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Abstract
Our brains integrate information across sensory modalities to generate perceptual experiences and form
memories. However, it is difficult to determine the conditions under which multisensory stimulation will benefit or
hinder the retrieval of everyday experiences. We hypothesized that the determining factor is the reliability of
information processing during stimulus presentation, which can be measured through intersubject correlation of
stimulus-evoked activity. We therefore presented biographical auditory narratives and visual animations to 72
human subjects visually, auditorily, or combined, while neural activity was recorded using electroencephalogra-
phy. Memory for the narrated information, contained in the auditory stream, was tested 3 weeks later. While the
visual stimulus alone led to no meaningful retrieval, this related stimulus improved memory when it was combined
with the story, even when it was temporally incongruent with the audio. Further, individuals with better subsequent
memory elicited neural responses during encoding that were more correlated with their peers. Surprisingly,
portions of this predictive synchronized activity were present regardless of the sensory modality of the stimulus.
These data suggest that the strength of sensory and supramodal activity is predictive of memory performance
after 3 weeks, and that neural synchrony may explain the mnemonic benefit of the functionally uninformative
visual context observed for these real-world stimuli.
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Introduction
It is often easier to remember your friends’ stories when

they illustrate them with photos. These multisensory rep-
resentations of the world can facilitate encoding by pro-

viding multiple cues regarding the salience of experienced
events (Giard and Peronnet, 1999). By some accounts,
the primary role of the brain is as a multisensory integra-
tor. However, this does not necessarily mean that addi-
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Significance Statement

Although multisensory integration is an important part of daily life, the mnemonic influence of one modality
on another is not well established. Cross-modal cues may either strengthen or interfere with memory for
information imparted through another sensory modality. We establish that during the encoding of a
naturalistic auditory stimulus the cross-subject synchrony of neural processing predicts memory perfor-
mance regardless of stimulus modality. The dominant neural signature of enhanced encoding is supramodal
in that it is largely independent of the modality of stimulus presentation. The level of synchrony that a story
elicits may help to predict the extent to which adding extraneous information benefits memory.
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tional sensory information will enhance encoding. The
content relayed through simultaneous auditory and visual
streams can either strengthen or interfere with unisensory
memory (Shams and Seitz, 2008). A supplementary mo-
dality usually enhances memory when it is semantically
congruent with the primary stimulus; however, it can be
detrimental if it does not impart meaningfully relevant
information (von Kriegstein and Giraud, 2006; Cohen
et al., 2009; Matusz et al., 2015). Benefits are often as-
cribed to an associative memory mechanism, whereby
memories from one modality can cue the retrieval of those
imparted by another (Fuster, 1997). Decrements are ex-
plained using theories of limited attention that posit that
superfluous modalities may distract from the learning of
pertinent information (Murdock, 1965; Craik et al., 1996).
There is little certainty as to which mechanism will dom-
inate in any given situation. Additionally, most existing
research on multisensory memory addresses memory for
discrete stimuli, rather than the semantic aspects of dy-
namic everyday experiences.

Arguably, the benefits or detriments of the added mo-
dality will depend on its effects on the neural processing
of the stimulus during encoding. It is well established that
memory accuracy can be predicted by evoked response
magnitude during encoding (Brewer et al., 1998; Wagner
et al., 1998; Kim, 2011). Yet, very little is known about the
neural substrate of multisensory memory effects in a nat-
uralistic context. The magnitude of responses evoked by
discrete multisensory stimuli has previously been linked to
memory (Murray et al., 2004; Thelen et al., 2012, 2014;
Altieri et al., 2015; Matusz et al., 2015). However, there is
no similar evidence regarding how the neural processing
of multisensory stimuli potentiate memory in the context
of naturalistic, contextually rich stimuli that can be under-
stood from a single modality.

We hypothesized that the synchrony of neural re-
sponses between individuals attending to the same nat-
uralistic multisensory stimulation is predictive of memory.
Discrete regions of cortex have been shown to exhibit
enhanced intersubject correlation (ISC) in fMRI during the
encoding of successfully remembered items from a nar-
rative (Hasson et al., 2008). However, it has not yet been
determined whether ISC, measured on the fast timescale
of electrophysiology (�1 s), can be used as a surrogate
for the successful encoding of a dynamic narrative stim-
ulus. Therefore, to quantify the reliability of evoked re-
sponses, we measure the ISC of neural activity across the
group experiencing the stimulus, following work in fMRI,
electroencephalography (EEG), and MEG (Hasson et al.,
2004; Dmochowski et al., 2012; Lankinen et al., 2014). In
contrast to previous work, the focus here is on multisen-

sory memory effects, and thus synchrony of neural activ-
ity is assessed for auditory, visual, and audiovisual stimuli.

We expected that visuals enhance engagement with the
stimulus and, thus, potentiate the encoding of auditory
information. EEG was recorded during the presentation of
biographical narratives, and the memory for auditorily
imparted story elements was tested 3 weeks later in an
effort to mimic the features of real-world episodic encod-
ing. The narratives were presented solely auditorily, or
combined with illustrative visual animations. ISC was
used to assess encoding efficacy because it is indicative
of attention and preference (Dmochowski et al., 2014; Ki
et al., 2016), and is therefore likely representative of en-
hanced stimulus processing. Although the visual stimulus
alone did not induce any meaningful memory, it improved
retrieval when combined with the narrative, regardless of
whether it was temporally aligned with the audio. Addi-
tionally, the synchrony of stimulus-evoked neural pro-
cessing across individuals was predictive of memory. The
spatial distribution of this predictive neural activity was
largely consistent across auditory and visual stimuli. Thus,
under realistic conditions, functionally uninformative vi-
sual content enhances both subsequent memory and
intersubject correlation of supramodal evoked response.

