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Radiation therapy is frequently the first line of treatment for over 50% of cancer patients.

While great advances have been made in improving treatment response rates and

reducing damage to normal tissue, radiation resistance remains a persistent clinical

problem. While hypoxia or a lack of tumor oxygenation has long been considered a key

factor in causing treatment failure, recent evidence points to metabolic reprogramming

under well-oxygenated conditions as a potential route to promoting radiation resistance.

In this review, we present recent studies from our lab and others that use high-resolution

optical imaging as well as clinical translational optical spectroscopy to shine light on

the biological basis of radiation resistance. Two-photon microscopy of endogenous

cellular metabolism has identified key changes in both mitochondrial structure and

function that are specific to radiation-resistant cells and help promote cell survival in

response to radiation. Optical spectroscopic approaches, such as diffuse reflectance and

Raman spectroscopy have demonstrated functional and molecular differences between

radiation-resistant and sensitive tumors in response to radiation. These studies have

uncovered key changes in metabolic pathways and present a viable route to clinical

translation of optical technologies to determine radiation resistance at a very early stage

in the clinic.

Keywords: raman spectroscopy, diffuse reflectance spectroscopy, optical metabolic imaging, nonlinear optical

microscopy, mitochondrial organization, radiation resistance

INTRODUCTION

About half of cancer patients from all cancer types are treated with radiation therapy either
followed by or concurrently with surgery, chemotherapy, or other forms (1). However, despite
the recent advances in targeted radiation therapy, several patients subsequently experience
loco-regional recurrence due to acquired or intrinsic radiation resistance. The current standard
of care to determine radiation response is an anatomical assessment of tumor volume shrinkage.
This evaluation is typically performed 6–8 weeks after completion of treatment using X-ray
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). There are currently no
methods to determine radiation response either during or immediately after treatment. An
early determination of radiation resistance could help physicians modify the radiation dosage
to improve response rates and hence quality of life. The development of methods to identify
radiation-resistant tumors early requires a better understanding of the biological mechanisms
promoting radiation resistance.

Ionizing radiation functions by producing free radicals in cancer cells either directly in the DNA
or indirectly in other molecules, primarily water (H2O). These radiation-induced free radicals, in
the presence of O2, can generate peroxy radicals (DNA-OO·) capable of breaking chemical bonds
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and initiating a series of events which lead to DNA modification,
and cell death (damage fixation). In contrast, lack of O2 leads
to the reduction of free radicals in DNA and restoration of
the original form of DNA (DNA-H) leading to cancer cell
survival (2–4). Landmark studies in clinical head and neck cancer
and soft-tissue sarcoma found that pre-treatment oxygenation
levels were predictive of treatment response and disease-free
survival (5–7). This important role of oxygen is the rationale for
fractionated radiation therapy (2 Gy/day for 6–7 weeks), which is
believed to re-oxygenate and radio-sensitize former hypoxic cells
and hence, cause cell death via damage fixation (8–10). However,
recent work has started to uncover a possible role for radiation-
induced reoxygenation in also promoting radiation resistance
through hypoxia-inducible factor (HIF).

Hypoxia leads to stabilization of HIF-1 (11). While HIF-
1 expression is inhibited under oxygenated conditions via
prolyl hydroxylases (PHDs), its transcription is significantly
upregulated under hypoxic conditions (3, 12, 13). However,
radiation-induced tumor reoxygenation can lead to activation of
HIF-1 as well-through accumulation of reactive oxygen species
(ROS), which is necessary and sufficient to stabilize HIF-1 (14).
Nuclear accumulation of HIF-1 in response to ROS has been
shown to promote endothelial cell survival and hence promote
radiation resistance (15, 16). In a tumor bearing window chamber
model, Moeller et al. demonstrated an increase in ROS during
radiation-induced reoxygenation. Additionally, they showed that
injecting hydrogen peroxide (H2O2) into the window chamber
lead to an increase in HIF-1 expression (15). HIF-1 directly
targets several glycolytic genes and leads to increased glucose
catabolism under oxygenated conditions (17–20). HIF-1 trans-
activates pyruvate dehydrogenase kinase (PDK), which inhibits
pyruvate dehydrogenase and shunts pyruvate away from the
mitochondria resulting in glucose catabolism to lactate even
under oxygenated conditions (17, 18). Inhibition of HIF-1 and
subsequent inhibition of PDK-1 restores glucose flux toward
mitochondria and increases O2 consumption (21). Other studies
have shown that HIF-1 and pyruvate kinase M2 exist in a
positive feedback loop that enhances glycolysis under aerobic
conditions (19, 20).

