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Abstract: The use of molecular biomarkers for the early detection of heart disease, before their onset of
symptoms, is an attractive novel approach. Ideal molecular biomarkers, those that are both sensitive
and specific to heart disease, are likely to provide a much earlier diagnosis, thereby providing better
treatment outcomes. Galectin-3 is expressed by various immune cells, including mast cells, histiocytes
and macrophages, and plays an important role in diverse physiological functions. Since galectin-3
is readily expressed on the cell surface, and is readily secreted by injured and inflammatory cells,
it has been suggested that cardiac galectin-3 could be a marker for cardiac disorders such as cardiac
inflammation and fibrosis, depending on the specific pathogenesis. Thus, galectin-3 may be a novel
candidate biomarker for the diagnosis, analysis and prognosis of various cardiac diseases, including
heart failure. The goals of heart disease treatment are to prevent acute onset and to predict their
occurrence by using the ideal molecular biomarkers. In this review, we discuss and summarize recent
developments of galectin-3 as a next-generation molecular biomarker of heart disease. Furthermore,
we describe how galectin-3 may be useful as a diagnostic marker for detecting the early stages of
various heart diseases, which may contribute to improved early therapeutic interventions.
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1. Introduction

Heart diseases are a leading cause of death worldwide, killing approximately 17.9 million people
each year. Individuals at risk of heart disease may demonstrate an elevated body weight, blood pressure,
plasma cholesterol and blood glucose, as well as obesity. These factors can be easily measured in primary
healthcare services. In addition to these standard measures, the use of molecular biomarkers may provide
a much earlier detection of heart disease, thereby providing earlier and more efficacious therapeutic
interventions. The detection of ideal molecular biomarkers, those that are both sensitive and specific to
heart disease, are likely to provide an early diagnosis and suggest specific targeted therapy. However,
to date, such ideal biomarkers of heart disease have yet to be identified, despite advances in technologies
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such as multiplex molecular and genetic biomarkers [1,2]. Thus, the aim of this review is to provide an
overview of a candidate molecular heart disease biomarker, galectin-3 (Gal-3).

Galectins are composed of a family of widely expressedβ-galactoside-binding lectins and can modulate
basic cellular functions such as "cell-to-cell" and "cell-to-matrix" interactions, cell growth and differentiation,
tissue regeneration and the regulation of immune cell activities [3–5]. Galectins have been classified
according to their carbohydrate recognition domain (CRD) number and function. The CRDs recognize
β-galactoside residues that form complexes that crosslink glycosylated ligands [6–8]. The following three
types of galectin members are widely accepted (Figure 1): (1) prototype galectins (galectin-1, -2, -5, -7, -10,
-11, -13, -14, and -15), containing a single CRD that form noncovalent homodimers; (2) tandem-repeat
galectins (galectin-4, -6, -8, -9, and -12), carrying two CRD motifs connected by a peptide linker and (3) a
chimera-type galectin (Gal-3), which is characterized by having a single CRD and an amino-terminal
polypeptide tail region [4,7,8]. The members of galectins, numbered consecutively by order of discovery,
are ubiquitously present in vertebrates, invertebrates and, also, protists [3].
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types based on the organization of the galectin carbohydrate recognition domain (CRD).

One member of the family, Gal-3, an approximately 30-kDa chimera-type galectin, is expressed by
various immune cells, including mast cells, histiocytes and macrophages, which are associated with
the mononuclear phagocytic system in various tissues [9]. Although Gal-3 is predominantly present as
a cytosolic protein for cellular function and a nuclei protein for splicing, it is also expressed on cell
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surfaces and secreted into the plasma by various cells [10]. It has been shown that Gal-3 plays an
important role in diverse physiological functions, such as cell growth and differentiation, macrophage
activation, angiogenesis, apoptosis and antimicrobial activity, as well as acting as a mediator of local
inflammatory responses in many pathological conditions [11].

Since Gal-3 is readily expressed on the cell surface, and easily secreted into biological fluids (e.g.,
serum and urine) from injured cells and inflammatory cells, recent studies suggest that cardiac Gal-3
could be a marker for cardiac disorders such as cardiac inflammation and fibrosis, depending on the
specific pathogenesis of human heart diseases [12,13]. Therefore, Gal-3 may be a novel candidate biomarker
for the diagnosis, analysis and prognosis of various cardiac diseases, including heart failure [14–17].

Furthermore, Gal-3 may also be useful for detecting the early stages of some diseases. Gal-3 has
already been used as a possible clinical biomarker in the early detection of myocardial dysfunction,
including acute heart failure [17]. In experimental acute myocarditis following viral infection, Gal-3
has been validated as a biomarker of cardiac fibrotic degeneration in animal models [13,16]. Serum
Gal-3 levels have been used as an early diagnostic biomarker for detecting cardiac degeneration in
acute myocarditis [13] and acute myocardial infarction [16].

