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Computational normal mode analysis accurately replicates the activity
and specificity profiles of CRISPR-Cas9 and high-fidelity variants
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The CRISPR-Cas system has transformed the field of gene-editing and created opportunities for novel gen-
ome engineering therapeutics. The field has significantly progressed, and recently, CRISPR-Cas9 was uti-
lized in clinical trials to target disease-causing mutations. Existing tools aim to predict the on-target
efficacy and potential genome-wide off-targets by scoring a particular gRNA according to an array of
gRNA design principles or machine learning algorithms based on empirical results of large numbers of
gRNAs. However, such tools are unable to predict the editing outcome by variant Cas enzymes and can
only assess potential off-targets related to reference genomes. Here, we employ normal mode analysis
(NMA) to investigate the structure of the Cas9 protein complexed with its gRNA and target DNA and
explore the function of the protein. Our results demonstrate the feasibility and validity of NMA to predict
the activity and specificity of SpyCas9 in the presence of mismatches by comparison to empirical data.
Furthermore, despite the absence of their exact structures, this method accurately predicts the enzymatic
activity of known high-fidelity engineered Cas9 variants.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The CRISPR-Cas system is a prokaryotic adaptive immune sys-
tem, conferring immunity against bacteriophages and plasmids
based on nucleic acids recognition [1]. It has been employed as a
gene-editing tool in eukaryotic cells owing to its unique RNA-
guided targeting attributes. Class 2 CRISPR systems consist of a sin-
gle Cas effector protein. Upon binding to a guide-RNA (gRNA)
molecule, it directs the Cas protein toward its target sequence
[2,3], DNA or RNA, depending on the type and subtype of the Cas
protein [4]. Target recognition is mediated by base pairing between
the gRNA and the target sequence. For the commonly studied
Streptococcus pyogenes (Spy)Cas9, the gRNA base-pairs with the
target strand DNA (TS-DNA), a stage that drives a conformational
transformation of Cas9, leading it to cleave the target DNA [5].
Recently, the field of gene-editing has entered a new era, as the
CRISPR-Cas system was introduced into patients cells, ex vivo [6–
9] and in vivo [10], and reportedly contributing positive results in
clinical outcomes. Understanding the accuracy and specificity of
CRISPR-Cas9 is essential to better design and develop improved
future gene-editing therapeutics [11]. Previous studies have
revealed the protein structure of SpyCas9, paving the way to struc-
tural investigation of the protein and its functions [12–14]. Exist-
ing tools designated to predict on-target activity efficiency,
specificity and off-targeting are based on a set of gRNA design prin-
ciples derived from experimental observations [15]. Such tools and
principles do not apply to the variety of Cas enzymes, engineered
variants and gRNAs that do not conform with reference genomes.
Simulating the enzymatic activity is of interest in assessing the
editing outcome of various Cas enzymes, as well as for in silico
design of novel variants. Normal mode analysis (NMA) is a compu-
tational method used to probe large-scale motions in biomole-
cules. Typical application is for the prediction of functional
motions in proteins. It relies on the premise that the physics of a
protein around an equilibrium position behave as an oscillating
system. This in turn describes the flexible and thermodynamical
movements close to an equilibrium point. Coarse-grained NMA
overcomes the computationally limiting factor of analyzing large
numbers of atoms in a protein by representing each residue using
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a single atom – the a carbon [16]. Recently, we have demonstrated
how NMA can be utilized to explain the function and dysfunction
of proteins with pathogenic mutations in several different clinical
conditions [17–20]. It is largely agreed that the function of the pro-
tein and its dynamics can be inferred from NMA [16,21]. In a pre-
vious study, NMA was shown to provide structural and dynamic
details on the mechanism of action of SpyCas9 [22]. Nevertheless,
it was not utilized to study the sequence-dependent activity of
CRISPR-Cas systems. NMA can be utilized to investigate the entro-
pic profile of the whole structure, or only a part of it (i.e., specific
residues, nucleotides, or distinct macromolecules such as a protein
or an RNA molecule). The method described herein characterizes
allosteric entropic changes made in a structure with several macro-
molecules. By changing one macromolecule in the complex, we
witness entropic changes in other macromolecules of the complex
that might affect the complex functionality. We hypothesized that
NMA could predict Cas9 activity and likewise its specificity (Fig. 1).
In this study, we have done computational replications of previ-
ously published experimental studies and compared the entropy
scores we obtained from the NMA to the observed empirical data.
Our results support the relevance of NMA to study the function of
proteins, particularly SpyCas9, and imply its ability to predict on-
target and off-target activity and specificity of CRISPR-Cas systems.
2. Results