Zhong et al. demonstrated that scavenging ROS resulted in a
reduction in post-radiation aerobic glycolysis without reducing
the magnitude of reoxygenation (22).

The switch to increased glucose catabolism can promote
radiation resistance through utilization of the pentose phosphate
shunt (PPP) to maintain the NADPH-glutathione buffer and
hence scavenge radiation-induced ROS. Inhibition of glucose flux
through the PPP in combination with 2Gy of radiation treatment
significantly decreased cancer cell proliferation, especially in
radiation-resistant cells (23). Increased glucose catabolism can
also lead to increased production of lactate, an important ROS
scavenger, leading to decreased radiation sensitivity (24, 25).
Thus, in addition to being key hallmarks in the development
of cancer, tumor oxygenation (or hypoxia) and metabolism play
a significant role in the development of radiation resistance.
Technologies that are sensitive to these key hallmarks and that
can measure them both at the “bench” and “bedside” can provide
powerful tools to shed light on radiation resistance.

Optical imaging can provide non-destructive and quantitative
methods to reveal morphological and biochemical changes
within cells and tissue across length scales in response to
radiation therapy. Due to its non-destructive nature, optical
imaging can be used to longitudinally monitor dynamic
biological changes with high resolution to investigate the
underlying mechanisms that promote radiation resistance.
Given the low cost and non-ionizing nature of the light
used, optical techniques are also well-positioned for clinical
translation, especially for accessible tumors of breast, skin, oral
cavity, and uterine-cervix. In addition, same instrumentation
and quantitative models are frequently used to extract
meaningful information from pre-clinical animal models.
This review highlights recent work that used non-linear optical
microscopy and diffuse optical spectroscopy to shed light on
differences between radiation-resistant and sensitive cancer cells.
Specifically, we highlight studies that identified differences in
oxygenation or reoxygenation trends post-radiation therapy as
well as those that investigate metabolic and molecular changes
in the post-radiation tumor milieu. These studies encompass
models ranging from in vitro cell culture to in vivo animal
studies and indicate the great potential of optical imaging in the
sphere of biological investigations of radiation resistance and the
development of clinically translational optical technologies to
benefit patients receiving radiation therapy.

OPTICAL MICROSCOPY

Non-linear microscopy approaches, such as two-photon
microscopy present numerous advantages over conventional
single-photon microscopy (26). Because autofluorescence is
generated through simultaneous absorption of two photons,
the excitation wavelengths used are at twice the single-photon
excitation wavelength and half the energy. Doubling the single-
photon excitation wavelength usually places the non-linear
excitation wavelength in the near-infrared range, which allows
light to penetrate deeper within tissue (27). Additionally, the
localization of autofluorescence to just the focal point of the
objective provides an efficient method for rejecting out-of-focus
light and minimizing photodamage to the sample. In this review,
we discuss how two-photon excited fluorescence (TPEF) from
two key metabolic cofactors—nicotinamide and flavin adenine
dinucleotides (NADH and FAD, respectively), can provide
a non-destructive metabolic profile of cells and how these
approaches have been utilized to study the metabolic response to
therapy in radiation-resistant and sensitive cancer cells.

Cellular Metabolism
Non-linear optical microscopy is well-suited to provide non-
invasive high-resolution 3D images of mitochondrial structure
and function within live cells, tissues, and animals (27, 28).
Through two-photon excited fluorescence (TPEF), the intrinsic
fluorescence of nicotinamide and flavin adenine dinucleotides
(NADH and FAD, respectively) can be detected without the aid
of exogenous dyes (26, 29). Based on the autofluorescence of
NADH and FAD, the optical reduction-oxidation (or redox) state
of cells can be quantified as FAD/(NADH+FAD). This optical
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FIGURE 1 | Optical redox ratio is sensitive to radiation-induced changes in cellular metabolism. Radiation causes a decrease in the optical redox ratio after 24 h in the

radiation-resistant cells, indicating increased glycolytic metabolism. (A) Representative redox images of parental and radiation resistant A549 cells at baseline prior to

radiation and 24 h after 2Gy of radiation. (B) Quantification of redox ratio images indicates a statistically significant decrease in the optical redox ratio 24 h after

radiation in the A549-RR cells compared with the parental A549 cells (p = 0.01). (C) Differences in the n-OCR (calculated as OCR/PPR) are consistent with the optical

redox ratio. PPR refers to the proton production rate, which is equivalent to the extracellular acidification rate (ECAR). (D) Radiation causes a significant increase in