Established cardiovascular biomarkers, other than Gal-3, have been investigated for many years
for their ability to differentiate different pathophysiological processes, such as inflammation, injury
and fibrosis. These biomarkers have been used in clinical practices to reveal the pathophysiological
characteristics of heart failure, myocyte injury, ventricular wall stress, fibrosis and cardiac remodeling.
Natriuretic peptides (NPs), soluble ST2 (suppression of tumourigenicity2) (sST2), myocardial troponin I
(cTnI), myocardial troponin T (cTnT), C-reactive protein (CRP) and growth and differentiation factor-15
(GDF-15) are the cardiovascular biomarkers discussed in this review.

In this review, we discuss and summarize the recent developments of Gal-3 as a next-generation
molecular biomarker in not only the patients with various types of heart diseases but, also, the disease-
associated animal models. Furthermore, we provide a possibility of Gal-3 as a diagnostic or prognostic
marker for detecting the early stages of various heart diseases.

2. Current Clinical Studies of Gal-3 as a Possible Biomarker in Heart Disease

Clinically, Gal-3 is studied most intensively in heart disease as a diagnostic or prognostic
marker [14–17]. In addition to heart disease, Gal-3 has also been considered as a biomarker in other
human diseases, such as viral infections [18–20], autoimmune diseases [21–24], diabetes [25–27], kidney
disease [25,26,28,29] and even tumor formations, including thyroid tumors [30–39]. The diverse clinical
involvement of galectins in many diseases has been suggested as a role for the regulators of acute
and chronic inflammation, which is linking inflammation-related macrophages to the promotion of
fibrosis [40]. The evidence suggests that Gal-3 is not an organ-specific marker but a specific marker of
individual pathogenesis, such as inflammation or fibrosis. Therefore, the primary sources for circulating
Gal-3 are not always identified.

Many clinical studies of heart failure suggest that plasma and cardiac Gal-3 levels reflect cardiac
inflammatory responses and can be considered as a possible marker for both cardiac inflammation and
fibrosis, depending on the pathogenesis of heart failure [40]. However, the mechanism responsible for
increased blood levels of Gal-3 remains incompletely defined. Several studies have been conducted on
Gal-3 to assess its prognostic effect in heart failure populations. In general, a high concentration of
plasma Gal-3 correlates with a clinical outcome in heart failure associated with cardiac fibrosis [41,42].
The increased plasma levels of Gal-3 are associated with adverse long-term cardiovascular outcomes
in both patients with acute [43,44] and chronic [45,46] heart failure. However, some studies have
generated conflicting results and suggested that Gal-3 is a poor predictor of mortality [47]. In addition,
some studies have reported contradictory results on the association between plasma and cardiac Gal-3
levels and cardiac fibrosis in heart failure [48–50]. These clinical studies were limited by their small
sample sizes and nondetailed evaluations. However, a large-scale meta-analysis of the plasma Gal-3 in
the general population has revealed that elevated plasma galectin-3 is associated with a high risk of
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cardiovascular mortality and heart failure, in addition to all-cause mortality, and has suggested that
galectin-3 is an important prognostic factor for patients with heart disease [51].

Various heart diseases, such as myocardial infarction, myocarditis, hypertension and subsequent
heart failure, have dynamic interactions between inflammation and fibrosis [52]. Furthermore, recent
studies indicate that Gal-3 is involved in cardiovascular fibrosis as a regulatory molecule in heart
failure and, thus, that Gal-3 inhibition ameliorates myocardial injury, highlighting its therapeutic
potential [53,54]. Atrial fibrillation, the most common arrhythmia presented in clinical practice, can
occur in association with electrical and structural remodeling in the atria. Several lines of evidence
demonstrate that myocardial strain, fibrosis and inflammation are involved in the pathogenesis of
arrhythmia, including atrial fibrillation, in addition to conventional factors such as the increased left atrial
size and the presence of heart failure, coronary heart disease or valvular heart disease. Galectin-3 may be
involved in atrial structural remodeling, which involves progressive fibrogenesis in atrial fibrillation
patients [55]. A meta-analysis of the relationship between baseline circulating Gal-3 levels and the
recurrence of atrial fibrillation in patients undergoing catheter ablation showed that baseline circulating
Gal-3 levels were significantly higher in patients with a recurrence of atrial fibrillation compared to those
without atrial fibrillation [56]. In addition, higher baseline Gal-3 levels were independently associated
with a significantly higher risk of recurrence of atrial fibrillation after catheter ablation [56].

Gal-3 is also reported to be elevated in patients with adult congenital heart disease. A significant
association of Gal-3 with functional capacity, cardiac function and adverse cardiovascular events in
patients with adult congenital heart disease has been reported recently [57]. In pediatric heart surgery,
elevated pre-and postoperative levels of Gal-3 are reported to be associated with an increased risk of
readmission or mortality after the operation [58]. Thus, the clinically available biomarker Gal-3 can be
used for improved risk stratification.

