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Quantum inspired community 
detection for analysis 
of biodiversity change driven 
by land‑use conversion and climate 
change
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Community detection remains little explored in the analysis of biodiversity change. The challenges 
linked with global biodiversity change have also multiplied manifold in the past few decades. 
Moreover, most studies concerning biodiversity change lack the quantitative treatment central to 
species distribution modeling. Empirical analysis of species distribution and abundance is thus integral 
to the study of biodiversity loss and biodiversity alterations. Community detection is therefore 
expected to efficiently model the topological aspect of biodiversity change driven by land‑use 
conversion and climate change; given that it has already proven superior for diverse problems in 
the domain of social network analysis and subgroup discovery in complex systems. Thus, quantum 
inspired community detection is proposed as a novel technique to predict biodiversity change 
considering tiger population in eighteen states of India; leading to benchmarking of two novel 
datasets. Elements of land‑use conversion and climate change are explored to design these datasets 
viz.—Landscape based distribution and Number of tiger reserves based distribution respectively; 
for predicting regions expected to maximize Tiger population growth. Furthermore, validation of 
the proposed framework on the said datasets is performed using standard community detection 
metrics like—Modularity, Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), Degree 
distribution, Degree centrality and Edge‑betweenness centrality. Quantum inspired community 
detection has also been successful in demonstrating an association between biodiversity change, 
land‑use conversion and climate change; validated statistically by Pearson’s correlation coefficient and 
p value test. Finally, modularity distribution based on parameter tuning establishes the superiority 
of the second dataset based on the number of Tiger reserves—in predicting regions maximizing Tiger 
population growth fostering species distribution and abundance; apart from scripting a stronger 
correlation of biodiversity change with land‑use conversion.

Over the last few years, topological analysis of social networks has garnered much attention in diverse applica-
tions. Most of these studies define social networks to represent a skeletal interpretation of social interactions gov-
erned by the study of concurrently occurring vertices and  edges1. SNA or social network analysis; thus allows us 
to extract ideas, typical patterns, or archetypes that are of specific use to the concerned group or organization. In 
this regard, community detection plays a crucial role in unearthing common features within any social network; 
enabling its clear division and sharp  visualization2. Moreover, identification of distinct aspects of a community 
structure through their membership criterion, inter and intra community roles, weighted or unweighted links, 
the extent of overlap, presence or absence of  hierarchy3,4, etc.; ensures enhanced visibility and localization of 
underlying cohesive  subgroups2.

Consequently, community detection has emerged as a promising technique for the analysis of information 
flow using computational frameworks in the study of complex  networks5. Ecological network analysis has been 
applied successfully in solving numerous problems in studying biodiversity  change6–8. This has directed the focus 
of the scientific community towards the applicability of community detection techniques in the study of biodiver-
sity change. As we know, biodiversity change has been the area of interest for researchers and environmentalists 
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for quite a while  now9,10. The study of biodiversity change using species distribution modeling has gathered much 
attention recently due to the magnitude of its implications observed in the current  times11. Thus, biodiversity 
change is broadly categorized into—biodiversity loss and biodiversity alterations; spanning over four dimen-
sions of biodiversity viz.—species extinctions, species abundances, species distributions, and genetic  diversity12.

However, most treatments on biodiversity change so far have been based on subjective, descriptive and 
qualitative  analysis6–12. There are too many intangible considerations and too many pitfalls in the conventional 
wisdom of economics. Therefore even after years since biodiversity change became a serious concern impeding 
the realization of sustainable development, the attained progress has not been enough to curtail its imminent 
 risk13,14. Firstly, the taxonomic coverage related to biodiversity change is limited due to little knowledge about 
the vast majority of biodiversity facing extinction  risk12. This reinstates the need for employing dynamic and 
network agnostic methods for predicting biodiversity change. Secondly, the format and storage of data related 
to biodiversity change is not consistent across different  architectures6. This calls for architecture-independent 
and portable systems that could leverage the vast incoherent data disintegrated across incompatible platforms. 
Thirdly, the pressing demand for a context-based and ontologically richer representation of species abundance 
and  distribution6 requires capturing network interactions in addition to the spatial or temporal information of 
the underlying network. Fourthly, a more robust framework is essential to predict from sample data in both 
weighted and unweighted networks; for better comprehension of species-environment  interactions15.

