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Abstract

Imputing missing values is common practice in label-free quantitative proteomics. Imputa-

tion aims at replacing a missing value with a user-defined one. However, the imputation itself

may not be optimally considered downstream of the imputation process, as imputed data-

sets are often considered as if they had always been complete. Hence, the uncertainty due

to the imputation is not adequately taken into account. We provide a rigorous multiple impu-

tation strategy, leading to a less biased estimation of the parameters’ variability thanks to

Rubin’s rules. The imputation-based peptide’s intensities’ variance estimator is then moder-

ated using Bayesian hierarchical models. This estimator is finally included in moderated t-

test statistics to provide differential analyses results. This workflow can be used both at pep-

tide and protein-level in quantification datasets. Indeed, an aggregation step is included for

protein-level results based on peptide-level quantification data. Our methodology, named

mi4p, was compared to the state-of-the-art limma workflow implemented in the DAPAR R

package, both on simulated and real datasets. We observed a trade-off between sensitivity

and specificity, while the overall performance of mi4p outperforms DAPAR in terms of F-

Score.

Author summary

Statistical inference methods commonly used in quantitative proteomics are based on the

measurement of peptide intensities. They allow the deduction of protein abundances pro-

vided that sufficient peptides per protein are available. However, they do not satisfactorily

consider peptides or proteins whose intensities are missing under certain conditions, even

though they are particularly interesting from a biological or medical point of view, since
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they may explain a difference between the groups being compared. Some state-of-the-art

statistical proteomics data processing software proposes to impute these missing values,

while others simply remove proteins with too many missing peptides. The statistical treat-

ment is not entirely satisfactory when imputation methods are used, notably multiple

imputation techniques. Indeed, even if these statistical tools are relevant in this context,

the data sets once imputed are considered as having always been complete in the subse-

quent analyses: the uncertainty caused by the imputation is not taken into account. These

analyses generally conclude with a study of the differences in protein abundances between

the different conditions, either using Student’s or Welch’s test for the most rudimentary

approaches or using the t-tempered testing techniques based on empirical Bayesian

approaches. Thus, we propose a new methodology that starts by imputing missing values

at the peptide level and estimating the uncertainty associated with this imputation and

naturally extends by incorporating this uncertainty into the current moderated variance

estimation techniques.

This is a PLOS Computational Biology Methods paper.

Introduction

Dealing with incomplete data is one of the main challenges as far as statistical analysis is con-

cerned. Different strategies can be used to tackle this issue. The simplest way consists of delet-

ing from the dataset the observations for which there are too many missing values, leading to a

complete-case dataset. However, it causes information loss, might create bias, and ultimately

could result in poorly informative datasets. Some methods combining qualitative and quanti-

tative statistical tools can also be considered [1]. Another way to cope with missing data is to

use methods that account for the missing information. For the last decades, researchers advo-

cated the use of a single technique called imputation. Imputing missing values consists of

replacing a missing value with a value derived using a user-defined formula (such as the mean,

the median or a value provided by an expert, thus considering the user’s knowledge). Hence it

makes it possible to perform the analysis as if the data were complete. More particularly, the

vector of parameters of interest can be then estimated. Single imputation means completing

the dataset once and considering the imputed dataset as if it was never incomplete, see Fig 1.

However, single imputation has the major disadvantage of discarding the variability from the

missing data and the imputation process. It may also lead to a biased estimator of the vector of

parameters of interest.

Multiple imputation [2] closes this loophole by generating several imputed datasets. These

datasets are then used to build a combined estimator of the vector of parameters of interest by

usually using the mean of the estimates among all the imputed datasets, see Fig 2. This com-

bined estimator is known as the first Rubin’s rule. The second Rubin’s rule states a formula to

estimate the variance of the combined estimator, decomposing it as the sum of the intra-impu-

tation variance component and the between-imputation component. The rule of thumb takes

the number of imputed datasets as the percentage of missing values in the original dataset [3].

Recent work focused on better estimating the Fraction of Missing Information [4] or improv-

ing that rule [5]. Note that Rubin’s rules cannot be used in order to get a combined imputed
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dataset but instead provide an estimator of the vector of parameters of interest and an estima-

tor of its covariance matrix, both based on the multiple imputation process, see Fig 2.

Dealing with missing values is also one of the main struggles in label-free quantitative pro-

teomics. Intensities of thousands of peptides are obtained by liquid chromatography-tandem

mass spectrometry, using extracted ion chromatograms. Missing peptides’ intensities arise

from various reasons (biological, analytical, bioinformatical) and obey different missing values

mechanisms. For example, the considered peptide is missing in the given biological sample,

and the intensity is then missing not at random (MNAR) or it could have not been accurately

identified (non searched biochemical modification or peptides co-elution, . . .) and the inten-

sity is then missing at random (MAR).

In state-of-the-art software for statistical analysis in label-free quantitative proteomics, sin-

gle imputation is the most commonly used method to deal with missing values. The MSstats
R package (available on Bioconductor) [6] distinguishes missing completely at random values

from missing values due to low intensities. The user can then choose to impute the censored

value using either a threshold value or an Accelerated Failure Time model. The Perseus soft-

ware [7] offers three methods for single imputation: either imputing by “NaN”(hence ignoring

missing values in downstream analysis), impute by a user-defined constant or impute accord-

ing to a Gaussian distribution in order to simulate intensities, which are lower than the limit of

Fig 1. Single imputation strategy. (1) Initial dataset with missing values. It is supposed to be made of N observations

that are split into K groups. (2) Single imputation provides an imputed dataset. (3) The vector of parameters of interest is

estimated based on the single imputed dataset.

https://doi.org/10.1371/journal.pcbi.1010420.g001

Fig 2. Multiple imputation strategy. (1) Initial dataset with missing values. It is supposed to have N observations that are

split into K groups. (2) Multiple imputation provides D estimators for the vector of parameters of interest. (3a) The D

estimators are combined using the first Rubin’s rule to get the combined estimator. (3b) The estimator of the variance-

covariance matrix of the combined estimator is provided by the second Rubin’s rule.

https://doi.org/10.1371/journal.pcbi.1010420.g002
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detection. As far as machine learning is concerned, a method for imputing missing values in

label-free mass spectrometry-based proteomics datasets was suggested [8]. Note that the

authors of the MSqRob R package recently proposed to bypass imputation with a hurdle

model that combines count-based differential detection with intensity-based differential abun-

dance [9].