HIF-1 in the radiation-resistant cells 24 h after radiation. Western blots of HIF-1 protein expression demonstrate statistically significant differences between A549 and

A549-RR cells at baseline and 24 h after radiation, indicating reoxygenation-induced HIF-1 expression in the A549-RR cells. Asterisks placed above bars indicate

statistical significance. Error bars in (B,C), and (D) represent standard deviation of the mean plate value. Adapted with permission from Alhallak et al. (38).

redox ratio (ORR) has been shown to be significantly correlated
with mass spectrometry-based measurements of NAD+/(NAD+

+ NADH), and can thus reveal the specific metabolic pathways
engaged within a cell (30). Specifically, an increase in ORR has
been attributed to increased oxidative phosphorylation because
of the oxidation of NADH to non-fluorescent NAD+ and FADH2

to fluorescent FAD. On the other hand, hypoxia-like conditions
that drive a buildup of NADH due to the inability to convert
to NAD+ and increased glucose catabolism has been shown to
decrease the ORR (30, 31). Recent work from separate groups has
demonstrated that the optical redox ratio is sensitive to dynamic
changes in oxygen consumption and can provide metabolic
assessments comparable to those of the Seahorse metabolic flux
analyzer (32, 33). The optical redox ratio has been used to create
metabolic image maps of key organs (34), such as the heart
and brain, identify metabolic changes associated with cancer
progression (35, 36), determine cellular response to therapy (37–
39), and discover a relationship between metastatic potential and
cellular metabolism (32, 40, 41).

Alhallak et al. determined the early metabolic alterations in
response to radiation in human A549 lung cancer cells and an
isogenic radiation-resistant clone (38). This clone was obtained
by repeated exposure of parental radiation-sensitive human

lung cancer cell line (A549) to ionizing radiation (25 fractions
of 2.2Gy every 3 days). Although there was no significant
difference in ORR of radiation-resistant and -sensitive cells
prior to administration of radiation, there was a significant
decrease in ORR of radiation-resistant cells 24 h after radiation,
which was consistent with Seahorse-based quantification of
the normalized oxygen consumption rate (n-OCR) (Figure 1).
The observed results indicate that the radiation-resistant cancer

cells have decreased levels of oxygen consumption both at
baseline and post-radiation and resort to increased glucose
catabolism after radiation to potentially reduce ROS-induced
toxicity. Interestingly, this radiation-induced decrease in the
optical redox ratio was also associated with a large increase in the
HIF-1 expression in the radiation-resistant A549 clone.

A subsequent by Lee et al. investigated metabolic changes
in response to HIF-1 inhibition to determine if the changes
in optical redox ratio post-radiation were indeed mediated
by HIF-1 and a mechanism to avoid ROS-induced toxicity
(39). They used multiphoton microscopy to determine the
ORR of A549-RR prior to and post-treatment with YC-1, an
established HIF-1 inhibitor. Treatment with YC-1 for 24 h
resulted in a significant increase in the ORR compared with
baseline, with a concomitant increase in mitochondrial ROS
(Figure 2), a decrease in reduced glutathione and a decrease
in glucose uptake (39). These results support the conclusion
also reached by Furdui and colleagues who found increased
glucose uptake that was utilized within the pentose phosphate
pathway (PPP) to maintain the NADPH-glutathione buffer.
This buffer helps scavenge radiation-induced ROS and hence
promote radiation resistance (23). These results demonstrate the
enormous potential of autofluorescence microscopy to not only
provide clinically translational biomarkers of cellular response to
therapy but also create opportunities for investigating radiation
biology in live cells and animals at very high resolution.