Materials and Methods
Participants

A total of 88 fluent English-speaking subjects (age, 25
� 6 years; 23 females) with normal or corrected-to-normal
vision participated in the experiment. Of the original 88
subjects, 75 completed the follow-up memory assess-
ment 3 weeks after stimulus presentation. All participants
provided written informed consent, and were remuner-
ated for their participation. Additionally, they all had self-
reported little to no familiarity with the stimulus.
Procedures were approved by the Institutional Review
Board of the City University of New York.

Stimuli presentation
The stimuli used were taken from 10 different videos [5

from the New York Times “Modern Love” episodes: “Bro-
ken Heart Doctor” (BHD), “Don’t Let it Snow” (DLIS),
“Falling in Love at 71” (FILSO), “Lost and Found” (LF), and
“The Matchmaker” (TM); and 5 from StoryCorps animated
shorts: “Eyes on the Stars” (EOTS), “John and Joe” (JJ),
“Marking the Distance” (MTD), “Sundays at Rocco’s”
(SAR, depicted in Fig. 1), and “To R.P. Salazar with Love”
(TRPSWL)]. The clips were on average 161 � 44 s in
length, and individual scenes were on average 17.9 �
12.8 s in length. Scene duration differed significantly
across videos (F(9,76) � 1.98, p � 0.05). The audiovisual
(AV), audio with scrambled visuals (AVsc), and audio only
(A Only) versions of all stimuli are available at http://
www.parralab.org/isc/memory-videos.html. The stories
were chosen on the basis of their highly emotive content,
which is thought to drive synchronous responses across
subjects (Dmochowski et al., 2012). In addition to some
music, the auditory component of each video consisted of
a narration that could be understood without the accom-
panying animations. Subjects were in one of the following

animated short produced by Lizzie Jacobs and Mike Rauch, for Figure 1.
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stimulus conditions. In the A Only condition, subjects
listened to the sound from the video while their eyes
fixated on a cross centered on a screen with a constant
luminance equal to the mean across the 10 videos (n �
16, 13 completed memory battery). Prior to the onset of
the auditory narration, introductory text, present in all
conditions, was displayed to assure that all subjects had
a consistent narrative context. In the AV condition, sub-
jects watched the unadulterated videos (n � 21, 16 com-
pleted memory battery). In the AVsc condition, subjects
watched videos where the auditory component was un-
changed, but the scenes of the animations were randomly
scrambled at scene cuts occurred 6–12 times per clip (n
� 17, 14 completed memory battery). In the visual only (V
Only) condition, subjects watched the silent animations
without the auditory content (n � 18, 16 completed mem-
ory battery). In the no stimulus exposure (No Stim) con-
dition, subjects were never presented with any stimuli nor
was EEG collected, and they therefore answered the
memory questionnaire naively (n � 16; 16 subjects com-
pleted the memory battery). Stimuli were edited according
to stimulus condition with Lightworks software (EditShare
EMEA 2014) and were presented in a random order,
counterbalanced across conditions, using an in-house
modified version of M-Player software (http://www.
mplayerhq.hu), which provided trigger signals for the EEG
acquisition system once per second during the duration of
each stimulus, with a temporal jitter of less than �2 ms
across subjects. Stimuli were presented in a dark, and
electrically and acoustically shielded room, with brief
breaks between clips (�30 s).

Memory test
Subjects were informed after stimulus presentation that

they might be contacted for future correspondence re-
garding the stimuli. Three weeks later, without prior
knowledge of a memory requirement, subjects received a
memory test with four-alternative forced-choice ques-
tions (n � 72) presented via LimeSurvey (LimeSurvey
Project Team/Carsten Schmitz, 2012), where five to nine
questions corresponded to each story. The order of the
questions concerning each story matched the order in

which the stories had been originally presented to each
participant. The questions concerned information that
could be acquired entirely through the A Only presenta-
tion. The content of the questions was either of a factual
nature, which was literally stated during the narrative
(three to eight questions per story; e.g., “What would
Rocco do with the narrator when they went for walks?”;
Fig. 1), or concerned emotional content that could only be
learned through theory of mind reasoning (one to two
questions per story; e.g., “How did the narrator feel about
the apartment building being condemned?” (Frith and
Frith, 1999).

EEG data collection and preprocessing
The EEG was recorded with a BioSemi Active Two

system at a sampling frequency of 512 Hz. Subjects were
fitted with a standard, 64-electrode cap following the
international 10/10 system. To subsequently remove eye-
movement artifacts, the electrooculogram (EOG) was also
recorded with six auxiliary electrodes (one each located
dorsally, ventrally, and laterally to each eye). All signal
processing was performed off-line in the MATLAB soft-
ware (MathWorks).