The ProStaR software based on the DAPAR R package splits missing values into two catego-

ries, whether they are Missing in an Entire Condition (MEC) or Partially Observed Values

(POV) and allow them to be imputed using different methods [10, 11]. The software allows

single imputation, using either a small quantile from the distribution of the considered biologi-

cal sample, the k-Nearest Neighbours (kNN) algorithm or the Structured Least Squares Adap-

tative algorithm or by choosing a fixed value. The PANDA-view software [12] also enables the

use of the kNN algorithm or a fixed value. Moreover, both software programs allow the possi-

bility of imputing the dataset several times before combining the imputed datasets to get a

final dataset without any missing values. PANDA-view relies on the mice R package [13],

whereas ProStaR accounts for the nature of missing values and imputes them with the imp4p
R package [14, 15]. However, both software programs consider the final dataset as if it had

always been complete. The uncertainty due to multiple imputation is not properly taken into

account downstream of the imputation step.

In the following, we will conduct the multiple imputation process to its end and use the

imputed datasets to provide a combined estimator of the vector of parameters of interest as

well as a combined estimator of its variance-covariance matrix estimator. We will then project

this matrix to get a unidimensional variance estimator before moderating it using the empiri-

cal Bayes procedure [16, 17]. It is well known that such a moderating step highly improves the

following statistical analyses such as significance testing of confidence interval estimation,

both at the peptide level [18, 19] or the protein level [19, 20].

Methods

Multiple imputation algorithms

Several methods for imputing missing values in mass spectrometry-based proteomics datasets

were developed in the last decade. However, the recent benchmarks of imputation algorithms

do not reach a consensus (as shown in S1 Table). This is mainly due to the complex nature of

the underlying missing values mechanism. This work focuses on some of the most commonly

used methods, which are described in Table 1. The k-nearest neighbours (kNN) method [21–

23] imputes missing values by averaging the k-nearest observations of the given missing value

in terms of Euclidean distance. The Maximum Likelihood Estimation (MLE) method imputed

missing values using the EM algorithm [15, 24]. The Bayesian linear regression (norm)

method imputes missing values using the normal model and following the method described

and implemented in the mice R package [25, 26]. Some methods implemented in the imp4p
R package [15] were also considered, namely principal component analysis (PCA) [27] and

Table 1. Overview of the imputation methods considered in this work.

Method Implementation References

k-nearest neighbours impute.knn (impute R package) [21–23]

Maximum likelihood estimation impute.mle (imp4p R package) [15, 24, 26]

Bayesian linear regression mice (mice R package) [24, 25]

Principal component analysis impute.pca (imp4p R package) [15, 27]

Random forests impute.RF (imp4p R package) [15, 28]

https://doi.org/10.1371/journal.pcbi.1010420.t001
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random forests (RF) method [28]. We repeated the imputation process D times to obtain D
imputed datasets for each method considered. We set the number of draws D equal to the ceil-

ing of the proportion of missing values in the dataset [3]. Note that if the proportion of missing

values is less than 1%, the number of draws is set to 2.

Estimation of the parameters of interest

The objective of multiple imputation is to estimate from D drawn datasets the vector of param-

eters of interest βp = (βp1, . . ., βpK) (e.g. being the vector of coefficients of the linear model for

peptide p) and its variance-covariance matrix Sp. Notably, accounting for multiple-imputa-

tion-based variability is possible thanks to Rubin’s rules, which provide an accurate estimation

of these parameters [25]. Hence, the first Rubin’s rule provides the combined estimator of βp:

β̂p ¼
1

D

XD

d¼1

β̂p;d; ð1Þ

where β̂p;d is the estimator of βp in the d-imputed dataset. The second Rubin’s rule gives the

combined estimator of the variance-covariance matrix for each estimated vector of parameters

of interest for peptide p through the D imputed datasets such as:

Σ̂p ¼
1

D

XD

d¼1

Wd þ
Dþ 1

DðD � 1Þ

XD

d¼1

ðβ̂p;d � β̂pÞ
T
ðβ̂p;d � β̂pÞ; ð2Þ

where Wd denotes the variance-covariance matrix of β̂p;d, i.e. the variability of the vector of

parameters of interest as estimated in the d-th imputed dataset.

Projection of the covariance matrix

State-of-the-art tests, including Student’s t-test, Welch’s t-test and moderated t-test, rely on

the variance estimation. Here, the variability induced by multiple imputation is described by a

variance-covariance matrix, given by Eq 2. Therefore, a projection step is required to get a uni-

variate variance parameter. Rubin’s second rule decomposes the variability of the combined

dataset as the sum of the within-imputation variability and the between-imputation variability.

Thus, analytes whose values have been imputed should have a greater variance estimation than

if the multiple imputation-induced variability was not accounted for. This amounts to “penal-

ising” analytes for which intensity values were not observed and subsequently imputed.