In this regard, quantum inspired community detection has emerged as a viable option to limit the uncertain-
ties in designing species distribution models (SDMs) by ensuring—quantum parallelism, exponential speedup 
and portability, dynamic allocation of cluster size and architecture, efficient modeling of metadata and data-level 
interactions, reduced parameter dependency, etc. (Table 1). The paper thus aims to facilitate improved network 
analysis by integrating most recent technologies like Quantum inspired machine learning (QIML) based com-
munity detection—as a novel tool manoeuvring biodiversity change. QC based algorithms have already been 
found relevant in—“handling NP hard problems employing community detection due to their intrinsic ability 
of evolving dynamically with qubits and easy translation whilst being implemented on quantum devices”16–19. 
Moreover, the transcendence of QML (sprouting from the merger of QC with ML) based community detection 
“is established from its capacity of building a new class of quantum easy problems (BQP) falling under NP class 
for classical algorithms”20. Therefore, most work in the field of quantum inspired CD has been done by applying 
QML based algorithms to complex systems; registering better performance than standard classical CD methods.

Existing studies suggest how species response to various characteristics of land-use conversion and climate 
change vary considerably based on a number of  factors9–11,21. Habitat change and climate change have been found 
to be two of the key drivers of biodiversity  change6. Study and validation of correlation between biodiversity 

Table 1.  Summary of quantum inspired community detection methods.

Methodology Principle idea Advantages Limitations References

Quantum inspired evolutionary algo-
rithm (BinQIEA)

It is based on a local-search model with 
modularity maximization aimed com-
munity detection

It sorts subgroups in LFR and real world 
networks not requiring knowledge of 
cluster size and architecture

Its applicability in identifying com-
munities in overlapping structures is 
still unverified-Computational time can 
be improved

201462

NumQIEA It employs parameter tuning in swarm 
optimization based clustering

Shows better results than other variants 
of QIEA

Its computational time could be 
improved further in solving varied 
optimization problems

201463

IMOQPSO
IMOQPSO could be understood as an 
enhanced form of multi-objective QPSO 
utilizing fine tuning for further refine-
ment of the outcomes

line graph modeling is used for detec-
tion of overlapping communities in real 
world and synthetic networks

It extracts spectral density for detecting 
communities, thus being computation-
ally intensive

201564

Parallel version of Quantum inspired 
evolutionary algorithm

It is a HPC based implementation of 
QIEA enabling parallel processing 
through NVIDIA graphic card

It enables modest speedup due to 
incorporation of quantum parallelism 
in each chromosome

Its applicability in contributing to 
biological and overlapping networks is 
still anomalous

201765

QDMPSO
It employs a discrete version of swarm 
optimization based clustering using 
uncertainty principle

It ensures reduced parameter depend-
ency by MOP formulation and non-
dominant sorting based modularity 
resolution

Scalability is still an obstacle in larger 
networks-The complexity ranges in the 
order of O (N(m+ n+N

2)), which 
could be further improved

201766

QIEA-net and iQIEA-net
It uses different probability & no. of 
guiding for QIEA to show how a single 
guiding quantum individual accelerates 
optimal convergence

It doesn’t require fine tuning of 
parameters and allows dynamic cluster 
allocation

The accuracy of detected communities 
could be improved
Computational time needs to be 
improved

201867

CD with diverse Quantum Architectures
A hybrid quantum classical framework 
is put forth to ensure architecture inde-
pendent and portable system

Advocates NISQ hardware with mini-
mum qubits for catering to large scale 
problems
Ensures an extensible system by imple-
menting a given CD algorithm with 
diverse quantum computing paradigms

Scalability of existing algorithms is still 
a distant dream-Access to a (UQC) or 
universal quantum computer is limited 
to a handful of scientists

201868

Quantum Annealer
Designed and executed a CD problem 
on D-wave 2X quantum annealer 
recording significant improvement in 
computational time

Utilizes qbsolv software as a means to 
encode a QUBO problem, to minimize 
the problem globally making multiple 
calls to D-wave
It inhibits the need to execute recursive 
processes; unlike its classical counter-
parts