Data preprocessing procedures followed those in the
study by Dmochowski et al. (2012). The EEG and EOG
data were first downsampled to 256 Hz, high-pass filtered
(1 Hz cutoff), and notch filtered at 60 Hz. After extracting
the EEG/EOG segments corresponding to the duration of
each stimulus, electrode channels with high variance were
manually identified and replaced with zero-valued sam-
ples using visual inspection, effectively discounting these
channels in the subsequent calculation of covariance ma-
trices. Eye-movement artifacts were removed by linearly
regressing the EOG channels from the EEG channels.
Outlier samples were identified in each channel (magni-
tude exceeded 3 SDs of the mean of their respective
channel), and samples 40 ms before and after such out-
liers were replaced with zero-valued samples. These strin-
gent artifact rejection techniques were used due to the
sensitivity to outliers of the covariance matrices used in
the neural synchrony computation.

Figure 1. Illustration of the behavioral task. Subjects were exposed to one of five conditions: A Only, AV, AVsc, V Only, or No Stim
(not shown). The sound clip represented by the waveform is “�and he would buy me a hotdog the size of my head�” Three weeks after
stimulus presentation, and without prior warning, subjects were asked to complete an on-line questionnaire with 72 four-alternative
forced-choice questions. The question asked about this segment of the stimulus was “What would Rocco do with the narrator when
they went for walks?” Answer options were as follows: “a. Buy him a hot dog; b. Buy him a milkshake; c. Buy him candy; d. Tell him
stories.” Still images from “Sundays at Rocco’s,” a StoryCorps animated short produced by Lizzie Jacobs and Mike Rauch,
reproduced here with permission from StoryCorps.
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Intersubject correlation
To determine the fidelity with which a unique stimulus

presentation is processed, the ISC of the neural re-
sponses is computed. The correlation of responses be-
tween subjects is similar to that of traditional evoked
response analyses in that both measures increase in mag-
nitude when responses are reliably reproduced (either
across subjects or trials). They are also similar measures
in that, in order to find correlation between subjects,
responses must be reliable within each individual (Hasson
et al., 2009). In the present circumstances, where repeat-
edly presenting an identical stimulus to the same subject
would artificially potentiate their memory, the ISC metric
has a particular advantage over traditional evoked re-
sponse analyses. Fortunately, in a naturalistic setting,
where stimuli occur in a continuous stream, ISC can be
assessed by fMRI, EEG, and MEG (Hasson et al., 2004;
Dmochowski et al., 2012; Lankinen et al., 2014). Here we
use EEG in order to measure the correlation between fast
stimulus-evoked responses across subjects. “Fast”
means that these stimulus-evoked responses, high-pass
filtered at 1 Hz, are faster than the hemodynamic re-
sponse for fMRI. ISC is evaluated in the correlated com-
ponents of the EEG and can be measured with as few as
12 subjects (Dmochowski et al., 2012, 2014). The goal of
correlated component analysis in this case is to find linear
combinations of electrodes (one could think of them as
virtual sensors or “sources” in the brain) that are consis-
tent across subjects and maximally correlated between
them.

Correlated component analysis is similar to traditional
principal component analysis except that it extracts pro-
jections of the data with maximal correlation rather than
maximal variance. The technique requires calculation of
the pooled between-subject cross-covariance, Rb �
1 / N�N � 1� �

k
�

l, l�k
Rkl, and the pooled within-subject co-

variance, Rw � 1 / N �
k

Rkk, where Rkl � �
t

�xk�t� � x�k�

�xl�t� � x� l�T measures the cross-covariance of all elec-
trodes in subject k with all electrodes in subject l. Vector
xk�t� represents the scalp voltages at time t in subject k,
and, x�k, their mean value in time. The component projec-
tions that capture the largest correlation between sub-
jects (i.e., the ISC) are the eigenvectors vi of matrix Rw

�1Rb

with the strongest eigenvalues, which measure the
strength of correlation in the ith component, as follows:

Ci �
vi

TRbvi

vi
TRwvi

. (1)

High ISC is obtained when the responses are similar
across subjects. Prior to computing eigenvectors, the
pooled within-subject correlation matrix is regularized in
order to improve robustness to outliers using shrinkage
(Blankertz et al., 2011). Between-subject and within-
subject covariance matrices were computed for all sub-
jects in each stimulus condition, regardless of whether the
memory questionnaire was completed. These matrices
were subsequently averaged over the 10 stimuli and over
all presentation modalities (A Only, V Only, AV, and AVsc)

to obtain a common set of components applicable to all
conditions. Note that the covariance matrices are normal-
ized by the number of subjects in each condition so that
the unequal number of subjects in each condition does
not bias the results. Additionally, the matrices for AV and
AVsc were first averaged together prior to combining with
the other modalities so as not to bias results by the two
repeated multisensory conditions.

The same component projections vi were therefore
used for all stimulus conditions to measure ISC. The three
strongest correlated components were selected, and the
corresponding correlation values were computed sepa-
rately for each condition, each component, and each of
the 10 narratives. The ISC is reported as the correlation
summed over all components, as follows: ISC � �

i
Ci.

This is limited to the strongest three components so that
the neural metrics reported measure the overall level of
synchrony evoked by the stimulus regardless of anatom-
ical origin. Additionally, correlations Ci in the weaker com-
ponents were not always significantly different from
chance (phase shuffle statistics; see below and Fig. 3A,
where gray indicates the phase-shuffled ISC), and the
spatial distributions of these weaker components differed
across modality.