2.1. NMA accurately replicates empirical data of SpyCas9 activity and
specificity profile

To test the relevance of NMA to predict the activity of SpyCas9,
we performed an in silico replication of a previously published
experiment by Hsu et al. [23]. The empirical data describe the
specificity profile of SpyCas9 in four genomic loci within the
EMX1 gene. The specificity was measured as the cleavage activity
in the presence of mismatches between the single-guide RNA
(sgRNA) and the target DNA, compared to a perfect-match sgRNA
(Fig. 2a, left column) [23]. We hypothesized that the entropic
changes caused by single-nucleotide mismatches would reflect
the specificity patterns obtained from the experimental results.
To examine our hypothesis, the structure of the SpyCas9 complex
(bound to the sgRNA and the target DNA) was fetched from the
Protein Data Bank (PDB, accession number: 5F9R [12]) and the
RNA and DNA sequences were modified to match the four EMX1
loci. We then generated 57 modified structures per locus, where
in each structure, one nucleotide of the sgRNA was changed,
according to the original experiment (see Methods). In total, 232
structures were generated. TheDG of each structure was measured
using NMA. Since we have modified the sgRNA molecule in the
structure, we sought to assess the single-nucleotide mismatch
effect on the DG of the protein (chain B) and the DNA (chain C –
target strand) separately (Fig. 2). Analysis of the DG measurements
across the different EMX1 sites from both the protein and the DNA,
unveils patterns that indeed resemble the empirical data (Fig. 2a).
Moreover, the seed region can be clearly observed in the DG pat-
terns, demonstrating the consistency of our results with the previ-
ous reports [3,11,23,24]. The correlation for each combination of
empirical results, DG of the protein and DG of the DNA, was calcu-
lated for all sites (Fig. 2b–d). The Pearson correlation coefficient (r)
of the DNA entropy or the protein entropy with the empirical data
is very similar and ranges from 0.6853 to 0.7875 (Fig. 2b) and
0.6577 to 0.7502 (Fig. 2c), respectively (absolute values). The high
r values demonstrate the feasibility of in silico NMA to predict the
activity outcome of SpyCas9, even when the DNA and sgRNA
sequences of the structures are modified compared to the original
structure. The r values are presented as absolute values since the
2014
direction of the correlation (positive or negative) does not affect
the power of the correlation. Since the |r| values of the EMX1 site
3 are higher compared to the three other sites, we decided to per-
form the following analyses in this study on the EMX1 site 3. r val-
ues and p-values are summarized in Supplementary Table 1.