Hence, the projection method needs to be wisely chosen. In our work, we chose to perform

projection using the following formula:

ŝp ¼ max
k
ðŜp;ðk;kÞX

tXÞ ð3Þ

where Ŝp;ðk;kÞ is the k-th diagonal element of the matrix Ŝp and X is the design matrix. Never-

theless, it is to be noted that this choice for the projection method is not without consequences.

Indeed, this method greatly penalises imputed analytes. However, analytes that show high vari-

ance estimations might be wrongly considered non differentially expressed, as their distribu-

tions in each condition to be compared can overlap.

Hypotheses testing

In our work, we focus our methodology on the moderated t-test [16] that relies on the empiri-

cal Bayes procedure, commonly used in microarray data analysis, and to a more recent extent
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for differential analysis in quantitative proteomics [10]. Hence, we consider the following

Bayesian hierarchical model:

ŝ2
p j s

2
p �

s2
p

dp
� w2

dp

1

s2
p

�
1

d0 � s2
0

� w2

d0

8
>>><

>>>:

ð4Þ

where s2
p is the peptide-wise variance, dp is the residual degrees of freedom for the linear

model for peptide p, d0 and s0 are hyperparameters to be estimated [17]. This leads to the fol-

lowing posterior distribution of
1

s2
p

conditional to ŝ2
p:

1

s2
p

j ŝ2

p �
1

dp � ŝ
2
p þ d0 � s2

0

w2

dpþd0
ð5Þ

From there, a so-called moderated variance estimator ŝ2
p½mod� of the variance s2

p is derived from

the posterior mean:

ŝ2

p½mod� ¼
dp � ŝ

2
p þ d0 � s2

0

dp þ d0

ð6Þ

This estimator ŝ2
p½mod� is then computed in the test statistic associated to the null hypothesis

H0 : bpj ¼ 0, by replacing the usual sample variance by ŝ2
p½mod� into to the classical t-statistic

(see Eq 7). Therefore, the results of this testing procedure account both for the specific struc-

ture of the data and the uncertainty caused by the multiple imputation step.

Tpj½mod� ¼
b̂pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
p½mod�ðX

TXÞ� 1

j;j

q ð7Þ

with ðXTXÞ� 1

j;j the j-th diagonal element in the matrix (XTX)−1 and b̂pj is the j-th coefficient of

the linear model for peptide p. Under the null hypothesis H0, Tpj[mod] is assumed to follow a

Student distribution with dp + d0 degrees of freedom.

As there are as many tests performed as the number of peptides considered, the proportion

of falsely rejected hypotheses has to be controlled. Here, the Benjamini-Hochberg False Dis-

covery Rate control procedure was performed using the cp4p R package [29, 30].

Note that the implementation of the aforementioned testing framework strongly relies on

the limma R package. Hence, this work can be generalised to any experimental design.

Aggregation

The methodology implemented in the mi4p R package can be applied to peptide-level quanti-

fication data as well as protein-level quantification data. However, common practice in proteo-

mics consists in inferring results at the protein level from peptide-level data. In particular,

imputation should be performed at the peptide level, before aggregating peptides into proteins

[31]. Therefore, we adjusted our pipeline as follows:

1. Out-filtration of non-unique peptides from the peptide-level quantification dataset.

2. Normalisation of the log2-transformed peptide intensities.

3. Multiple imputation of log2-transformed peptide intensities.
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4. Aggregation by summing all peptides intensities (non-log2-transformed) from a given pro-

tein in each imputed dataset.

5. log2-transformation of protein intensities.

6. Estimation of variance-covariance matrix.

7. Projection of the estimated variance-covariance matrix.

8. Moderated t-testing on the combined protein-level dataset

Indicators of performance

We compared our methodology to the limma testing pipeline implemented in the state-of-

the-art ProStaR software, through the DAPAR R package, as described in Fig 3. To assess the

performances of both methods, we used the following measures: sensitivity (also known as

true positive rate or recall), specificity (also known as true negative rate), precision (also

known as positive predictive value), F-score and Matthews correlation coefficient. In our

work, we define a true positive (respectively negative) as a peptide/protein that is correctly

considered as (not) differentially expressed by the testing procedure. Similarly, we define a

false positive (respectively negative) as a peptide/protein that is falsely considered as (not) dif-

ferentially expressed by the testing procedure.

Results and discussion

Simulated datasets under missing at random assumption

Simulation designs. We evaluated our methodology on three types of simulated datasets.

First, we considered an experimental design where the distributions of the two groups to be

compared scarcely overlap. This design led to a fixed effect one-way analysis of variance model

(ANOVA), which can be written as:

ypnk ¼ mþ dpk þ �pnk ð8Þ

with μ = 100, δpk = 100 if 1� p� 10 and k = 2 and δpk = 0 otherwise and �pnk � N ð0; 1Þ. Here,

ypnk represented the log-transformed abundance of peptide p in the n-th sample. Thus, we gen-

erated 100 datasets by considering 200 individuals and 10 variables, divided into 2 groups of 5

variables, using the following steps:

1. For the first 10 rows of the data frame, set as differentially expressed, draw the first 5 obser-

vations (first group) from a Gaussian distribution with a mean of 100 and a standard devia-

tion of 1. Then draw the remaining 5 observations (second group) from a Gaussian

distribution with a mean of 200 and a standard deviation of 1.

2. For the remaining 190 rows, set as non-differentially expressed, draw the first 5 observa-

tions as well as the last 5 observations from a Gaussian distribution with a mean of 100 and

a standard deviation of 1.