Chronic kidney disease (CKD) is a risk factor for cardiovascular disease (CVD). Many cardiac
biomarkers associated with heart diseases may also reflect the progression of kidney disease. It is
plausible that CKD and CVD are closely interrelated, and patients with CKD have a strong risk of
CVD [59,60]. Gal-3 is associated with myofibroblast proliferation, fibrogenesis, tissue repair and
myocardial remodeling and is also associated with kidney fibrosis and an increased risk of CKD.
Thus, the wide tissue distribution of Gal-3 associated with fibrosis in both CVD and CKD complicates
the utility of Gal-3 as a cardiac biomarker in CKD patients [28]. Furthermore, a strong and negative
correlation between circulating Gal-3 levels and the estimated glomerular filtration rate has been
reported. Renal dysfunction is a determinant of blood Gal-3 levels, and the Gal-3 levels are markedly
elevated in patients with severe renal failure [61–63]. This means that high concentrations of Gal-3
may be associated with the progression of CKD [26]. Furthermore, Gal-3 is reported to play a pivotal
role in renal interstitial fibrosis and the progression of CKD [64]. A glomerular Gal-3 expression was
observed in 81.8% of patients with systemic lupus erythematosus (SLE) nephritis but not in the control
patients [65]. Blood Gal- 3 levels were particularly higher in SLE patients with nephritis than in healthy
controls. Gal-3 may contribute to the glomerulonephritis in SLE, and thus, the inhibition of Gal-3 may
be a promising therapeutic strategy to prevent advanced renal disease.

The potential use of Gal-3 as a diagnostic biomarker and prognostic indicator in various heart
diseases is summarized in Table 1.

Table 1. The potential use of Gal-3 as a diagnostic biomarker and prognostic indicator in various heart diseases.

Heart Disease Usage of Biomarker Potential Use as Biomarkers Refs.

Diagnostic
Biomarkers acute heart failure plasma level • combination with natriuretic

peptide [43]

acute heart failure plasma level • promising prognostic marker [44]

chronic heart failure plasma level • useful in heart failure [66]
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Table 1. Cont.

Heart Disease Usage of Biomarker Potential Use as Biomarkers Refs.

chronic heart failure myocardial and
plasma level • no association with histology [45]

acute myocardial
infarction serum level • no definite relationship with

ventricular remodeling [67]

chronic heart failure myocardial and
plasma level

•marker for both cardiac
inflammation and fibrosis

• circulating Gal-3 do not reflect
cardiac fibrosis

[12]

Prognostic
Indicators chronic heart failure plasma level

• association of Gal-3 with
increased risk for incident heart

failure and mortality
[41]

cardiovascular disease plasma level
• association of Gal-3 with age

and risk factors of
cardiovascular disease

[42]

chronic heart failure plasma level

• not suggested to be a predictor
of mortality

• candidate marker of a
multi-biomarker panel in

prognostication

[47]

chronic heart failure plasma level

• association of Gal-3 with
severe heart failure

• no prediction of outcomes
after device implantation

[48]

heart failure
undergoing heart
transplantation

plasma
levelmyocardial Gal-3

expression

• insufficient use of Gal-3 as a
marker of heart

• local expression of
myocardial Gal-3

[49]

heart failure of
hypertensive origin

biopsies and plasma
samples

• cardiac and systemic excess
Gal-3 in heart failure patients
• no association with histology

[50]

cardiovascular
mortality and
heart failure

plasma level
• large-scale meta-analysis

• important prognostic value for
heart disease

[51]

atrial fibrillation circulating Gal-3 level
• significantly higher in patients

with recurrence of
atrial fibrillation

[56]

adult congenital
heart disease serum level • association of Gal-3 with

adverse cardiovascular events [57]

pediatric congenital
heart disease serum level

• association of Gal-3 with
increased risk of readmission or

mortality after the operation
[58]

3. Current Guidelines for the Clinical Use of Biomarkers in Heart Disease

The clinical use of established or recommended biomarkers in the diagnosis and risk management
of heart failure has been indicated by some representative guidelines. The Heart Failure Society of
America (HFSA), European Society of Cardiology (ESC) and American College of Cardiology Foundation
(ACC)/American Heart Association (AHA) have indicated that the NPs, circulating hormones secreted
by cardiomyocytes in the heart ventricles, play an important role in the regulation of the intravascular
blood volume and vascular tone and act as useful diagnostic biomarkers in patients suspected of
heart failure [46,68–70]. Guideline management based on biomarkers has brought a new dimension in
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diagnosis, prognosis and treatment evaluation. However, the utilities of novel biomarkers other than
NPs are not well-established in clinical routine analyses. The National Academy of Clinical Biochemistry
(NACB) recommended the clinical assessment and analytical perspectives of novel biomarkers in the
diagnosis and management of heart failure [71]. The novel biomarkers in these criteria need to be
able to recognize the fundamental causes of heart failure, assess their severity and foresee the risk of
disease progression. In fact, with regards to Gal-3 as a novel biomarker, the ACC/AHA guidelines
recommended the use of Gal-3 for the assessment of cardiac fibrosis in heart failure; however, thus far,
the ESC has not recommended the clinical use of Gal-3 [72].