To determine how similar each subject is to the others
experiencing the same stimulus, the ISC is computed on
an individual subject basis. The correlation is computed
between a given subject, k, and all others who experi-
enced the same condition, as follows:

Cik �
vi

TRb,kvi

vi
TRw,kvi

, (2)

using the following definitions for the between-subject
and within-subject covariance: Rb, k � 1 / �N � 1� �

l, l�k

�Rkl � Rlk�, and Rw, k � 1 / �N � 1� �
l, l�k

�Rkk � Rll�, which are

symmetrized to ensure a proper normalization as a cor-
relation coefficient. The ISC per subject is defined again
as the sum of correlation across components, as follows:
ISCk � �

l, l�k
Cik. To resolve a common set of components

for the different conditions, the projection vectors are
computed using the average of the correlation matrices
across conditions. Note, however, that the ISC for indi-
vidual subjects using these projection vectors is then
computed only within condition (i.e., by measuring the
reliability of responses only between subjects exposed to
the identical stimulus). To rule out the possible depen-
dence of the ISC measure between conditions, we re-
peated this analysis using projections vi, which maximize
the correlations within conditions.

ISC values that can be obtained by chance were deter-
mined by computing the ISC in a manner identical to that
described above (including component extraction), using
100 renditions of surrogate data following the procedure
of Prichard and Theiler (1994). By randomizing phase
identically in all channels, these surrogate data perturb
the time course of the data but preserve the temporal and
spatial correlation in the original EEG signal. Significance
tests were corrected for multiple comparisons while con-
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trolling the false discovery rate (Benjamini and Hochberg,
1995).

To visualize the spatial distribution of the component
activity, the “forward model” is computed for each com-
ponent (Parra et al., 2005; Haufe et al., 2014). A forward
model represents the covariance between each compo-
nent’s activity and the activity at each electrode location.
To provide a meaningful scale, we deviate from the liter-
ature by normalizing this covariance by the signal magni-
tudes to indicate correlation coefficients that scale
between �1 and �1. The code to compute the ISC is
available at http://www.parralab.org/isc/.

Comparisons of both memory accuracy and
intersubject correlation

Due to the between-subjects design, all statistical com-
parisons (ANOVAs, t tests, and z-tests) are unpaired,
unless otherwise stated (e.g., in cases where compari-
sons are made between the same memory questions
asked to different groups of subjects). ANOVAs to assess
differences in memory accuracy across conditions were
computed using the accuracy value for each question
averaged across subjects. To assess the nontrivial corre-
lation between ISC and memory accuracy, the effect of
stimulus modality was controlled for as both variables
were strongly and significantly modulated by the addition
of visuals to the auditory component. When assessing the
correlation across subjects, the mean for each condition
was subtracted from each individual’s ISC and memory
accuracy. In addition to accounting for stimulus modality,
correlations included only values from conditions where
memory performance was above chance (assessed via
comparison with the No Stim condition); the V Only ISC
was therefore not related to memory that was not tested
for.

Strength of oscillatory activity
For the oscillatory power analysis, the frequency bands

that have previously been associated with memory and
attention (theta, alpha, and gamma) were used. For each
subject, band power was calculated in both individual
electrodes and in each of the correlated components.
Band-pass powers were then then individually normalized
by the total broadband power and then averaged across
narratives. Power was measured on the band-passed
signals for theta (4.5–9.5 Hz), alpha (7.5–12.5 Hz), and
gamma (30–50 Hz) frequency bands using a Morlet filter.

Results
We sought to investigate whether the ISC of electroen-

cephalographic evoked responses is predictive of mem-
ory for auditory information in the context of realistic
multisensory episodic memory. Ten biographical narra-
tives were presented to separate groups of individuals
who either solely heard the stories (A Only), or heard them
with accompanying visual animations that complemented
the auditory narrative (AV). This between-subjects design
allowed a comparison between unisensory and multisen-
sory stimulation while avoiding confounds, such as mem-
ory potentiation, due to repeated stimulus presentations.
To determine the importance of semantic congruency, a

control group heard the story with the same visual anima-
tions scrambled in time so that they did not semantically
match the auditory stream (AVsc). To measure the infor-
mation content of the visual stimulus alone, another con-
trol group watched the visual animations without the
narration (V Only; Fig. 1, illustration). The chance-level
performance on the question battery was measured in a
third control group, who answered the memory questions
without experiencing either the auditory or the visual stim-
ulus (No Stim). To assess incidental episodic memory,
subjects were not aware that they would be asked to
retrieve the information presented in the auditory narration
3 weeks later. EEG activity was measured in 72 subjects
during stimulus presentation to assess neural processing
during encoding. We expected that the supplementary
visuals would boost memory performance when congru-
ent with the auditory stories (AV, but not AVsc). We also
hypothesized that when the auditory narrative was pres-
ent (A Only, AV, and AVsc, but not V Only), the accuracy
with which subjects remembered the stories would be
predicted by how correlated their brain activity was to
others responding to the same stimulus.

Multisensory presentations enhance incidental
episodic memory

A 72-question evaluation assessed memory for auditory
content from the 10 narratives. Subjects who heard the
stories (A Only, AV, or AVsc) correctly answered 70.1 �
21.8% of the questions, a level significantly above chance
performance (t(71) � 15.0, p � 1e-23; all t tests in this
section are paired samples t test across questions) es-
tablished in subjects who were naive to the stimulus (No
Stim condition, 35.6 � 18.8%). Nine questions in the No
Stim condition were answered at a level above numerical
chance (25%, determined via one sample z-tests for pro-
portions and FDR corrected for multiple comparisons).