Secondly, we considered an experimental design, where the distributions of the two groups

to be compared might highly overlap. Hence, we based it on the random hierarchical ANOVA

model [31, 32]. The simulation design followed the following model:

ypnk ¼ Pp þ Gpk þ �pnk ð9Þ

where ypnk is the log-transformed abundance of peptide p in the n-th sample, Pp is the mean

PLOS COMPUTATIONAL BIOLOGY Accounting for multiple imputation-induced variability for differential proteomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010420 August 29, 2022 7 / 26

https://doi.org/10.1371/journal.pcbi.1010420


value of peptide p, Gpk is the mean differences between the condition groups, and �pnk is the

random error terms, which stands for the peptide-wise variance. We generated 100 datasets by

considering 1000 individuals and 20 variables, divided into 2 groups of 10 variables, using the

following steps:

1. Generate the peptide-wise effect Pp by drawing 1000 observations from a Gaussian distribu-

tion with a mean of 1.5 and a standard deviation of 0.5.

Fig 3. Workflow conducted for performance evaluation of the mi4p methodology and comparison to the one implemented in the DAPAR R
package.

https://doi.org/10.1371/journal.pcbi.1010420.g003
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2. Generate the group effect Gpk by drawing 200 observations (for the 200 individuals set as

differentially expressed) from a Gaussian distribution with a mean of 1.5 and a standard

deviation of 0.5 and 800 observations fixed to 0.

3. Build the first group dataset by replicating 10 times the sum of Pp and the random error

term, drawn from a Gaussian distribution of mean 0 and standard deviation 0.5.

4. Build the second group dataset by replicating 10 times the sum of Pp, Gpk and the random

error term drawn from a Gaussian distribution of mean 0 and standard deviation 0.5.

5. Bind both datasets to get the complete dataset.

Finally, we considered an experimental design similar to the second one, but with random

effects Pp and Gpk. The 100 datasets were generated as follows.

1. For the first group, replicate 10 times (for the 10 variables in this group) a draw from a mix-

ture of 2 Gaussian distributions. The first one has the following parameters: a mean of 1.5

and a standard deviation of 0.5 (corresponds to Pp). The second one has the following

parameters: a mean of 0 and a standard deviation of 0.5 (corresponds to �pnk).

2. For the second group replicate 10 times (for the 10 variables in this group) a draw from a

mixture of the following 3 distributions.

1. The first one is a Gaussian distribution with the following parameters: a mean of 1.5 and

a standard deviation of 0.5 (corresponds to Pp).

2. The second one is the mixture of a Gaussian distribution with a mean of 1.5 and a stan-

dard deviation of 0.5 for the 200 first rows (set as differentially expressed) and a zero vec-

tor for the remaining 800 rows (set as not differentially expressed). This mixture

illustrates the Gpk term in the previous model.

3. The third distribution has the following parameters: a mean of 0 and a standard devia-

tion of 0.5 (corresponds to �pnk).

All simulated datasets were then amputed to produce MAR missing values in the following

proportions: 1%, 5%, 10%, 15%, 20% and 25%.

Comparison of imputation methodologies. To compare the imputation methods con-

sidered in Table 1, we used the synthetic data from the aforementioned second set of MAR

simulations. Let us highlight that reviews on imputation methods evaluation often base their

study on real datasets by subsetting them to complete data and amputating them afterwards

(S1 Table). However, such approaches remain limited, as the parameters of the data cannot be

controlled. Recall that we simulated 100 datasets, which were amputated afterwards. Hence

both imputed and real values can be accessed. In this section, we aim at evaluating the poten-

tial bias that can arise from the imputation process. We based our comparison on the ampu-

tated datasets with a proportion of missing values of 10%, so we impute each dataset DQ = 10

times. Consider then the set of all missing values coming from the Q = 100 datasets. Let nq
denote the number of missing values in the q-th dataset, with 1� q� Q. The set of all missing

data is then constituted of NQ ¼
PQ

q¼1

nq elements. In our work, we take the number of draws for

multiple imputation as the percentage of missing values. Therefore, multiple imputation pro-

duces ten vectors of size NQ corresponding to the ten draws of the considered vector.

Imputation error for each draw. To evaluate the performance of the imputation method-

ologies considered, we first consider the error on each draw. Let yi denote the i-th value in the
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previously defined set and yðdÞi the d-th draw for yi. Hence, we define the error εðdÞi for each

imputed value yðdÞi as:

εðdÞi ¼ yðdÞi � yi; 8i 2 1; � � � ;NQ; 8d 2 1; � � � ;DQ:

The DQ × NQ errors are calculated for all imputation method considered, namely kNN, MLE,

norm, PCA and RF (detailed in Table 1). To compare the performances of these methods, Fig

4 summarises the distributions of ðεðdÞi Þi¼1;...;Nq ;d¼1;...;DQ
for the five imputation methods consid-

ered. First, it is comforting to observe that the errors are all centred on zero. Moreover, let us

also point out that the MLE and norm methods provide a slightly increased variability com-

pared to other methods. The kNN, PCA and RF methods show equivalent performance as far

as single imputation is concerned.

Imputation error for the mean of draws. Following the first Rubin’s rule (Eq 1), the DQ

drawn datasets are combined using the mean. In order to provide additional insights about the

empirical errors of the different multiple-imputation procedures, let us compute the differ-

ences between the averaged imputed values used in practice and the actual values. For each

imputation method, the errors are averaged over the DQ draws (corresponding to the DQ

Fig 4. Distribution of empirical errors for the five imputation methods considered on the second set of MAR simulations.

https://doi.org/10.1371/journal.pcbi.1010420.g004
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different imputations), which we expect to stabilise the error values. In contrast to the previous

approach, the associated formula becomes:

εi ¼
1

DQ

XDQ

d¼1

yðdÞi � yi; 8i 2 1; � � � ;NQ:

Fig 5 suggests equivalent performance for all five methods as far as the mean of all imputed

datasets is concerned. In terms of variability, we can still observe a slightly increased interquar-

tile range for the MLE imputation method.