4. Established Cardiovascular Biomarkers Other than Gal-3

As mentioned in the above section, beside the recommendation of NPs by several guidelines on
heart failure, many other biomarkers have been investigated as to whether they could reflect different
pathophysiological processes such as inflammation, injury and fibrosis. In fact, many candidate protein
markers reveal the pathophysiological characteristics of heart failure, including inflammation, myocyte
injury, biochemical wall stress, fibrosis and cardiac remodeling. Below, we describe established and
novel biomarkers for heart disease.

4.1. NPs

Since the first discovery of NP structures and functions in humans in 1984, three types of NPs have
been identified in mammals: atrial natriuretic diuretic peptide (ANP), cerebral natriuretic peptide (BNP)
and C-type natriuretic peptide (CNP). In particular, BNP and N-terminal-proBNP (the prohormone
proBNP is cleaved to the active BNP and the inactive amino acid N-terminal proBNP (NT-proBNP))
are the gold standard clinical diagnostic biomarkers as heart failure biomarkers [73]. In healthy adults,
BNP blood levels are less than 25 pg/mL, and NT-proBNP levels are less than 70 pg/mL [74].

Heart failure is a complex, progressive clinical condition in which the heart fails to pump enough
blood to supply the body with the amount of blood it needs. Heart failure is a progressive condition that
is accompanied by sudden dysfunction. The rapid and accurate diagnosis of heart failure is essential
when the progression of the disease is rapid. The diagnosis of heart failure is based on a physical
examination and the patient’s history, and additional diagnostic tests such as electrocardiography,
chest radiography, echocardiography and NT-proBNP have been found to be useful as a means of the
further detailed diagnosis of heart failure.

According to the 2016 ESC guidelines [69], measuring plasma NPs can help differentiate both
nonacute and acute heart from noncardiac conditions. However, high levels of NPs do not definitively
confirm heart failure; therefore, the use of NPs is not recommended to establish the final diagnosis.

It is recommended to use plasma NP concentrations as a clinical test at the first visit of patients
with nonacute symptoms if echocardiography is not rapidly available: NT- proBNP < 125 pg/ml = a
low probability of heart failure.

A similar concept in the case of acute symptoms but with a higher cut-off value: NT-proBNP
< 300 pg/mL = less chance of heart failure. The guideline recommends differentiating acute heart
failure from acute dyspnea of noncardiac origin by measuring NT-proBNP in emergency patients with
suspected acute dyspnea or acute heart failure.

It is widely recognized that the mechanisms that contribute to the development of heart failure
include a complex bidirectional interaction between the kidney and the heart, which is expressed in
the term cardiac-renal syndrome (CRS). In a wave of new urinary biomarkers associated with CRS,
CNP has emerged as an innovative biomarker of renal structural and functional impairment in heart
failure and chronic renal disease states. CNP as a diagnostic and prognostic biomarker in heart failure
and renal disease states is expected to have future clinical utility [75].
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4.2. Soluble ST2 (sST2)

ST2 (suppression of tumourigenicity2) is a member of the interleukin (IL)-1 family and has both
a membrane-bound receptor type (ST2L) and soluble (sST2) isoform. In the physiological stretch
state of the heart, myofibroblasts release IL-33, which binds to ST2L and promotes cell survival and
integrity. This ST2L/IL-33 signaling is regulated by the sST2, which is a decoy of IL-33 secreted by
cardiac fibroblasts in response to cardiac pressure and volume overload [76]. However, when local and
neighboring cells abnormally increase the release of sST2, it excessively blocks IL-33/ST2L-binding,
which is detrimental to the heart. That is, sST2 acts as a decoy receptor for IL-33 to regulate excessive
IL33 signaling under normal conditions, but under pathological conditions, it excessively represses
IL-33 signaling, resulting in the interruption of ST2L-mediated cardioprotection. This imbalance in
sST2 levels in the extracellular space of the heart is strongly associated with major cardiovascular
disorders, including coronary artery disease, heart failure and valvular heart disease [77,78]. Thus,
sST2 has come to be used as a biomarker of cardiac stress and fibrosis, and its circulating blood levels
are now approved as an additional stratification factor for heart failure [79] and as a biomarker of
ventricular remodeling and fibrosis, along with Gal-3 [46].