In contrast to the conditions containing the auditory
narrative, performance in the V Only condition (37.2 �
24.1%) was indistinguishable from chance (t(71) � 0.7, p �
0.5, paired samples t test across questions) and was,
thus, functionally uninformative. Therefore, as intended,
the visual stimulus did not carry any meaningful, question-
pertinent information (with the exception of one question
answered significantly better by V Only participants than
by No Stim participants, determined via two-sample
z-tests for proportions and FDR corrected). It is possible
that had the questions also probed for visual information,
the differences between audio and visual memory perfor-
mance would have been different. Subsequent memory
analyses will therefore examine memory performance
only for conditions in which the auditory narrative was
presented (A Only, AV, and AVsc).

A two-way repeated-measures ANOVA for memory ac-
curacy, with condition as a factor (A Only, AV, and AVsc)
and narrative as a repeated-measures factor, revealed a
significant effect of condition (F(2,186) � 35.0, p � 6e-8;
Fig. 2A) and narrative (F(9,186) � 20.6, p � 1e-7; Fig. 2B),
but no interaction (F(18,186) � 0.2, p � 1, ANOVA calcu-
lated on the accuracy value of each question, averaged
across subjects). A repeated-measures ANOVA was used

New Research 5 of 11

November/December 2016, 3(6) e0203-16.2016 eNeuro.org

http://www.parralab.org/isc/


here because the memory questions used for each nar-
rative were the same, or repeated, across conditions.
Additionally, there was no significant effect of who pro-
duced the narrative (F(1,186) � 20.2, p � 0.07, determined
via a nested two-way ANOVA contrasting New York
Times-produced and StoryCorps-produced stories), and
production did not interact with condition (F(2,186) � 0.1, p
� 0.9). Although the visual stimulus alone did not carry
any question-related information, the effect of condition
was driven by a significant boost in memory performance
when the visual stimulus was combined with the auditory
narrative. This effect holds even when the visual stimulus
was incongruent with the story [12.9 � 16.1% improve-
ment above A Only for AV (t(71) � 6.8, p � 3e-9); and 9.6
� 16.6% improvement above A Only for AVsc (t(71) � 4.9,
p � 6e-6); Fig. 2A]. The congruent visual stimulus en-
hanced memory slightly better than the incongruent stim-
ulus (AV vs AVsc, t(71) � 2.1, p � 0.04).

The variation in performance across narratives may
indicate that question difficulty varied across stories as a
result of experimenter bias. However, information retrieval
varied across narratives even after controlling for the
variation in chance-level performance (F(9,186) � 9.6, p �
3e-5; performance on each question in the No Stim con-
dition was subtracted prior to the ANOVA; Fig. 2B). This
may indicate that some stories were genuinely more
memorable than others. Furthermore, the lack of an inter-
action between narrative and condition suggests that the
visual boost in memory performance generalizes across
stories and was not specific to the content of the anima-
tions.

Multisensory presentations increase the synchrony
of neural responses

The ISC is measured following previous research (Dmo-
chowski et al., 2012; Ki et al., 2016; Eq. 1). An ANOVA
comparing the ISC across conditions revealed a signifi-
cant effect of condition (F(3,68) � 66.4, p � 9e-20). The
visual animations (V Only) evoked stronger ISC than those

evoked by the auditory narrative alone (Fig. 3A; A Only vs
V Only, t(31) � 8.4, p � 2e-9). This is not unexpected, given
that a large fraction of cortex is dedicated to visual pro-
cessing (Felleman and Van Essen, 1991). Adding a sec-
ond modality to the unimodal stimuli increases the ISC
(AV vs V Only, t(36) � 4.8, p � 2e-5; and AV vs A Only, t(33)

� 14.0, p � 2e-15), and adding visual stimulation to the
auditory story increases ISC, even when the visual stim-
ulus is temporally incongruent (AVsc vs V Only, t(32) � 3.1,
p � 0.004; and AVsc vs A Only, t(29) � 13.7, p � 4e-14).
Additionally, AV has a slightly higher ISC than does AVsc
(t(34) � 2.1, p � 0.05). This is the same pattern of modu-
lation observed for memory accuracy (Fig. 3B,C), and,
with the exception of the weaker difference between AV
and AVsc, these effects are preserved when the ISC is
computed on each condition separately (t(34) � 1.7, p �
0.09). Note that the effect of adding a modality is not
expected to be additive in a numerical sense, either for
memory performance, which has a strict ceiling, or for
ISC, which is a measure of correlation and is, therefore,
nonlinear.

If the multisensory enhancement in memory could be
explained by the corresponding increase in ISC, we would
expect that the boost in ISC (A vs AV) would correlate with
the corresponding boost in memory (Fig. 3B). However,
the relationship could not be resolved in this small sample
(r � 0.20, p � 0.6, N � 10).