Lifetime Imaging
Fluorescent lifetime imaging microscopy (FLIM) measures the
average time that a molecule spends in an excited state prior to
emission. One significant advantage of FLIM over measurements
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FIGURE 2 | Optical redox ratio (ORR) is sensitive to changes in reactive oxygen species (ROS) (A) Representative images and (B) quantification of redox ratio and

MitoSOX, a fluorescent reporter of mitochondrial ROS illustrates significant differences before and 24 h after treatment with YC-1. *p < 0.05. Adapted with permission

from Lee et al. (39).

of endogenous autofluorescence is that lifetime is independent
of the fluorophore concentration. The lifetime of fluorophores,
such as NADH and FAD depend on whether they are free
or bound to a protein complex. For instance, the lifetime
of NADH autofluorescence is shorter (∼0.4 ns) when free
and longer (∼1 ns) when bound to protein complexes, such
as malate dehydrogenase and lactate dehydrogenase while the
lifetime of FAD autofluorescence is longer when free and shorter
when bound to protein complexes, such as alpha-lipoamide
dehydrogenase (42–46). By quantifying the ratio of free to
protein-bound NADH and their respective lifetimes, FLIM can
be used to identify the metabolic state of cells and tissue (42,
47–49). A recent study investigated the application of FLIM
in radiation research (50). Campos et al. first treated human
cancer cells and normal oral keratinocytes (NOK) with 10Gy
of radiation and recorded the resultant metabolic changes using
FLIM. As early as 30min post treatment, there was a significant
decrease in NADH lifetime of cancer cells while there was no
change in NADH lifetime of the NOK cells.

Mitochondrial Organization
In addition to being the powerhouse of the cell, mitochondria
are also critical to cell death pathways. The energy demands
of a cell are maintained by a delicate balance between the
rate of oxidative phosphorylation, tricarboxylic acid (TCA)
cycle activity, structural changes to the mitochondrial network,
and mitochondrial biogenesis. Mitochondria are continuously
changing their organization through fission and fusion allowing
for adaptation to different functional demands (51, 52).
This dynamic mitochondrial network is sensitive to cell
differentiation as well as oxygen and nutrient availability

(30, 53–55). Fission is critical for mitochondrial biogenesis,
cell division, and mitochondrial autophagy and manifests as

numerous mitochondrial fragments. Fusion helps to maintain

functionality through the sharing of proteins, genetic material,
and metabolites and leads to the generation of interconnected
mitochondria (56). Alterations to fusion-fission dynamics and
hence the mitochondrial organization have been shown to

be associated with several pathological conditions, including
hypoxia-reoxygenation injury (57–59). Hypoxia-reoxygenation
has been shown to result in a decrease in mitochondrial
fusion and subsequent changes in length and shape of
mitochondria (60). Targeting the changes in mitochondrial
fusion and fission has been shown to protect cells from
the effects of hypoxia-reoxygenation injury (61, 62). These
studies of changes to mitochondrial structure in response to
hypoxia-reoxygenation injury are highly relevant to radiation
therapy due to the similarity in mechanisms generating
oxidative stress. Radiation therapy leads to reoxygenation of
previously hypoxic cells, thereby triggering a large production
of mitochondrial ROS. The NADH autofluorescence images,
which are used to calculate the optical redox ratio, can also
be used to evaluate mitochondrial organization and specifically,
fission and fusion. Specifically, Fourier-based power spectral
density analysis of NADH autofluorescence images has been
used to compute a metric termed mitochondrial clustering
to quantify mitochondrial organization (30, 63). An increase
in mitochondrial clustering was found during periods of
increased glucose catabolism, such as hypoxia, resulting in more
fragmented, or fissioned mitochondria. On the other hand,
glutaminolysis was found to be associated with a decrease
in mitochondrial clustering or more networked mitochondria
(fusion). The samemethod was used to investigate mitochondrial
structural dynamics in human skin in vivo (53). A recent
study used an improved image processing method in the spatial
domain to rapidly quantify the local fractal dimension (FD)
within individual cells in response to radiation therapy (64).
This analysis found a significant decrease in FD (or an increase
in mitochondrial clustering) of radiation-resistant lung cancer
cells between 12- and 24-h post-radiation compared with pre-
radiationmeasurements. There were no significant changes in the
radiation-sensitive cell population in response to radiation at any
time point (Figure 3). The increased mitochondrial clustering
observed here is consistent with the decreased optical redox ratio
and increased glucose catabolism observed by Alhallak et al.
using the same cancer cells (Figure 1) (38, 39).
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FIGURE 3 | Quantifying mitochondrial organization from NADH autofluorescence. (A) Representative FD maps corresponding to lung cancer cells of both control and

radiation-resistant groups. The images were obtained at time periods of 1- and 24-h post radiation. (B) Summary data demonstrates significant temporal changes in

the mitochondrial organization of radiation resistant cell line at 24 h [Reproduced with permission from Vargas et al. (64)]. *p < 0.0001.