Recent studies have demonstrated that elevated ST2 levels in acute heart failure are prognostic for
both recurrent hospitalization and mortality [80] and that ST2 levels in response to drug treatments are
associated with improved outcomes in patients with chronic heart failure [81]. Thus, while sST2 is a
biomarker of myocardial wall stress and the activation of the fibrosis pathway, sST2 is also expressed
in organs other than the heart and is not specific to heart failure, making its use for diagnostic purposes
in non-heart failure patients problematic.

4.3. Myocardial Troponin I (cTnI) and Myocardial Troponin T (cTnT)

The troponin complex, consisting of three subunits: Troponin T, I and C, regulates calcium-mediated
muscle contractions between actin and myosin in both skeletal and cardiac muscles. The cardiac-specific
isoforms of the troponin subunits cTnI and cTnT have very low or barely detectable blood levels in
normal myocardium, but the blood levels of cTnI and cTnT are elevated when myocardial infarction
damages cardiomyocytes. They are currently considered to be the most specific markers of myocardial
damage, and clinical tests of cTnI and cTnT have been found to be clinically useful for the relative
mortality risk classification of patients with acute coronary syndrome (ACS). The system for measuring
cardiac troponin in the blood uses cardiac-specific antibodies that do not cross-react with skeletal muscle.
Cardiac troponin is the diagnostic criteria for acute myocardial infarction [82,83].

4.4. C-reactive Protein (CRP)

CRP is a nonspecific blood marker of biological disease. The measurement of plasma CRP levels
has proven clinically useful in the diagnosis and management of infectious diseases and the monitoring
of a variety of noninfectious inflammatory diseases, including heart disease.

The importance of high-sensitive C-reactive protein (hs-CRP) measurements has also been
reported. One small cohort study concluded that about 70% of patients with hs-CRP values above
4.25 mg/L at 90-day hospitalization died, compared to only 6.5% of patients with hs-CRP values below
4.25 mg/L [84]. Of note, Japanese people are characterized by lower mean CRP levels (one-third to
one-fourth) compared to Westerners; however, a large cohort study revealed that higher levels of
hs-CRP are associated with an increased risk of cardiovascular death and myocardial infarction, which
may be useful in assessing cardiovascular disease risk [85,86].

4.5. Growth and Differentiation Factor-15 (GDF-15)

GDF-15, a member of the transforming growth factor-beta superfamily, also known as macrophage
inhibitory cytokine-1 (MIC-1) or nonsteroidal anti-inflammatory drug-activating gene (NAG-1), has
been implicated in pathologies such as inflammation, cancer, cardiovascular disease, lung disease
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and kidney disease. Cardiomyocytes produce and secrete GDF-15 in response to oxidative stress,
stimulation by angiotensin II or proinflammatory cytokines, ischemia and mechanical stretch. Cell
sources other than cardiomyocytes are known to include macrophages, vascular smooth muscle cells,
endothelial cells and adipocytes, which secrete GDF-15 in response to oxidative or metabolic stress or
stimulation by proinflammatory cytokines. GDF-15 is thought to protect the heart and adipose tissue,
as well as endothelial cells, by inhibiting JNK (c-Jun N-terminal kinase), Bad (Bcl-2-associated death
promoter) and EGFR (epidermal growth factor receptor) and activating the Smad, eNOS, PI3K and
AKT signaling pathways [87].

GDF-15 can be used as a prognostic marker in patients with cardiovascular disorders in combination
with conventional prognostic factors such as NT-proBNP and hs-TnT, as it is induced in hypertrophic
and dilated cardiomyopathy after volume overload, ischemia and heart failure [88]. GDF-15 has also
been shown to predict both the morbidity and mortality of CVD and cancer in apparently healthy older
men [89]. It is interesting to suggest here that GDF-15 expression may be a common early indicator
of cellular vulnerability to the development of vascular and cancer diseases. Measurements of sST2,
hs-TnI and GDF-15 in the general population have also shown that sST2, GDF-15 and hs-TnI, in addition
to established biomarkers such as hs-CRP, can predict cardiovascular risks [90]. GDF-15 has also been
widely studied for its usefulness as a biomarker of cardiovascular events in diabetic patients, and it is
interesting to note that GDF-15 was the only biomarker associated with cardiovascular events in patients
with type 2 diabetes [91]. It has also been suggested that GDF-15 may be a new biomarker for identifying
high-risk patients with muscle wasting and kidney dysfunction prior to cardiovascular surgery [92].

In a recent study of three biomarkers: Galectin 3, sSt2 and GDF-15 in adult CKD patients, higher
circulating concentrations of all of them were associated with higher mortality, but only elevated
GDF-15 concentrations were associated with an increased incidence of heart failure [93].

Finally, many biomarkers for heart disease, including Gal-3, have low tissue specificity, so it will
be necessary to study them in combination as multiple markers rather than using them alone.