Computation time. As a complement to determine the advantages of each approach, we

compared the running time of all imputation processes. Therefore, we considered the total

time needed for imputing each simulated dataset DQ times. The boxplots on Fig 6 highlight the

MLE and kNN method to be the fastest.Compared to MLE imputation method, the PCA
method is on average 3.5 times slower and the norm and RF methods are respectively on aver-

age 7.4 times and 8.1 times slower. At this stage of the comparison, as all imputation methods

exhibit comparable performances in terms of imputation bias, a preference can be drawn for

the kNN and MLE methods.

Fig 5. Distribution of errors of the averaged imputed values for the five imputation methods considered on the second set of MAR simulations.

https://doi.org/10.1371/journal.pcbi.1010420.g005
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Influence on testing results. The evaluation of performance for our mi4p methodology

relies on the results produced by the testing procedure. For the MAR simulation designs, test-

ing results were provided for all imputation methods considered. However, we could observe

that no positives were produced for some datasets. As a summary, Table 2 describes under

which conditions such pathological datasets arise in the second set of MAR simulations. The

mi4p workflow dramatically underperforms at detecting positives when using the norm
imputation method. The high number of pathological datasets can be explained by this

method being a global one (i.e. applied to the full dataset), whereas other methods considered

are local in that they are applied experimental condition-wise. Therefore, the norm method

might lead to an increased between-imputation variability. Otherwise, no pathological cases

occur while using the mi4p method on this particular set of simulated datasets. However, a

few pathological datasets can be consistently observed when using the DAPAR workflow,

regardless of the chosen imputation method. Overall, the MLE imputation offers a slight

advantage over other methods.

A glimpse of real datasets imputation. As a conclusion of this thorough analysis of syn-

thetic data, let us draw some perspectives for the subsequent real datasets study. At this stage,

kNN and MLE imputation methods might equivalently be considered. However, in quantitative

Fig 6. Distributions of duration of the imputation process for the five imputation methods considered on the second set of MAR simulations.

https://doi.org/10.1371/journal.pcbi.1010420.g006
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proteomics datasets, rows sometimes present more than 50% missing values. When this

threshold is exceeded, current kNN method implementations only use mean imputation for

these rows. However, mean imputation results in identical imputed values and no between-

imputation variability arises, preventing from taking advantage of our mi4p methodology.

In contrast, the MLE imputation method still provides reliable imputations for a reduced

computational cost in all situations. Moreover, the MLE method offers a more principled and

interpretable approach compared to alternatives, which also motivated our choice to retain

this method for further analysis of both MNAR + MCAR simulated datasets and real datasets.

Experiments. The distributions of the differences in sensitivity, specificity, precision, F-

score and Matthews correlation coefficient between mi4p and DAPAR for all missing values

proportion were summarised on the boxplots on Fig 7. Detailed results can be additionally

found in S2 Table for MLE imputation and in S3, S4, S5 and S6 Tables for kNN, norm, PCA
and RF imputations respectively. Both methods showed equivalent performance for a small

proportion of missing values (1%), where the imputation process induces little variability.

However, above 5% missing values, precision, F-Score and Matthews correlation coefficient

were increasingly improved with the mi4p workflow compared to the DAPAR one. Moreover,

sensitivity remained at 100% while specificity slightly improved, regardless of the missing

value proportion. Note that the distributions of intensity values within each experimental con-

dition for differentially expressed analytes are separate for the first set of MAR simulations.

Indeed, intensity values for those analytes were drawn from a N ð100; 1Þ distribution for the

first condition and from a N ð200; 1Þ distribution for the second one.

Compared to the first one, the second and the third sets of MAR simulations illustrate a

case where the distributions of intensity values within each experimental condition for

differentially expressed analytes are closer. Indeed, intensity values for these analytes were

approximately drawn from a N ð1:5; 0:5Þ distribution for the first condition and a N ð3; 0:5Þ
distribution for the second one. Fig 8 summarises the evolution of the distribution of differ-

ences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient

between mi4p and DAPAR depending on the proportion of missing values in the second set

of MAR simulations. Detailed results can be additionally found in S7 Table for MLE imputa-

tion and in S8, S9, S10 and S11 Tables for kNN, norm, PCA and RF imputations respectively.

A trade-off between sensitivity and specificity was observed for all proportions of missing val-

ues. Indeed, a slight loss in specificity (yet remaining above 99%) provided a greater gain in

terms of sensitivity. However, precision performance remained equivalent in both methods.

Table 2. Number of pathological cases for each missing value proportion in the second set of MAR simulations.

Imputation method Testing workflow Missing value proportion

1% 5% 10% 15% 20% 25%

kNN DAPAR 0 0 2 2 2 1

MI4P 0 0 0 0 0 0

MLE DAPAR 0 0 2 1 1 0

MI4P 0 0 0 0 0 0

norm DAPAR 0 0 2 2 1 0

MI4P 0 0 0 7 26 57

PCA DAPAR 0 0 2 2 3 0

MI4P 0 0 0 0 0 0

RF DAPAR 0 0 3 2 3 0

MI4P 0 0 0 0 0 0

https://doi.org/10.1371/journal.pcbi.1010420.t002
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Furthermore, the mean of F-scores and Matthews correlation coefficients across the 100 data-

sets were also increased with the mi4p workflow compared to the DAPAR one, suggesting a

global improvement of the testing procedure’s accuracy.

The third set of MAR simulations extended the second one from fixed to random effects.

The difference in performance indicators represented in Fig 9 remained equivalent to the one

observed in the previous set of simulations. However, the detailed results described in S12

Table suggested that both mi4p and DAPAR methods underperformed on data simulated

based on random effects simulated data compared to the fixed effect simulation design.