Neural synchrony and memory for auditory
information are correlated

We hypothesized that ISC predicts memory perfor-
mance regardless of stimulus modality. Figure 4A shows
the relationship between each individual’s ISC (Eq. 2) and
their memory in all four stimulus conditions. This relation-
ship is significant only in the AVsc condition (r � 0.67, p �
0.009, N � 14). The numerical value of the correlation is
also positive in the other conditions in which the narrative
was present, although the sample sizes may have been
too small to resolve a significant effect (A Only: r � 0.48,
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Figure 2. A, B, Memory performance for different stimulus modalities (A) and different narratives (B). A, Note that exposure to the
visual stimuli (V Only, yellow) yields performance no better than chance performance (No Stim, gray). In addition to mean and SE
(represented by the black horizontal and vertical lines, respectively), we also present the histogram of the distribution of accuracy
values. B, For each narrative (for titles see Materials and Methods), performance is shown for A Only (purple), AV (blue), AVsc (green),
and chance (No Stim, gray). Error bars represent the SEM across questions (N � 72 in A; N � 5–9 in B). �p � 0.05, ��p � 0.01, ���p
� 0.001.
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p � 0.1, N � 13; AV: r � 0.43, p � 0.1, N � 16). This
relationship is numerically negative for subjects who did
not hear the narrative (V Only: r � �0.08, p � 0.8, N � 16).
This was expected since the memory questionnaire as-
sessed only auditorily imparted information (V Only mem-
ory performance was at chance level; Fig. 2A).

The addition of these visuals to the auditory story in-
creased both ISC and memory. Therefore, to control for
this multisensory boost in the conditions where auditory
information was presented (A Only, AV, and AVsc), the
mean values for each condition are subtracted from sub-
jects in that condition yielding �ISC and �Memory per-
centage values (Fig. 4B). Subjects whose neural
responses were more synchronous with others remem-
bered the stories more accurately (r � 0.49, p � 9e-4, N
� 43 subjects). This relationship is similarly strong regard-
less of whether emotional or factual information was
tested (r � 0.44, p � 0.002, for factual questions; r � 0.52,
p � 3e-4, for emotional questions). Additionally, if the ISC
components are chosen to maximize correlation within

each condition, rather than in the average over conditions,
ISC still predicts memory across subjects (r � 0.45, p �
0.002, N � 43 subjects).

One possible interpretation of this result is that atten-
tion modulates both ISC (Ki et al., 2016) and memory
performance (Murdock, 1965; Craik et al., 1996), and this
therefore induces the correlation between the two. To
assess this, we consider an additional neural measure
known to be modulated by attention: alpha power.

Alpha activity modulated by modality but not
correlated to memory performance

Attention is known to affect alpha-band power (Ray and
Cole, 1985; Cooper et al., 2003; O’Connell et al., 2009),
and alpha power decreases during encoding are corre-
lated with memory performance (Klimesch et al., 1996;
Hanslmayr et al., 2009). Similarly to the correlations com-
puted for ISC, the correspondence between alpha power
and memory was assessed for subjects and questions.
Following previous research (Adrian and Matthews, 1934;

A B C

Figure 3. ISC A Only (purple), AV (blue), AVsc (green), and visual (V Only, yellow) stimuli. The full distribution of the ISC values are
indicated by the width of the histogram bars for each condition, and gray indicates the distribution of the chance level of correlation
for each modality. ISC is calculated using the sum of the three largest correlated components elicited by the presentation of the
narrative (Eq. 1). Error bars (vertical lines) represent the SEM across subjects. �p � 0.05, ��p � 0.01, ���p � 0.001. B, C, The
multisensory boost in memory and ISC occurs for all 10 narratives. The different presentation conditions for each narrative,
corresponding to separate groups of subjects, are connected with a line, and SEs across subjects are represented as horizontal and
vertical bars for ISC and Memory %, respectively.
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Figure 4. Relationship between neural ISC and memory performance. A, Memory accuracy for auditory information increases with ISC
in all conditions in which the auditory narrations were heard (A Only, AV, and AVsc), but not when it was missing (V Only). Each point
indicates an individual subject’s ISC (Eq. 2) and memory. B, Same as A, but here, to control for the modality effect, mean values
across subjects were subtracted from ISC and memory performance for each subject in that stimulus condition. Only conditions with
performance significantly above chance are used.
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Gale et al., 1971), and in agreement with the ISC, alpha
power was significantly modulated by the addition of
visual stimuli to the auditory narration (62 of 64 electrodes
significantly decreased in power between A Only and AV
conditions, on average, �2.6 � 0.5 dB, N � 39 subjects;
and 61 electrodes significantly decreased in power be-
tween A Only and AVsc conditions, on average, �2.0 �
0.5 dB, N � 35 subjects; all comparisons were FDR
corrected at p � 0.05 and computed by shuffling condi-
tion labels). However, unlike ISC, after accounting for the
modality effect, no correspondence between alpha power
and memory was found in any electrode or in the combi-
nation of electrodes most correlated across subjects (all
comparisons were FDR corrected at p � 0.05). Although
the relationship between ISC and memory may be driven
by attention (Ki et al., 2016), performing a mediation anal-
ysis to establish a causal link between alpha and ISC,
which accounts for the relationship of ISC to memory,
was unsuccessful due to the fact that alpha power did not
correlate with memory.