5. Gal-3 as a Biomarker of Cardiac Fibrosis

Cardiac inflammation and fibrosis are tightly implicated in the pathophysiological mechanisms
for the myocardial tissue remodeling of heart failure regardless of its etiology [52]. As the important
cellular and molecular mechanisms contributing to heart failure, the US Food and Drug Administration
has approved Gal-3 as a soluble biomarker for cardiac fibrosis to detect cardiac tissue remodeling [94].
Thus, the serum levels of Gal-3 are associated with cardiac tissue remodeling and cardiac function.
However, whether and how Gal-3 contributes to pathophysiology in cardiac remodeling remains
unclear, especially in clinical settings. Although certain biomarkers involved in extracellular matrix
turnover such as matrix metalloproteinase-3 and monocyte chemoattractant protein-1 at baseline were
highly associated with the pathophysiology of acute myocardial infarction, the serum levels of Gal-3
were not related to the left ventricular remodeling defined by cardiac MRI in patients showing cardiac
dysfunction [67].

The diverse clinical involvement of galectins in many diseases suggests its role as a regulator
of acute and chronic inflammation, linking inflammation-related macrophages to the promotion of
fibrosis [52,95]. Specifically, Gal-3 expression and secretion by macrophages is a major mechanism
linking macrophages to fibrosis. Macrophages are increasingly recognized as a potential therapeutic
target in cardiac fibrosis through interactions with connective tissue fibroblasts [96].

6. Usefulness of Gal-3 in Animal Models

The use of animal models that reproduce the clinical features of heart failure and heart disease
have contributed to new approaches to improve diagnostic techniques and preventive/therapeutic
strategies. As mentioned above, the roles of Gal-3 in heart failure and heart disease in humans are still
controversial; however, many animal models have greatly improved our understanding of Gal-3 as a
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novel biomarker of heart disease. On the other hand, a few studies in animal models have generated
conflicting results and suggested that Gal-3 is not a critical disease mediator of cardiac disease [97,98].

The overexpression of cardiac Gal-3 during early pre-symptomatic stages has been demonstrated
to induce heart failure and heart disease in several studies using animal models. The intrapericardial
injection of recombinant Gal-3 in healthy rats significantly increased the prevalence of cardiac
fibrosis with cardiac remodeling and dysfunction and the induction of heart failure [99,100]. Gal-3
was also found to be colocalized with cardiac-infiltrating macrophages [99]. In contrast, cardiac
remodeling and dysfunction induced by Gal-3 was prevented by a pharmacological inhibitor of Gal-3,
N-acetyl-seryl-aspartyl-lysyl-proline [99]. An early increase in Gal-3 expression occurs in hypertrophied
hearts, prior to the development of heart failure in a rat model of heart failure, with Gal-3 inducing
cardiac fibroblast proliferation, collagen deposition and ventricular dysfunction [100]. This suggests
that Gal-3 may be a novel biomarker candidate for the early stages of heart failure and that antagonizing
Gal-3 at the early stages of heart failure may be a useful novel heart failure therapy. In a rat model
subjected to pulmonary artery banding to induce right ventricular heart failure, Gal-3 was significantly
increased in both the right and left ventricles, and protein kinase C promoted cardiac fibrosis and heart
failure by stimulating the Gal-3 expression [101].

A myocardial ischemia/reperfusion (IR) injury is caused by reperfusion to restore the coronary
blood flow to the ischemic region. IR also initiates an inflammatory response, contributing to adverse
ventricular remodeling, which is possibly promoted by Gal-3. The upregulation of Gal-3, contributing to
IR-induced cardiac dysfunction in a mouse model, has been reported [53]. Gal-3 inhibition ameliorates
myocardial injury and suggests its therapeutic potential. In a rat model of IR injury induced by coronary
artery ligation, a Gal-3 blockade improved ischemic injury through lower myocardial inflammation
and reduced fibrosis [102]. In a mouse model of IR injury in the heart using wild-type and Gal-3
knockout mice, Gal-3 was shown to influence the redox pathways, control cell survival and death and
play a protective role in the myocardium following IR injury [103].

In order to clarify the important role of cardiac Gal-3 expression during the early stage of heart
failure, the time-course analysis of cardiac and serum Gal-3 in viral myocarditis, which was induced
at 12, 24, 48, 96, 168 and 240 hours after a specific virus inoculation, was performed using a mouse
model [13]. Gal-3 was demonstrated as a useful histological biomarker of cardiac fibrosis in acute
myocarditis following a viral infection, and serum Gal-3 levels could be used as an early diagnostic
marker for detecting cardiac fibrotic degeneration in acute myocarditis [13].