2.2. Residues’ entropy and empirical enzymatic activity correlate
among different gRNAs with mismatches

To examine which amino acids within the structure of SpyCas9
respond in the form of DG changes coordinately with activity rates
in the presence of mismatches, we calculated the DG of each resi-
due. The correlation between the DG and the activity was calcu-
lated (r) and plotted for each genomic site (Fig. 3a). It is apparent
that the r values for each residue are highly consistent among
the four EMX1 loci, indicating the coherence reactivity of the pro-
tein regions in varying genetic contexts. Noticeably, high r values
were most abundant within the REC lobe (REC domains I-III) and
the PAM interacting (PI) domain, as well as the bridge-helix (BH)
that is known to confer mismatch sensitivity [25]. We set a tenta-
tive threshold of r = 0.55 and marked regions of residues that cross
it in more than one EMX1 site, indicating protein regions where
entropic response to mismatches harmoniously correlates with
the empirical activity of the enzyme. Further to the 2D representa-
tion of the residues crossing the r = 0.55 threshold, we depicted the
number of occurrences in which a residue crossed the threshold in
a 3D representation to observe the structural relevance of such
residues (Fig. 3b). Examination of the 3D structure confirms that
residues that repeatedly have high r values are likely to interact
directly with the nucleic acids within the structure. For instance,
residues 164–174, which are part of the REC lobe (REC I domain),
interact closely with the gRNA, stabilizing the R-loop (gRNA:TS-
DNA heteroduplex), and cross the r threshold in two EMX1 sites.
Remarkably, although the REC2 domain does not bind the gRNA
and the DNA (despite residue D269), and SpyCas9 still retains its
activity even after complete removal of the domain [13], it contains
the most frequent residues (212–219 and 244–246). It is notewor-
thy that high r values of a certain residue do not implicate its role
in specificity imparting. However, the DG of residues with high r
values can be utilized to predict the enzymatic function.

2.3. NMA-based predictions of the activity and specificity of engineered
SpyCas9 variants

As a modification of nucleic acids within the structure of Spy-
Cas9 led to NMA-based results that were consistent with empirical
data, we speculated whether NMA might also predict the outcome
of amino acids modifications. Similar to the comparison of DG to
the activity in the presence of mismatches (Fig. 2), the computa-
tionally modified protein should be compared to a priori empirical
data of such variants. To that end, we obtained the specificity and
activity scores of eight engineered SpyCas9 variants with improved
specificity from a previously published study by Schmid-Burgk
et al. This study provides high-throughput and uniformly collected
data (using the TTISS method) of all eight variants, compared to the
wildtype (WT) SpyCas9 [26]. The variants that were compared
were eSpCas9(1.1) [27], SpCas9-HF1 [28], HypaCas9 [29], evoCas9
[30], Sniper-Cas9 [31], Hifi-Cas9 [32] and LZ3 Cas9 [26]. The
authors tested 59 gRNAs to evaluate the on-target activity and
specificity (genome-wide off-target activity), thus, generating
comprehensive and robust data.

We focused on the protein structure with the altered nucleic
acids corresponding to the EMX1 site 3 sequence and modified
the amino acids according to the various engineered SpyCas9 vari-
ants. Thereafter, by generating structures of all the single mis-
matches for each variant (as previously described in this



Fig. 1. General scheme – NMA predicts the activity and specificity in a sequence-dependent manner. NMA yields entropy scores that correlate with empirical SpyCas9 activity
data. Modifications were made to all parts of the structure: protein (high-fidelity variants mutations), DNA (four different EMX1 sites) and sgRNA (mismatches assay) while
retaining high correlations. PDB: 5F9R [12].
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manuscript), we established a predicted specificity profile consist-
ing of SpyCas9 and eight variants (Fig. 4a). The order of the variants
was determined according to their activity, as measured by
Schmid-Burgk and colleagues (Fig. 4b). The two most specific vari-
ants, evoCas9 and Cas9-HF1, exhibit highly specific entropy pro-
files compared to WT SpyCas9 and other less specific variants.
Interestingly, the DG values are highly correlative with the average
on-target activity scores (r = �0.7348; Fig. 4c). While most variants
show DG patterns (Fig. 4a) that correlate with the empirical activ-
ity (Fig. 4b), xCas9 is seemingly not in line with the other variants.
xCas9 is comprised of seven mutations and was initially screened
as a PAM-modified variant that afterwards was found to have
improved specificity. The inconsistent entropy pattern may be
due to other molecular mechanisms underlying the specificity
improvement and activity reduction of xCas9. We next calculated
the correlation between the average DG of each position and each
variant and the average activity score of each variant (Fig. 4d). High
r values indicate the feasibility to predict the activity outcome
based on the DG of a particular position. Surprisingly, the obtained
r values pattern in the different positions of the gRNA resembles
the seed region pattern, excluding positions two and three (PAM-
distant region) that are thought to be the least stringent. These sig-
nificantly correlative positions (2, 3, 10–17, 19 and 20) can be of
great use in predicting the on-target activity of various Cas variants
and serve as predictors for off-targets assessments.
3. Discussion

