 0.109 0.064 0.000

Mean division; Registration 174.933 0.164 0.120 0.333

Mean division log10; None 114.653 0.055 0.010 0.046

Mean division log10; ComBat 321.810 0.132 0.071 0.000

Mean division log10; Registration 104.330 0.049 0.018 0.081

Note: Results from the k-samples Anderson–Darling test statistic, the threshold discordance score, and the variance proportion at the slide level from the ran-

dom effects modeling, all averaged across marker channels, as well as the adjusted Rand index for the slide identifiers comparing the raw data to the normalized

data. For each of these metrics, small values indicate better performance for a given method.
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3.2 Preservation of existing biological signal
3.2.1 Marker-positive accuracy using Otsu thresholds

We further utilized Otsu thresholding to identify marker positive
cells and compared these to the manual labels for CD3 and CD8 to
determine which normalization methods most accurately recapitu-
late the raw data (Fig. 2B). Results suggest that the scale of the data
is pivotal in whether a method maintains marker-positive accuracy,
with each of the methods on the log10 scale demonstrating dramatic
reductions in marker-positive accuracy compared to the raw data,
while the mean division method performs the best across all meth-
ods. The methods that have performed well in the aforementioned
evaluation metrics perform well here, namely the mean division
method and the mean division log10 with functional data registra-
tion. This continues to suggest these methods reduce the slide-to-

slide variation present in the data while accurately capturing
marker-positive cells after transformation.

3.2.2 UMAP embedding

We compared UMAP embeddings of four related markers across
normalization methods to compare the separation of epithelium and
stromal tissue labels. In the raw data, the embeddings separate well
(Adj. Rand Index: 0.82); however, the data includes the presence of
outliers that suggest mixing of the tissue classes in the UMAP
embedding space (Fig. 4A). Nearly all methods implemented im-
prove upon the separation of groups based on the adjusted Rand
index, yet many of these methods present co-localization that does
not clearly depict separation as desired. We do observe distinct sep-
aration of the aforementioned methods of interest: mean division

Fig. 2. Threshold discordance and accuracy. (A) Otsu thresholds were calculated at

the slide-level for each marker and compared to a global Otsu threshold for each

marker to calculate a discordance score to compare transformation methods. The

mean difference of the slide-level Otsu thresholds and the global Otsu threshold is

then calculated for each marker, and presented as a point for each of the nine

markers, with the white diamond representing the mean discordance score across all

markers for a given method. Given that this is a discordance score, lower values in-

dicate better agreement across slides. (B) Otsu thresholds were calculated across

slides for each marker to determine marker positive cells, which were then com-

pared to the manual labels for the markers CD3 and CD8 to determine the accuracy

of defining a cell as marker positive. This is presented as the accuracy rate of recapit-

ulating the ground truth labels—given that this is a measurement of accuracy, higher

values indicate better agreement between the normalized data and labels. Note

also that for each of these plots, the top row indicates the results from the raw,

unadjusted data

Fig. 3. Proportion of variance present at slide-level in random effects model. Scatter

plots that denote the proportion of variance at the slide-level for each normalization

method for each of the marker channels in this dataset. Variance proportions were

calculated using a random effects model with a random intercept for slide—methods

that perform well should reduce the slide level variance. Note also that the top row

indicates the results from the raw, unadjusted data

Fig. 4. UMAP embedding of data for each transformation method. UMAP embed-

ding of the transformed data with points colored by slide identifier (A) and tissue

type (B). The rectangle in (B) denotes the mixing of tissue classes present in the raw,

unadjusted data UMAP embedding. Adjusted Rand index values for each embed-

ding are presented in the top right corner
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(Adj. Rand Index: 0.94), mean division log10 (Adj. Rand Index:
0.95) and the mean division log10 with functional data registration
(Adj. Rand Index: 0.97)—each of these UMAP embeddings presents
distinct groups that suggests these methods are improving the separ-
ation of these two tissue classes.

We also compared the distribution of the unique slide identifiers
in the UMAP embeddings of these four markers, which in the raw
data (Adj. Rand Index: 0.033) points to specific slide co-localization
in the data (Fig. 4B, Table 2). In this case, we desire low values of
the adjusted Rand index, which suggest poor prediction of slide
labels and indicate the removal of slide-level variance. Many of the
methods, particularly those implementing the ComBat algorithm,
worsen the distribution of these slide identifiers and increase the
adjusted Rand index, suggesting additional slide-to-slide noise
added to the data. This suggests that ComBat removes both bio-
logical signal and slide-to-slide effects that are exaggerated in the
UMAP embedding space. In contrast, there is reduced slide-to-slide
clustering in the UMAP embeddings for each of the following meth-
ods: mean division (Adj. Rand Index: 0.01), mean division log10

(Adj. Rand Index: 0.01) and mean division log10 with functional
data registration (Adj. Rand Index: 0.02). These methods appear to
both reduce the observed slide-to-slide variation noted here and in
the aforementioned results, while maintaining the necessary bio-
logical signal of interest.