As mentioned earlier, Gal-3 expression and secretion by macrophages is a major function of
macrophages not only contributing to excessive macrophage accumulation and their activation in
cardiac tissue but, also, promoting fibroblast activation and proliferation, thus leading to cardiac fibrosis
and cardiac remodeling [96,104]. In a mouse model of coxsackievirus B3 (CVB3)-induced myocarditis,
mice infected with CVB3 and depleted of macrophages by a liposome-encapsulated clodronate treatment
presented a reduction of acute myocarditis and chronic fibrosis, compared with untreated CVB3-infected
mice [105]. In a pressure-overloaded mouse model of heart failure, Gal-3 interacted with aldosterone
in promoting macrophage infiltration and cardiac fibrosis. The pharmacological inhibition of Gal-3
prevented the expression of genes involved in fibrogenesis (collagen type 1 and collagen type 3) and
macrophage infiltration and cardiac remodeling [106]. Interestingly, in a pressure-overloaded mouse
model, induced by transverse aortic constriction, an early upregulation of Gal-3 occurred three days after
transverse aortic constriction in subpopulations of macrophages showing interstitial infiltration [97].
In contrast, large amounts of Gal-3 were localized in a subset of cardiomyocytes adjacent to fibrotic areas
after 7–28 days of transverse aortic constriction [97]. The results indicate that the Gal-3 expressing cells
change depending on the stage (early to late) of disease. Furthermore, these results from animal models
indicate that cardiac-infiltrating macrophages expressing Gal-3 in the early stage are potential therapeutic
targets for cardiac fibrosis and remodeling. Therefore, the early detection of such Gal-3-producing
macrophages by a diagnostic marker is important.
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Gal-3 is a key modulator of macrophages for differentiation or activation [107]. In a mouse model
for acute myocardial infarction, the treatment of intravenous transplantation using human umbilical
cord blood mesenchymal stem cells by modulating the conversion of macrophage subtype M1/M2
reduced the inflammatory response, decreased the serum Gal-3 level, improved cardiac function and
protected the infarcted myocardium [108]. The serum level of Gal-3 is closely associated with the ratio
of M1 macrophages to M2 macrophages, which is an important factor to improve cardiac function and
protect the infarcted myocardium [108].

Representative microphotographs in cardiac lesions showing clear Gal-3 expression are demonstrated
in Figure 2. The cardiac lesions of dilated cardiomyopathy in the late stage of δ-sarcoglycan (SG) knockout
(KO) mice [13] is shown. The cardiac fibrous lesions, including tissue-resident macrophages, which are
usually called histiocytes as a histomorphological term, are seen, with fibroblasts and collagen detected as
blue in azan staining. Many histiocytes in the lesions are clearly seen as dark brown in Gal-3 immunostaining.
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Figure 2. The cardiac lesions of dilated cardiomyopathy in the late stage of δ-sarcoglycan (δ-SG)
knockout (KO) mice. Microphotographs for hematoxylin and eosin (H&E) staining, Azan staining and
immunohistochemistry of Gal-3 are shown. Scale bars in H&E = 1 mm in the upper panel and 100 µm
in the lower panel. Gal-3 expression sites indicated by arrows are identical to the fibrotic areas detected
as blue in azan staining.

The promising animal models reproducing the clinical features of Gal-3 in heart failure and heart
disease are summarized in Table 2.

Table 2. Promising animal models reproducing the clinical features of Gal-3 in heart failure and
cardiovascular disease. IR: ischemia/reperfusion.

Animal
Species Experimental Models Experimental

Methods Experimental Findings Refs.

rat chronic heart failure
intrapericardial

injection of
recombinant Gal-3

•myocardial fibrosis and its
pharmacological inhibition
• prevention of remodeling by

an inhibitor of Gal-3

[99]

rat chronic heart failure
intrapericardial

infusion of low-dose
Gal-3

• increased Gal-3 in
hypertrophied hearts

• a novel biomarker at the early
stages of heart failure

[100]
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Table 2. Cont.

Animal
Species Experimental Models Experimental

Methods Experimental Findings Refs.

rat chronic heart failure banding of the
pulmonary artery • increase of Gal-3 in ventricles [101]

rat ischemia/reperfusion
injury

Gal-3 pharmacological
inhibition

• Gal-3 blockade improved
ischemic injury [102]

mouse acute heart failure viral myocarditis

• time-course analysis of cardiac
and serum Gal-3

• an early diagnostic marker for
cardiac fibrosis

[13]

mouse myocardial fibrosis
angiotensin-mediated

hypertension in
AngII/Cx3cr1-/- mice

•macrophages promoting
fibroblast differentiation and

collagen production
[96]

mouse acute myocarditis and
chronic fibrosis

coxsackievirus
B3-induced
myocarditis

• disruption of Gal-3 gene
reduced acute myocarditis and

chronic fibrosis
[105]

mouse heart failure

isoproterenol-induced
left ventricular

dysfunction
and fibrosis

• interaction of Gal-3 with
aldosterone in promoting

macrophage infiltration and
cardiac fibrosis

[106]

mouse pressure-overloaded
heart

transverse aortic
constriction

• early upregulation of Gal-3
in macrophages

• large amounts of Gal-3 in
cardiomyocytes at the late stage
• Loss of Gal-3 did not affect

survival, cardiac fibrosis
and hypertrophy

[97]

mouse acute myocardial
infarction

intravenous
transplantation of

human umbilical cord
blood mesenchymal

stem cells

• close association of Gal-3 with
the ratio of M1 macrophages to

M2 macrophages
[108]

mouse ischemia/reperfusion
injury

30 min/24 h in
ischemia/ reperfusion

model

• contribution of upregulated
Gal-3 in cardiac dysfunction
• amelioration of myocardial
injury by inhibition of Gal-3