The data presented in this study demonstrate the correlation
between NMA and empirical enzymatic activity from experimental
studies. The multicomponent complex of Cas9 protein, sgRNA and
2015
DNA (TS and NTS-DNA) allowed us to manipulate one or two ele-
ments (gRNA mismatches or protein mutations) and measure their
influence on the constants (i.e., DNA). Strong correlations between
the empirical enzymatic activity and NMA calculations were
observed after changes were made to the original structure. Strik-
ingly, after also changing the protein residues the correlation
remained as strong. While examining different hypotheses,
whether NMA correlates with WT SpyCas9 in the presence of mis-
matches and if SpyCas9 variants correlate with their reported
activity, we utilized two independent datasets. One, by Hsu et al.
characterizes the specificity profile of WT SpyCas9 in four loci
within the EMX1 gene [23]. The other, by Schmid-Burgk et al. com-
pares eight variants with improved specificity and attempts to find
genome-wide off-targets and determine their on-target efficiency
[26]. The consistent correlation between NMA and empirical
experimental data from different studies provide strong evidence
for the validity of NMA to predict the outcome of Cas9 activity.
Although the first part of this work is focused on the EMX1 gene,
we show four distinct gRNA sequences that were analyzed using
NMA. Moreover, the predicted NMA scores were compared to
empirical data of HF variants targeting 59 target loci and neverthe-
less, provided consistent correlation. Thus, the robustness of NMA
has shown to be generalized and not restricted to a specific gRNA.
The method presented herein may lay the groundwork for generat-
ing future gene-editing tools and technologies such as off-targets
assessment tools and engineering of novel Cas variants. The latter
can benefit from the NMA activity-based standard curve (Fig. 4) or
a similar NMA specificity-based curve. Moreover, applying this
method on other Cas enzymes (i.e., Cas9 orthologs, Cas12 or other
Cas effector proteins) can lead to the development of novel effector
proteins from different classes with unique functions. This is
restraint to the limitations of the method, as it requires available



Fig. 2. SpyCas9 empirical activity and structure-based entropy. a) Heatmap representations of previously reported empirical SpyCas9 activity (specificity measured as the
ratio of mismatch/perfect match), the entropy of the DNA and the SpyCas9 protein (log DGj jð Þ) in the presence of single-base mismatches in four loci within the EMX1 gene.
The color scale bar orientation is determined by the direction of the correlation (positive/negative). b) Correlations between the empirical activity (x) and the DGj j of the DNA
(y). c) Correlations between the empirical activity (x) and the DGj j of the protein (y). d) Correlations between the DGj j of the DNA (x) and the DGj j of the protein (y). All
correlation plots are shown with a 95% confidence interval and p-value <0.00005 (N = 57). The correlation values represent the Pearson correlation coefficient (r).
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structure of the protein of interest in association with related
molecules (e.g., DNA, RNA), and detailed data that can be used
for comparison and calibration. Any engineered protein candidate
that was predicted using this method should be tested experimen-
tally in a ‘‘wet lab”. Notably, actual experimental results may be
subjected to variance resulted from multiple parameters. This
may affect both the empirical data used for analysis and the valida-
tion experiment of the proteins of interest. Furthermore, structures
depicting the protein (or complex) in different conformations
might result in different conclusions. Taken together, this study
demonstrates the feasibility and accuracy of NMA in the context
of the CRISPR-Cas9 system. Future studies may make use of the
method and data presented in this work to further improve its
accuracy and conduct experimental validations of the computa-
tional predictions.
2016
4. Methods