OPTICAL SPECTROSCOPY

Optical spectroscopy is a fiber-based approach using non-
ionizing radiation to non-destructively and non-invasively
examine tissue of interest. Their low cost and small footprint
make “optical spectroscopy methods” an excellent tool for
conducting pilot studies in animal models of cancer and in
humans. Since optical measurements using the fiber optic probe
are non-invasive or minimally invasive (depending on the tissue
site), the same subject can be monitored multiple times a day or
over weeks to evaluate response to treatment. In addition to its
obvious benefits as a clinical adjunct to existing clinical imaging
modalities that cannot be used every day on patients, optical
spectroscopy obviates the need for sacrificing large numbers
of animals at several time points in longitudinal studies to
evaluate treatment response. Here, we describe two specific
techniques—diffuse reflectance and Raman spectroscopy—that
have demonstrated potential for monitoring radiation response
in tumors and studying the differences between resistant and
sensitive tumors.

Diffuse Reflectance Spectroscopy
Diffuse reflectance or elastic scattering spectroscopy is an
optical fiber- based technique for non-invasive interrogation
of tissue. DRS uses optical fibers to deliver low-power
non-ionizing light from a broad-band light source (400–
650 nm) to tissue surface. The incident weak light undergoes
multiple scattering and absorption events and is remitted
back to the tissue surface as diffusely reflected light. Since
the collected light has interacted non-destructively with the
tissue, it provides a wealth of quantitative information about
absorption and scattering, a combination of which is used
for tissue pathology. Using models of light-tissue interaction

that simulate the travel of photons within a scattering and
absorbing medium, it is possible to quantify the diffusely
reflected light and extract meaningful information related
to tissue scattering as well as prominent tissue absorbers,
such as oxygenated and deoxygenated hemoglobin (65–70).
By exploiting the differences in light absorption spectra of
oxygenated and deoxygenated hemoglobin, we can quantify
the vascular oxygen content in tissue and obtain volume-
averaged estimates of hemoglobin concentration. Measurements
of vascular oxygenation have been shown to be concordant
with microelectrode-based determinations of tissue oxygenation
(71, 72) and immunohistochemical measurements of tumor
hypoxia (73). Cell nuclei, mitochondria, and collagen are among
the major contributors to light scattering in tissue and are
known to undergo significant changes during disease progression
(74). Taking advantage of these non-invasive and quantitative
measurements, DRS has been used in several studies, with an
eye toward clinical translation, for early cancer detection (75–
77), prediction of response to therapy (78–80), and evaluation
of tumor surgical margins (81). Given the importance of
tumor oxygenation in radiation therapy, DRS can provide
a non-invasive approach to quantify the biological response
to radiation. Vishwanath et al. used DRS to longitudinally
monitor tumor oxygenation and determine whether vascular
oxygenation can identify treatment outcome earlier than tumor
growth assays in a murine model of head and neck cancer
treated with single dose of 39Gy radiation. As early as 5 days
post-radiation, radiation-responsive tumors exhibited faster and
greater increase in vascular oxygenation compared with non-
responding tumors (82). A more recent study from the same
group found similar large increases in vascular oxygenation in
both locally controlled and locally recurring tumors when the
radiation dosage was split into five daily doses instead of a single
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FIGURE 4 | Changes in vascular oxygen saturation across all four doses of radiation for radiation-sensitive (A) and resistant tumors (B). Each radiation dose presents

the mean sO2 value for the following time points: 0 h, immediately after, 24 and 48 h post radiation. Data shown as mean ± SEM. *indicates p < 0.05 and **p<0.01.

Adapted with permission from Diaz et al. (84).

dose. Additionally, the study also found that within the locally
recurring group of tumors, a faster increase in reoxygenation
during therapy was negatively correlated with recurrence time
(83). Diaz et al. recently used DRS to study short-term changes
in vascular oxygen saturation and hemoglobin concentration
in radiation-sensitive and resistant A549 tumors treated with 4
dose fractions of 2Gy (84), and also found significantly higher
reoxygenation in radiation-resistant tumors 24 and 48 h after
treatment (Figure 4).