Detailed results can be additionally found in S12, S14, S15 and S16 Tables for kNN, norm,

PCA and RF imputations respectively. Furthermore, the linear model on which both methods

rely was not designed to account for random effects and thus struggles to capture such a source

of variability. Therefore, an overall underperformance of both mi4p and DAPAR methods

could be noticed in the third set of MAR simulations (S12 Table) compared to the second one

(S7 Table).

Fig 7. Distributions of differences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient for the first MAR set of

simulations. Missing values were imputed using the maximum likelihood estimation method.

https://doi.org/10.1371/journal.pcbi.1010420.g007
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Simulated datasets under Missing completely at random and not at

random assumption

Simulation designs. The previous results were provided using only missing at random

data. This section extends the simulation study to a mixture of missing completely at random

(MCAR) and missing not at random (MNAR) data. The data were simulated following an

experimental design implemented in the imp4p R package through the sim.data function

[14, 15].

The first set of simulations was based on the following experimental design. Two experi-

mental conditions with ten biological samples each were considered, for which the log-intensi-

ties of 1000 analytes were simulated. Among them, 200 were set to be differentially expressed.

Hence, the 200 differentially expressed analytes have log-intensities drawn from a Gaussian

distribution with a mean of 12.5 in the first condition and 25 in the second one. The remaining

simulated log-intensities of non differentially expressed analytes are drawn for both conditions

from a Gaussian distribution with a mean of 12.5. The standard deviation in each condition

for all analytes is set to 2. Other parameters to be passed as arguments in the sim.data func-

tion were set to default values.

Fig 8. Distributions of differences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient for the second MAR set of

simulations. Missing values were imputed using the maximum likelihood estimation method.

https://doi.org/10.1371/journal.pcbi.1010420.g008
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The second set of simulations considered extends the first one by increasing the number of

simulated analytes to 10,000, among which 500 are differentially expressed. Note that in this

design, the proportion of differentially expressed analytes is decreased from 20% to 5%. For

both simulation studies, six datasets were built with 1%, 5%, 10%, 20% and 25% missing

values.

Experiments. The distributions of the difference of the previously described indicators of

performance between the mi4p and the DAPAR workflows for the first set of simulations were

shown in Fig 10. A trade-off between sensitivity and specificity could be observed: sensitivity

was increased by 15% on average while specificity was decreased by 15% on average for the

mi4p workflow compared to the DAPAR one. Furthermore, performance in terms of precision

was equivalent for both methods. As far as global performances are concerned, the F-Score

was slightly increased by an average of 2%, and the MCC was quite stable, with a slight

decrease observed for the data with the highest missing values proportion.

Fig 11 depicts the distributions of the difference of the previously described indicators of

performance between the mi4p and the DAPAR workflows for the second set of simulations.

The dispersions of the distributions are globally reduced, but the same trends as in the first set

of simulations can be observed. Detailed results for both sets of simulations can be found in

Fig 9. Distributions of differences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient for the third MAR set of

simulations. Missing values were imputed using the maximum likelihood estimation method.

https://doi.org/10.1371/journal.pcbi.1010420.g009
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S17 and S18 Tables. Overall performance in terms of sensitivity, specificity, and precision is

quite low for both mi4p and DAPAR methods, mainly due to a large number of false positives.

In particular, precision performance drops when the number of analytes considered is

increased. Moreover, the poor performance in terms of MCC suggests that both methods

behave almost as random guess classifiers. Hence, the relevance of the chosen imputation

method should be questioned in this framework.

Simulation studies showed more false positives in datasets with MNAR and MCAR values

than with MAR values. While the considered datasets were simulated differently, this observa-

tion requires further investigation, particularly on the imputation method used. Recent works

suggested that a combination of MCAR-devoted and MNAR-devoted imputation algorithms

perform most accurately and reproducibly on bottom-up proteomics data regardless of the

missing value type (except for high MNAR proportions) [14, 33].

Real quantitative proteomics datasets

Controlled datasets generation. Complex total cell lysates spiked UPS1 standard

protein mixtures. We consider a first real dataset based on the following experiment. Six

Fig 10. Distributions of differences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient for the first MCAR + MNAR set

of simulations. Missing values were imputed using the maximum likelihood estimation method.

https://doi.org/10.1371/journal.pcbi.1010420.g010
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peptide mixtures, composed of a constant yeast (Saccharomyces cerevisiae) background, into

which increasing amounts of UPS1 standard proteins (48 recombinant human proteins,

Merck) were spiked at 0.5, 1, 2.5, 5, 10 and 25 fmol, respectively [34]. In a second well-cali-

brated dataset, yeast was replaced by a more complex total lysate of Arabidopsis thaliana in

which UPS1 was spiked in 7 different amounts, namely 0.05, 0.25, 0.5, 1.25, 2.5, 5 and 10 fmol.

For each mixture, technical triplicates were constituted. The Saccharomyces cerevisiae dataset

was acquired on a nanoLC-MS/MS coupling composed of a nanoAcquity UPLC device

(Waters) coupled to a Q-Exactive Plus mass spectrometer (Thermo Scientific, Bremen, Ger-

many) [34]. The Arabidopsis thaliana dataset was acquired on a nanoLC-MS/MS coupling

composed of nanoAcquity UPLC device (Waters) coupled to a Q-Exactive HF-X mass spec-

trometer (Thermo Scientific, Bremen, Germany) as described hereafter.

Data preprocessing. For the Saccharomyces cerevisiae and Arabidopsis thaliana datasets,

Maxquant software was used to identify peptides and derive extracted ion chromatograms.