Since theta and gamma power have also been impli-
cated in memory performance and maintenance over
shorter timescales (Osipova et al., 2006; Sauseng et al.,
2009; Fuentemilla et al., 2010), these analyses were re-
peated for the theta and gamma bands. No change in
power was found when adding the visual stimulus to the
auditory story. Additionally, neither band significantly cor-
related with memory performance (with the exception of a
single electrode whose theta-band power correlated with
memory accuracy in the across-questions analysis).

Spatial distributions of synchronous neural response
are preserved across modalities

ISC is measured in components of the EEG that are
maximally correlated between subjects (see Materials and
Methods). Note that, by design, components are tempo-

rally uncorrelated with each other and thus capture differ-
ent sources of neural activity. To visualize the spatial
distribution of these different sources, a “forward model”
is computed for each component (Parra et al., 2005;
Haufe et al., 2014). The magnitude of the forward model
represents the strength to which each scalp electrode
contributes to that component. The sign indicates the sign
of the evoked potentials at that location. First, in parallel
with the ISC computations described above, data are
combined from all conditions (A Only, AV, AVsc, and V
Only; Fig. 5, combined column). Additionally, forward
models are computed separately per condition to deter-
mine the stability of the correlated components in sepa-
rate conditions (Fig. 5, AV, A Only, and V Only). The
components for AVsc are not presented as they look
identical to those for AV. The resulting distributions for the
three largest correlated components in the AV condition
are similar to previous results using AV stimuli (Dmo-
chowski et al., 2012). The first two components have a
similar spatial distribution across conditions, with the vi-
sual and auditory conditions showing an additional local-
ized negativity. For the first component (C1), the V Only
and AV conditions have an added focal negativity at
lateral occipital electrodes, consistent with visual pro-
cessing. In the second component (C2), the A Only and
AV conditions have an added focal negativity over fron-
totemporal electrodes, consistent with auditory process-
ing. Despite these two modality-specific aspects, the
broader distributions of both C1 and C2 are mostly pre-
served across modalities, suggesting that C1 and C2 also
capture supramodal responses. It is worth noting that ISC
measured in each component is independently predictive
of memory performance across subjects (C1: r � 0.38, p
� 0.01; C2: r � 0.47, p � 0.001; C3: r � 0.35, p � 0.02,
N � 43). Thus, our finding that synchronous activity

Figure 5. The forward model for the three most correlated components of neural activity. Each column represents the forward model
(correlation between surface electrodes and component activity) obtained using either all stimuli together (combining responses
across all subjects, left) or different stimulus presentations (A Only, middle-left; AV, middle-right; V Only, right). Each row represents
a different component in descending order from most correlated (top) to least correlated (bottom; C1–C3). Color indicates the
correlation between each scalp electrode and the component.
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across subjects predicts memory performance applies to
supramodal and audiovisual evoked activity.

Discussion
This study has two main findings. First, visual context

enhances the memory of an auditory narrative despite
lacking pertinent information, even when it is presented
incongruently with the narrative (Fig. 2). This finding is
notable since it applies to the biographical narratives that
are commonly shared in everyday life experiences (New
York Times and StoryCorp stories) rather than to stimuli
constructed in the laboratory by experimenters. Our sec-
ond finding is that subjects whose neural responses cor-
related more strongly with others had superior memories,
consistent with results on the slower time scale of fMRI
(Hasson et al., 2008; Fig. 4). While event-related potentials
have been linked to retrieval (Paller and Wagner, 2002), no
similar results are available for supramodal evoked re-
sponses, as we report here (Fig. 5). Importantly, our re-
sults extend previous findings using discrete stimuli
(Murray et al., 2004; Thelen et al., 2012, 2014; Matusz
et al., 2015) to the those of continuous and prolonged
naturalistic stimuli and memory tasks. These results can
be interpreted using theories of associative memory, the
reliability of stimulus-induced encoding, and attentional
engagement, as outlined below.

Since visual context enhanced memory for the auditory
narrative in the absence of functionally informative con-
tent, our results lend support to the theory of associative
memory wherein information retrieval is enhanced when it
can be linked with a framework of associations (Yates,
1966; Paivio, 1991). In the unadulterated audiovisual
case, the functionally uninformative visual was congruent
and semantically linked to the audio story, with some clips
containing specific visual clues associated with auditorily
presented information. The coupling of semantically
linked audio and visual information has been shown to
augment overall comprehension of the material (Sumby
and Pollack, 1954). However, previous research has
found conflicting evidence regarding the role of a supple-
mental sensory modality in unisensory encoding (Thelen
and Murray, 2013). Multisensory stimulation-dependent
retrieval enhancements often depend on the meaningful
congruency between the semantics of the auditory and
visual content (von Kriegstein and Giraud, 2006; Matusz
et al., 2015). A correspondence between sensory streams
is thought to enhance the binding between them and
therefore to induce a stronger memory trace (James,
1890). However, if coincident stimuli are incongruent or
irrelevant, they may interfere with the ability to remember
either stimulus individually (Cowan, 1999; Mayer et al.,
2001; Matusz et al., 2015; Thelen et al., 2015) since
human attention has a limited bandwidth (Broadbent,
1958; Sweller, 1994). Following this argument, it seems
surprising that the temporally incongruent audiovisual
condition (AVsc) was almost as effective as the unadul-
terated version (AV). It is possible, however, that informa-
tion lingered in working memory, thus permitting an
association between the two information streams despite
their temporal misalignment (Cowan, 1999).