This study was the first to report changes in reoxygenation
kinetics measured in tumors which were established from
a matched model of radiation-resistance. A matched model
of radiation-resistance allows direct comparison of resistance-
related features due to similar genetic background. While further
studies are necessary to fully understand the mechanism of
reoxygenation in the radiation-resistant tumors, results from
other studies conducted using the same matched model of
radiation resistance hint at the possibility of reduced oxygen
consumption as a possible reason for the appearance of increased
vascular oxygenation within the radiation-resistant tumors.
Although the studies by Hu et al. (83) and Diaz et al. (84) used
different cell lines in formation of tumor xenografts and treated
them with different doses of radiation, they both showed that
radiation-resistant tumors reoxygenate in response to radiation.
These results are in agreement with a clinical study by Dietz
et al. that used oxygen-sensing microelectrodes to measure pO2

in the cervical lymph nodes of head and neck cancer patients
and found that increased reoxygenation correlated with poor
radiation response (85). This suggests that DRS is a sensitive
detector of reoxygenation and can provide valuable information
about radiation response.

Raman Spectroscopy
Raman spectroscopy offers the ability to probe biomolecular
changes and visualize the complex molecular heterogeneity

directly from cells and tissues (86, 87). Spontaneous Raman
spectroscopy relies on the inelastic scattering of light, arising
from its interactions with the biological specimen, to quantify
the unique vibrational modes of molecules within its native
context (88, 89). This exquisite chemical specificity of Raman
spectroscopy has been exploited primarily within the realm of
early detection of cancers of the oral cavity (90, 91), breast
(92–98), cervix (99–101), and the brain (88, 102).

Recent studies have shown the presence of radiation-induced
alterations in Raman spectral features and biochemical changes
in cell lines with varying radiosensitivity (103, 104). The
radiation response of single living cells has been studied
to demonstrate dose-dependent changes in spectral features
using principle component analysis (105, 106). In a series
of human cancer cell lines treated with clinically relevant
doses of radiation (<10Gy), Matthews et al. found radiation-
induced accumulation of intracellular glycogen in relatively
radiation-resistant breast and lung cancer cell lines (107). Recent
Raman spectroscopic studies on ex vivo lung and breast tumor
xenografts have also identified elevated levels of glycogen in
tumors exposed to a single, high radiation dose of 15Gy
(108, 109). These findings are of interest because separate non-
imaging studies have identified a critical role for glycogen
synthase kinase (GSK-3β) in the development of radiation
resistance (110).

Radiation-induced changes in Raman spectra of excised
cervical tumors have been shown to differentiate radiation
responders from non-responders while pretreatment Raman
spectra were incapable of predicting radiation response (111). In
a recent study, Paidi et al. investigated whether radiation induced
biomolecular changes detected by Raman spectroscopy could
differentiate between radiation-resistant and sensitive tumors
(112). They treated radiation-resistant and sensitive human
head and neck (HN) and lung tumor xenografts with 2Gy of
radiation twice weekly for 2 weeks and conducted chemometric
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FIGURE 5 | Quantitative MCR-ALS analysis of Raman spectra. (A,B), Boxplots of normalized scores of lipid-rich, collagen-rich, and glycogen-rich MCR-ALS loadings

showing radiation-induced differences in sensitive lung tumors (A549-NT vs. A549-XT) (NT: not treated, XT: X-ray treated) (A) and radiation-induced differences in

resistant lung tumors (rA549-NT vs. rA549-XT) (B). (C,D), Boxplots of normalized scores of lipid-rich and collagen-rich MCR-ALS loadings showing radiation-induced

differences in sensitive head and neck tumors (UM-SCC-22B-NT vs. UM-SCC-22B-XT) (C) and radiation-induced differences in resistant head and neck tumors

(UM-SCC-47-NT vs. UM-SCC-47-XT) (D). The effect size (r), characterizing magnitude of differences between groups, is provided for each comparison. *p < 0.001.

Adapted with permission from Paidi et al. (112).

analysis using multivariate curve resolution-alternating least
squares (MCR-ALS) to uncover biomolecular changes in
the tumor microenvironment. MCR-ALS recovers the pure
spectral profiles of the chemical constituents of the tissue
specimen without a priori information of the composition of
the specimen (113). Paidi et al. found an increase in lipid,
collagen, and glycogen (lung only) levels for both sensitive
and resistant lung and head neck tumors that were treated
with radiation, with a much larger increase in the lipid-
rich and collagen-rich signatures in the radiation-sensitive
tumors (Figure 5) (112). Comparison of the treated tumors
alone (RS-XT vs. RR-XT) pointed to a significantly higher
collagen content in the sensitive tumors compared to their
resistant counterparts in both lung and HN models, which
could be attributed to radiation-induced fibrosis (114, 115).
The lipid results are intriguing due to other studies that
have found elevated levels of fatty acid synthase (FASN) in
radiation-resistant cells (23). These findings demonstrate that
clear spectral distinctions exist between radiation-resistant and
sensitive tumors, and that these distinctions are consistent with

recent work seeking to uncover the molecular mechanisms of
radiation resistance.