Peaks were assigned with the Andromeda search engine with full trypsin specificity. The data-

base used for the searches was concatenated in house with the Saccharomyces cerevisiae entries

extracted from the UniProtKB-SwissProt database (16 April 2015, 7806 entries) or the Arabi-
dopsis thaliana entries (09 April 2019, 15 818 entries) and those of the UPS1 proteins (48

Fig 11. Distributions of differences in sensitivity, specificity, precision, F-score and Matthews correlation coefficient for the second MCAR + MNAR

set of simulations. Missing values were imputed using the maximum likelihood estimation method.

https://doi.org/10.1371/journal.pcbi.1010420.g011
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entries). The minimum peptide length required was seven amino acids and a maximum of one

missed cleavage was allowed. Default mass tolerances parameters were used. The maximum

false discovery rate was 1% at peptide and protein levels with the use of a decoy strategy. For

the Arabidopsis thaliana + UPS1 experiment, data were extracted both with and without

Match Between Runs and 2 pre-filtering criteria were applied prior to statistical analysis: only

peptides with at least 1 out of 3 quantified values in each condition on one hand and 2 out of 3

on the other hand were kept. Thus, 4 datasets derived from the Arabidopsis thaliana + UPS1

were considered. For the Saccharomyces cerevisiae + UPS1 experiment, the same filtering crite-

ria were applied, but only on data extracted with Match Between Runs, leading to 2 datasets

considered. An additional normalisation step was performed on each dataset considered. Nor-

malising peptides’ or proteins’ intensities aims at reducing batch effects, sample-level varia-

tions and therefore better comparing intensities across studied biological samples [35]. In this

work, we chose to perform quantile normalisation [36], using the normalize.quantiles
function from the preprocessCore R package [37].

Supplemental methods for Arabidopsis thaliana dataset. Peptide separation was per-

formed on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm with 1.7 μm diameter

particles) and a Symmetry C18 precolumn (20 mm ×180 μm with 5 μm diameter particles;

Waters). The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% FA in ACN

(solvent B). The samples were loaded into the enrichment column over 3 min at 5 μL/min

with 99% of solvent A and 1% of solvent B. The peptides were eluted at 400 nL/min with the

following gradient of solvent B: from 3 to 20% over 63 min, 20 to 40% over 19 min, and 40 to

90% over 1 min. The MS capillary voltage was set to 2kV at 250˚C. The system was operated in

a data-dependent acquisition mode with automatic switching between MS (mass range 375–

1500 m/z with R = 120 000, automatic gain control fixed at 3 × 106 ions, and a maximum injec-

tion time set at 60 ms) and MS/MS (mass range 200–2000 m/z with R = 15 000, automatic gain

control fixed at 1 × 105, and the maximal injection time set to 60 ms) modes. The twenty most

abundant peptides were selected on each MS spectrum for further isolation and higher energy

collision dissociation fragmentation, excluding unassigned and monocharged ions. The

dynamic exclusion time was set to 40s.

Experiments. The trade-off suggested by the simulation study was confirmed by the results

obtained on the real datasets. In the Saccharomyces cerevisiae + UPS1 experiment, a decrease of

70% in the number of false positives was observed, improving the specificity and precision (see

S25 Table), at the cost of the number of true positives (Table 3), thus decreasing the sensitivity.

The same trend is observed in the Arabidopsis thaliana + UPS1 experiment; the number of

false positives is decreased by 50% (see Table 4 and S19 Table), thus improving specificity and

precision at the cost of sensitivity. The loss in sensitivity is larger in the highest points of the

range in both experiments. The structure of the calibrated datasets used here can explain these

observations. Indeed, the quantitative dataset considered takes into account all samples from

all conditions, while the testing procedure focuses on one-vs-one comparisons. Two issues can

be raised:

Table 3. Performance of the mi4p methodology expressed in percentage with respect to DAPAR workflow, on Saccharomyces cerevisiae + UPS1 experiment, with

Match Between Runs and at least 1 out of 3 quantified values in each condition. Missing values (6%) were imputed using the maximum likelihood estimation method.

Condition vs. 25fmol True positives False positives Sensitivity Specificity F-Score

0.5fmol -2.7% -67.2% -2.7% +1.6% +53.6%

1fmol -1.6% -71.1% -0.5% +0.9% +37.8%

2.5fmol -3.2% -75.8% -3.3% +0.7% +26.9%

5fmol -14.3% -78.7% -14.3% +0.5% +11.4%

10fmol -41.9% -75.2% -41.9% +0.5% -14.4%

https://doi.org/10.1371/journal.pcbi.1010420.t003
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• The data preprocessing step can lead to more data filtering than necessary. For instance, we

chose to use the filtering criterion such that rows with at least one quantified value in each

condition were kept. The more conditions are considered, the more stringent the rule is,

possibly leading to a poorer dataset (with fewer observations) for the conditions of interest.

• The imputation process is done on the whole dataset, as well as the estimation step. Then,

while projecting the variance-covariance matrix, the estimated variance (later used in the

test statistic) is the same for all comparisons. Thus, if one is interested in comparing condi-

tions with fewer missing values, the variance estimator will be penalised by the presence of

conditions with more missing values in the initial dataset.

This phenomenon was illustrated in S20 Table, where solely the two highest points of the

range have been compared, only using the quantitative data from those two conditions.

Hence, more peptides have been taken into account for the statistical analysis. This strategy led

to overall better scores for precision, F-score and Matthews correlation coefficient compared

to the previous framework.