[53]

mouse ischemia/reperfusion
injury

wild-type mice and
Gal-3 knockout mice

• protective role of Gal-3 on the
myocardium following IR injury [103]

mouse several mouse models
of heart disease

cardiac and plasma
Gal-3-level analysis

•multifold increases in cardiac
Gal-3 expression

• etiology-dependency of
increments in circulating Gal-3

[61]

mouse fibrotic
cardiomyopathy

cardiac overexpression
of b2-adrenoceptors

• upregulation of cardiac
Gal-3 expression

• Gal-3 may not be a critical
disease mediator of
cardiac remodeling

[98]

7. Clinical Use of Gal-3 as a Next-generation Biomarker in the Future

As mentioned earlier, the clinical data has not shown that circulating Gal-3 levels reflect cardiac
Gal-3 levels or cardiac fibrosis, although circulating Gal-3 has been demonstrated as a potential
predictor for clinical outcomes in several cohort studies [41,42].
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In a clinical setting, since various degrees of cardiac inflammation and the progression of fibrosis
may be present in a patient with heart disease, blood Gal-3 levels may reflect a sum of different stages
of pathophysiological conditions [12]. This is because the circulating blood levels of Gal-3 in a patient
with various stages of heart disease cannot adequately reflect cardiac inflammation and fibrosis.

An endomyocardial biopsy is widely used as a diagnostic tool for patients with heart disease, such as
myocarditis and secondary cardiomyopathies, which are often difficult to diagnose by conventional
imaging alone [109]. There are many variables in human biopsy material by its nature, unlike those
obtained from experimental animals. Human biopsies are usually performed under different conditions,
variable time periods between biopsy and processing and variations in disease onset or severity. However,
the histological examination of an endomyocardial biopsy is still the gold standard for the final diagnosis,
despite continued advancements in diagnostic and therapeutic strategies [110–112].

In contrast to the clinical data, the blood levels of Gal-3 reflect the cardiac Gal-3 expression or
cardiac fibrosis by using a sophisticated animal model for the time-course histological examination.
Especially in the early phase of pathophysiology, there is a close relationship between the infiltration
of Gal-3-positive macrophages and fibrotic lesions following myocarditis, and the blood levels of Gal-3
are tightly correlated with the number of cardiac Gal-3-positive cells [13]. The difference between the
experimental data from animal studies and clinical findings from individual patients is due to a wide
variability in clinical settings, with differences in sample collections and disease stages or severity.

Since experimental data from animal studies clearly indicate that the blood level of Gal-3 might
be an early diagnostic biomarker for cardiac degeneration or fibrosis in acute myocarditis [13], further
studies are needed to investigate whether such findings are also observed in cardiac degeneration or
fibrosis in human patients. Gal-3 can be used reliably as a predictive biomarker for the early stage
or new onset of heart disease, especially if it is derived from only the first single pathological lesion,
without complicated factors. In addition, Gal-3 can also possibly be used in late stages of the diseases
as an additional indicator for detecting a worse prognosis, mortality and readmission.

8. Conclusions and Perspectives

The blood levels of Gal-3 are altered by different clinical factors depending on the underlying
pathophysiological conditions in patients, and thus, Gal-3 itself is not an organ-specific marker. However,
Gal-3 is a specific marker of pathogenesis, such as macrophage-related disease or fibrosis, and the
cardiac-infiltrating macrophages expressing Gal-3 in the early stages are potential therapeutic targets for
cardiac fibrosis and remodeling. Therefore, the early detection of such Gal-3-producing macrophages by
a diagnostic marker is important. Furthermore, Gal-3 is being tested for personalized medicine based
on biomarker-guided diagnostics, using new technologies such as genetic biomarkers and multiplex
biomarkers, combining multiple markers into a multiplex panel. In pediatric heart surgery, the clinically
available biomarker Gal-3 can be used for improved risk stratification, because Gal-3 has recently
been reported to be associated with an increased risk of readmission or mortality after the operation.
In addition, Gal-3 at the early stages of inflammatory responses may be a potential therapeutic target for
diseases, especially in cardiac fibrosis, autoimmune diseases, neurodegenerative diseases and cardio-
and cerebrovascular diseases.
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