DISCUSSION AND FUTURE DIRECTION

The use of optical microscopy and diffuse optical spectroscopy
presents exciting avenues for exploring radiation-induced
changes across different length scales in cells and tissue. The
technologies discussed in this review paper (summarized
in Table 1)—although limited to superficial layers—are
sensitive to two key hallmarks of tumors that play a critical
role in radiation resistance—tumor hypoxia and metabolic
reprogramming. While two-photon excited fluorescence from
NADH and FAD can provide valuable information about
specific metabolic pathways preferred by cells in response
to radiation and the effect of such preferences on radiation
resistance, Raman spectroscopy (or microscopy) can shed
light on hitherto unknown biomolecular species in the tumor
microenvironment that play a role in radiation resistance.
Such studies have the potential to lead to new technologies
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TABLE 1 | Comparison of optical microscopy and spectroscopy techniques for investigating radiation biology.

Technology Source of contrast Quantitative endpoints Advantages Limitations

Diffuse reflectance

spectroscopy

Absorption and elastic

scattering

Vascular oxygenation, vessel

diameter, absorber concentration,

tissue scattering

Non-invasive, low cost, portable Limited penetration depth (1–2mm);

volume-averaged information

Raman spectroscopy Raman (in-elastic)

scattering

Contributions of individual molecular

species (tissue-dependent)

High biomolecular specificity Complex data analysis to extract

meaningful biological information;

limited penetration depth (1–2mm)

Non-linear optical

microscopy

Autofluorescence from

NADH and FAD

Cellular redox state and local fractal

dimension

High resolution, minimal

out-of-focus photodamage

High cost, limited portability for

clinical applications

Fluorescence lifetime Cellular redox state and

protein-binding of NADH and FAD

(bound vs. free)

Independent of fluorophore

concentration

centered on specific biomarkers for continuous monitoring
during radiation treatment. Additionally, these studies can
lead to the identification of novel therapeutic targets that can
be exploited to possibly reverse radiation resistance. While
optical spectroscopy has been at the forefront of optical
technologies attempting to break into the clinical workflow,
more work is required to establish baseline optical endpoints
and the accuracy and reproducibility of these measurements.
In addition, it will be necessary to associate these changes
with specific outcomes corresponding to treatment response
or failure. Optical spectroscopy has faced challenges with
clinical translation, with attempts at early detection of cancer,
discrimination between benign and malignant cancer, and
demarcation of surgical margins not acquiring enough traction.
The principal concerns in these clinical workflows was the
perception that optical spectroscopy could never replace
pathology, which is currently standard-of-care for these
clinical problems. A possible advantage of advancing optical
spectroscopy for measuring tumor response to therapy is
the complete lack of any imaging technology or treatment
biopsies that currently evaluate treatment response during the
treatment regimen. While other imaging modalities such as
optoacoustic imaging (OAI) can measure tumor oxygenation
(116, 117), they have not yet been used in the context of radiation
resistance. If decisions to escalate or de-escalate treatment for
exceptional treatment responders or non-responders are to
be made based on endpoints provided by optical techniques,

near-perfect identification of treatment response within the
first 1–2 weeks will be necessary to effect meaningful change.

Tromberg et al. have demonstrated the ability of optical
spectroscopy to provide an early indicator of chemotherapy
response in breast cancer (78–80). Recent work has also
significantly advanced the translation of non-linear optical
microscopy from a laboratory-only method to the clinic for
imaging the skin (118). The ability to translate two-photon
excited autofluorescence from NADH and FAD to clinically
compatible technologies, such as fiber optic probes could
allow simultaneous determination of cellular redox state and
mitochondrial fractal dimension in vivo. When combined
with other information from DRS and RS, such as vascular
oxygenation and biomolecular content, optical techniques could
provide a powerful addition to a clinical workflow that could
greatly benefit patients by improving response rates and quality
of life.
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