As far as data extracted without the Match Between Runs algorithm are concerned, the

results were equivalent in both methods considered in the Arabidopsis thaliana + UPS1 experi-

ment (as illustrated in S22 and S23 Tables). Furthermore, the same observations could be

drawn from datasets filtered with the criterion of a minimum of 2 out of 3 observed values in

each group for the Arabidopsis thaliana + UPS1 experiment (S21 and S23 Tables) as well as for

the Saccharomyces cerevisiae + UPS1 experiment (S26 Table). These observations translated a

loss of global information in the dataset, as filtering criteria led to fewer peptides considered

with fewer missing values per peptide.

The mi4p methodology also provided better results at the protein-level (after aggregation)

in terms of specificity, precision, F-score and Matthews correlation coefficient, with a minor

loss in sensitivity (S27 Table). In particular, a decrease of 63.2% to 80% in the number of false

positives was observed with a lower loss on the number of true positives and on sensitivity (up

to 2.6%) for the Saccharomyces cerevisiae + UPS1 experiment, as illustrated in Table 5. As far

as the Arabidopsis thaliana + UPS1 experiment is concerned, the same trend was observed

(S24 Table). Indeed, the number of false positives was decreased by 31% to 66.8%, with a maxi-

mum loss in the number of true positives of 9.8%, as illustrated in Table 6.

Conclusion

In this work, we presented a rigorous multiple imputation method as a key step of a workflow

by combining the imputed datasets using Rubin’s rules. We thus obtained for each analyte, on

the one hand, a combined estimator of the vector of interest parameters, and on the other

Table 4. Performance of the mi4p methodology expressed in percentage with respect to DAPAR workflow, on Arabidopsis thaliana + UPS1 experiment, with at least

1 out of 3 quantified values in each condition. Missing values (6%) were imputed using the maximum likelihood estimation method.

Condition vs. 10fmol True positives False positives Sensitivity Specificity F-Score

0.05fmol -2.3% -43% -2.3% +15% +62.7%

0.25fmol -1.5% -43% -1.4% +13.9% +65.3%

0.5fmol -1.5% -50.6% -1.4% +10.8% +81.4%

1.25fmol -2.3% -62.6% -2.3% +10.9% +119.8%

2.5fmol -25.6% -69.3% -25.5% +2.4% +45.9%

5fmol -30.3% -65.2% -30.4% +5.5% +56.1%

https://doi.org/10.1371/journal.pcbi.1010420.t004

PLOS COMPUTATIONAL BIOLOGY Accounting for multiple imputation-induced variability for differential proteomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010420 August 29, 2022 20 / 26

https://doi.org/10.1371/journal.pcbi.1010420.t004
https://doi.org/10.1371/journal.pcbi.1010420


hand, an estimator of its corresponding variance-covariance matrix. Hence, both within- and

between-imputation variabilities are accounted for. The variance-covariance matrix was pro-

jected to get a univariate variance parameter for each analyte. We then considered this variabil-

ity downstream of the statistical analysis by including it in the well-known moderated t-test

statistic. In addition, we provided insights on the comparison of imputation methods. Our

methodology was implemented in a publicly available R package named mi4p. Its perfor-

mance was compared on both simulated and real datasets to the DAPAR state-of-the-art meth-

odology, using confusion matrix-based indicators. The results showed a trade-off between

those indicators. In real datasets, the methodology reduces the number of false positives in

exchange for a minor reduction of the number of true positives. The results are similar among

all imputation methods considered, especially when the proportion of missing values is small.

Our methodology with an additional aggregation step provides better results with a minor loss

in sensitivity and can be of interest for proteomicists who will benefit from results at the pro-

tein level while using peptide-level quantification data.

Supporting information

S1 Table. State of the art on imputation in quantitative proteomics. This table gives an over-

view of the recent literature on imputation methods in quantitative proteomics.

(PDF)

S2 Table. Performance evaluation on the first set of MAR simulations imputed using maxi-

mum likelihood estimation. Results are provided as mean ± standard deviation over the 100

simulated datasets for each indicator of performance.

(PDF)

S3 Table. Performance evaluation on the first set of MAR simulations imputed using k-

nearest neighbours. Results are provided as mean ± standard deviation over the 100 simulated

Table 6. Performance of the mi4p methodology (with the aggregation step) expressed in percentage with respect to DAPAR workflow, on Arabidopsis thaliana
+ UPS1 experiment, with at least 1 out of 3 quantified values in each condition. Missing values were imputed using the Maximum Likelihood Estimation method.

Condition vs. 10fmol True positives False positives Sensitivity Specificity F-Score

0.05fmol 0% -27.6% 0% +18.3% +34.2%

0.25fmol 0% -25.7% 0% +18.1% +31%

0.5fmol 0% -31% 0% +15.2% +39.5%

1.25fmol 0% -65.3% 0% +12.1 +119.2%

2.5fmol -2.4% -66.8% -2.4% +5.8% +88.3%

5fmol -9.8% -57.3% -9.8% +12.9% +78.9%

https://doi.org/10.1371/journal.pcbi.1010420.t006

Table 5. Performance of the mi4p methodology (with the aggregation step) expressed in percentage with respect to DAPAR workflow, on Saccharomyces cerevisiae
+ UPS1 experiment, with at least 1 out of 3 quantified values in each condition. Missing values were imputed using the Maximum Likelihood Estimation method.

Condition vs. 25fmol True positives False positives Sensitivity Specificity F-Score

0.5fmol 0% -73.3% 0% +2.9% +61.1%

1fmol -2.4% -80% -2.4% +2.3% +51.4%

2.5fmol 0% -70.4% 0% +0.8% +20.9%

5fmol -2.4% -63.2% -2.4% +0.5% +11.6%

10fmol -2.6% -69.6% -2.6% +0.7% +16.5%

https://doi.org/10.1371/journal.pcbi.1010420.t005
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