4.1. In silico analysis

The structure of the SpyCas9 complex was taken from the Pro-
tein Data Bank (PDB-101; accession numbers PDB: 5F9R [12]).
Next, using the mutagenesis software X3dna- DSSR (https://
x3dna.org/) Linux package [33–36], we performed in silico bases
mutagenesis of the given gRNA (chain A) and DNA (chain C – TS-
DNA and chain D – NTS-DNA) to the gRNA and DNA sequences
used in the study of Hsu et al. [23]. For the WT structure now mod-
ified with four new gRNA sequences, we created a structure for
each of the possible mismatches in positions 1–19, using the afore-
mentioned X3dna- DSSR software. WT and mismatched structures
were analyzed by an ENCoM coarse-grained NMA method to eval-
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uate the effect of the analyzed mismatch on the stability of the pro-
tein and the DNA. This method is based on an entropic considera-
tions C package of ENCoM [37] available at the ENCoM
2017
development website (https://github.com/NRGlab/ENCoM), com-
piled and used on a Ubuntu platform (Canonical Group, UK). For
each analyzed variant, we calculated the entropy difference (DG)

https://github.com/NRGlab/ENCoM


Fig. 4. NMA predicts and replicates specificity and activity of eight SpyCas9 variants with improved specificity. a) Entropy profile heatmaps of SpyCas9 variants in the
presence of gRNA mismatches at the EMX1 – site3 locus (log DGj jð Þ measured at the DNA molecule (chain C – TS-DNA). b) Average activity and specificity scores as previously
reported and determined by the TTISS method. c) Correlation between the activity score of each variant and its corresponding average entropy score (logð DGj jÞ. The
correlation plot is shown with a 95% confidence interval and p-value = 0.024123 (N = 9). d) The Pearson correlation coefficient (r) of each position within the gRNA,
representing the feasibility of each position to predict the activity outcome (average per variant) using the entropy score (average per position per variant). #=0.05 < p-
value < 0.06, *=p-value < 0.05, **=p-value < 0.005.
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by subtracting the NMA-based mismatched structure’s entropic
profile from the entropic profile of the WT perfect-match structure
model.

The calculation of the entropic difference (DG) was done using
MATLAB software (MathWorks, Natick, MA).

Next, to build the nine high fidelity structures, the Mutagenesis
plugin in PyMol Molecular Graphics System Version 1.8 (Schrödin-
ger, LLC., Cambridge, MA) was used to perform the appropriate in
silico point mutagenesis in the WT protein structure with changed
gRNA (as mentioned above, the gRNA was modified using X3dna-
DSSR) modelled structure (EMX1 site 3). Using this structure, in sil-
ico mutagenesis was performed for each variant to replace the
amino acids in accordance with each of the eight variants. These
in silico mutations were made only in chain B. All variants were
also analyzed for mismatches in the gRNA by the same procedure
as described above. Mismatched structures of all variants were
Fig. 3. The correlation between the empirical activity in the presence of mismatches an
Absolute values of the Pearson correlation coefficient r, measured in all amino acids alon
The measured entropy relates to the a-carbon of each amino acid. The dashed line repr
threshold in more than one site are marked in light blue. The 2D representation of the
correlate with the empirical activity data. Scale range 0 < r < 0.8. b) The structure of SpyCa
(1–3) in which the r value for this residue crossed the threshold (left). The right panel is
target strand (NTS-DNA) and the sgRNA are represented as simplified lines, while the pr
figure legend, the reader is referred to the web version of this article.)

3
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analyzed by an ENCoM coarse-grained NMA method to evaluate
the effect of the analyzed mismatch on the stability of the protein.
For each analyzed variant, we calculated the DG by subtracting the
NMA-based mismatched structure’s entropic profile from the
entropic profile of the perfect-match structure model. The calcula-
tion of the DG was done using MATLAB software.
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