4 Discussion

In this article, we derived the ComBat algorithm for a new modality
and employed a novel use of functional data registration to align his-
tograms of multiplexed imaging data. In the absence of a gold stand-
ard for comparison in multiplexed imaging data, validating any
normalization procedure is challenging. The suggested evaluation
framework introduced here can be used to assess the presence and
reduction of slide effects in multiplexed imaging data, which we
implemented to evaluate 12 combinations of transformations and
normalization methods. Furthermore, our framework can be applied
in the absence of a ground truth by quantifying the amount of slide-
related variability and comparing to manually labeled biological fea-
tures, providing a foundation for further development of evaluation
criteria in the multiplexed domain. Also note that since the proposed
methods are applied within a given marker channel, this work can
be extended into other imaging domains like IHC that do not in-
volve multiplexing.

Similarly, the use of Otsu thresholding in this article is the stand-
ard procedure for imaging domains like IHC (Trinh et al., 2017;
Tsujikawa et al., 2019). However, markers like the phosphorylated
epidermal growth factor receptor are typically categorized into mul-
tiple groups based on staining intensity (Hashmi et al., 2018; Shan
et al., 2017). While the Otsu threshold may not capture this categor-
ization, it remains a reasonable proxy for these quantitative markers
in the absence of a pathologist, and other metrics implemented here
like the Anderson–Darling statistic may be more appropriate.
Furthermore, future methods development could focus on imple-
menting multi-Otsu thresholding methods into the threshold dis-
cordance score, or adapt marker-specific thresholding methods that
better capture variability in the quantitative markers. Notably, the
correspondence between a marker positive cell defined by an Otsu
threshold and biological signal is not necessarily one-to-one. For ex-
ample, the log10 transformation non-linearly compresses the do-
main, such that a larger proportion of the x-axis is allotted to cells
that are marker negative (background and unexpressed cells), which
may have led to greater variability in the Otsu thresholds.

We find that the raw data scale has clear slide-to-slide variation
present, and that normalization methods can reduce slide level vari-
ation while preserving and improving biological signal relative to
the raw, unadjusted data. These findings suggest that the mean div-
ision transformation method reduces slide variability and improves
the biological signal. In addition, the mean division log10 scale
(unnormalized) performs well across all evaluation metrics, with the
noted exclusion of results for the marker CD8. This discrepancy is
remedied with the functional data registration, which is a limitation

of the mean division log10 transformation but points to the robust-
ness of the registration algorithm to maintain and improve the qual-
ity of the data.

However, note that the registration algorithm does not perform
well with skewed data, suggesting that improvements we see in data
that appears bi-modal (e.g. better suited to the non-parametric as-
sumption of functional data) is not necessarily transferable to right-
skewed data that violates assumptions of smoothness in the B-spline
basis—future work could explore this result. The ComBat method
performs adequately, but appears to over normalize the data and
relies heavily on a Gaussian assumption that is violated in this
skewed-right dataset. The clear limitation of this normalization
method and others is that when applied to whole tissue slides, any
between slide variability is confounded with biological variability.
Recent adaptations of ComBat like ComBat-seq for RNA-seq data
may provide a better framework to implement in the multiplexed
imaging space (Zhang et al., 2020), including future work that could
address how the algorithm handles zeroes. Note also that recent
advances applying deep learning in fluorescence microscopy analysis
combine information across heterogeneous combinations of markers
to ameliorate similar problems that we address in this article, name-
ly technical variation and comparing disparate data sources
(Gomariz et al., 2021)—this could be a valuable avenue for future
normalization approaches.

In practice, the mean division method is ‘good enough’—it is
simple, computationally efficient, and appears the least likely to
introduce error while still reducing slide-to-slide variation and main-
taining biological signal. The mean division log10 method may be
necessary in the case of statistical modeling, since skewed distribu-
tions are not suitable for many statistical models, but may not be the
best way to represent cell intensities as a predictor variable (as
appears the case for the mean division method). We see that in the
case of mean division log10 data, it may be necessary to use the
registration algorithm to remedy discrepancies like those visible for
the marker CD8.
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