An alternative interpretation is that visual stimuli en-
hance the processing of auditory information and there-
fore augment memory. Neural activity was recorded to
explore whether stimulus processing is predictive of
memory performance. Similarly to memory performance,
the addition of the visual modality increased the ISC
above audio alone. While it could be a coincidence that
visual stimulation independently affected memory and
ISC, the increase in both memory and ISC when the
congruent visual stimulus is added to the audio story is
consistent with the interpretation that more reliable pro-
cessing during encoding leads to better memory perfor-
mance. Indeed, after controlling for the modality of the
stimulus, narrative-evoked responses that were more cor-
related across subjects predicted improved recognition
memory 3 weeks later (r � 0.49; Fig. 4).

The correlation of neural responses across subjects can
only be high when responses are reliably reproduced in
each individual. Thus, high ISC requires that each partic-
ipant produces a reliable neural response to the stimulus.
Based on the present results and previous literature, we
argue that this reliability reflects the reliability with which
each subject processes the material that they are pre-
sented with. The robustness of encoding has been linked
to the reliability of evoked responses to repeated stimulus
presentations in both animals and humans (Yao et al.,
2007; Xue et al., 2010). Recent work in humans has also
shown that repeat-reliability within individuals directly
translates to the reliability of responses across subjects
(Hasson et al., 2009; Byrge et al., 2015). High ISC may
therefore represent faithful and repeatable auditory pro-
cessing, which thus lead to enhancements in memory for
auditory information. Indeed, for the A Only and AV con-
ditions, C2 has a bilateral temporal distribution (Fig. 5)
consistent with auditory cortex activity, and this compo-
nent alone is a good predictor of memory performance.
However, the most reliable component of the evoked
response (C1) is also partially modality independent since
its spatial distribution is similar, regardless of sensory
modality (Fig. 5). This component may therefore also cap-
ture higher-level processing of the stimulus (Marinkovic
et al., 2003). Due to its broad spatial topography, it may
represent the engagement of diverse brain areas that are
not solely sensorily driven. This component also indepen-
dently predicts memory performance. This suggests that
neural generators that are not specifically tied to auditory
processing are an important part of the reliable stimulus
processing that leads to memory formation.

It is possible that the level of attentional involvement
with the stimulus corresponds to the extent to which the
stimulus evokes synchronous responses across subjects,
and that this synchronous activity therefore predicts
memory performance (Posner, 1980; Luck et al., 1994;
Fontanini and Katz, 2008). In this view, the ISC is modu-
lated by the attentional engagement with the stimulus
(Dmochowski et al., 2012). Consistent with this, recent
work in our laboratory demonstrates that explicit manip-
ulation of attentional state strongly modulates the level of
ISC evoked by narrative stimuli (Ki et al., 2016), and
attention is well known to affect learning and memory
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(Murdock, 1965; Baddeley et al., 1984). Similar to day-to-
day experience, during incidental encoding, attention
fluctuates since it is subject to a number of variables,
including alertness, stimulus interest, and curiosity
(James, 1890; Berlyne, 1966; Vuilleumier, 2005; Petersen
and Posner, 2012). This inherent variability in attention
over the course of the narrative may underlie the correla-
tion between ISC and memory performance.

Visual context, regardless of its congruency, may there-
fore have aided in directing and maintaining attention to
the auditory narrative, and this mediating variable, there-
fore, improved memory performance. To validate this in-
terpretation, we analyzed the strength of oscillatory band
powers, which have previously been associated with
memory and attention (Klimesch et al., 1996; Foxe and
Snyder, 2011). We anticipated that that alpha power
would have an inverse relationship with memory perfor-
mance (Klimesch et al., 1996; Hanslmayr et al., 2009).
However, after controlling for the effect of modality, no
significant relationship was found. It is worth noting that in
the context of a naturalistic stimulus, alpha power may not
be as sensitive to attentional modulation as ISC (Ki et al.,
2016). It is also possible that the effect of alpha power
modulation is too weak to correlate with memory perfor-
mance after 3 weeks. Measuring other markers of mem-
ory, such as the modulation of evoked response
magnitude (Paller et al., 1987), are unfeasible under the
present circumstances, where individuals experience only
one event, a single stimulus presentation. While ISC mod-
ulation suggests that attention played a role in memory
performance, a conclusive link may require experiments
where attentional state is explicitly controlled.

In conclusion, these experiments demonstrated memory
enhancements when a functionally uninformative visual
stimulus was added to an auditory narrative. This boost
coincided with an increase in the correlation of narrative
evoked responses across subjects. The extent to which
individuals correlated with one another, thus processing the
stimulus in a reliable and repeatable manner, predicted their
memory performance. While ISC may be driven by modality-
dependent stimulus features, this across-subject synchrony
also exhibits a partially supramodal spatial pattern that may
reflect encoding processes that induce subsequent mem-
ory. This measure of the reliability of neural processing may
help to resolve the conditions under which adding extrane-
ous information is beneficial to memory performance. It
suggests that in a naturalistic setting where stimuli occur in
a continuous stream, the reliability of processing may dom-
inate other considerations, such as whether an additive
stimulus is congruent or incongruent. Future studies should
use additive supplemental stimuli that are either beneficial or
detrimental to memory performance. We predict that the
most relevant factor is how the added stimulus affects the
reliability with which the relevant information is processed.
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