Problem reformulation is needed for 
identifying three or more communities
Current quantum systems have sparse 
connectivity, narrow precision, and less 
number of available quantum bits

202069
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change and land-use conversion and climate change has emerged as a key objective governing biodiversity 
 change6,9,21. The motivation of this paper is to provide the quantitative treatment central to species distribution 
modeling by—empirical analysis of species distribution and abundance using quantum inspired community 
detection. Community detection is therefore explored to efficiently model the topological aspect of biodiversity 
change driven by land-use conversion and climate change. Although, there are few studies that suggest the appli-
cation of CD approaches for the analysis of networks related to climate  change22,23 and meteorological  data24,25. 
Yet to our knowledge, no work has been done so far that studies the applicability of community detection for 
biodiversity change.

As elaborated  in6, the authors stressed the need for next-generation studies to comprehend the proper-
ties of network structure by employing graph theory based methods like—centrality, modularity, connectance, 
intervality, etc. for species interaction networks. Context-based analysis of network interactions built around 
amalgamation of empirical analysis with statistical proof is thus found to be better equipped at predicting 
underlying network structure and vice versa. Another  study26 discusses the efficacy of using degree distribution 
based analysis of ecological networks. Accordingly, this novel study incorporating CD approaches for analysis of 
biodiversity change provides empirical validation based on standard CD metrics like-Modularity27, Normalized 
Mutual Information (NMI)28, Adjusted Rand Index (ARI)29, Degree  distribution30,31, Degree-centrality32 and 
Edge-betweenness  centrality33 on two novel datasets. There are several studies  like34,35 that recommend the use 
of above mentioned metrics for performance analysis of community detection methods.

As already stated, land-use conversion has been found to be strongly correlated with biodiversity  change6,9,21. 
Recent  studies36 have also highlighted the correlation between land surface temperature (LST) and type of land-
scape; linking LST with land-use, land-cover change wrt effect of change in elevation. Also, landscape based 
classification has been effective in capturing heterogeneity and context in examining the response of surface 
 temperature37. Similarly, another  study38 links and evaluates the impact of landscape patterns on regional pre-
cipitation as a means to regulate climate forcings in biodiversity change. There have been few studies in the past 
that have focused on—studying climate change trends in  India39,40 or accelerating Tiger conservation through 
Landscape genetics and Habitat  linkages41; serving as a template for designing a framework intended for the 
study of biodiversity change. This forms the motivation for the design of datasets analyzing Tiger population in 
India viz.—Landscape based dataset and Number of tiger reserves based dataset; for predicting regions expected 
to maximize Tiger population growth. Anomalies in temperature and precipitation are mapped with detected 
communities as a means to correlate Landscape based distribution with biodiversity change; while the average 
percentage increase in the area of Tiger reserves and the increase in Tiger reserves are mapped with detected 
communities as a means to correlate the number of tiger reserves based distribution with biodiversity change—
both characterized by a change in species abundance and distribution.

Quantum inspired community detection has thus been successful in demonstrating an association between 
biodiversity change, land-use conversion and climate change validated statistically by Pearson’s correlation coef-
ficient and p value test. Finally, modularity distribution based on parameter tuning establishes the superiority of 
the second dataset based on the number of Tiger reserves—in predicting regions maximizing Tiger population 
growth fostering species distribution and abundance; apart from scripting a stronger correlation of biodiversity 
change with land-use conversion.

As a future initiative, other performance measures could be used to further validate the accuracy of detected 
communities like—(eigenvector centrality and closeness  centrality35),  purity42, fuzzy rand  index43, etc. for over-
lapping as well as disjoint communities. Moreover, community detection approaches could be extended for 
analysis with other drivers and their interactions; ameliorating or exacerbating biodiversity change. Metrics like 
Community Temperature  Index44 and Living Planet  Index45 could also be explored to study species abundance 
change in the future.

Materials and methods
As discussed  in46, the design of rough planetary boundaries presents a holistic approach to global sustainability 
by defining safe operation limits for each quantified sustainability indicator. Transgressing over this limit may 
start a sudden disruptive change that might be difficult to undo. For instance, as per the analysis carried out  in46, 
the permissible limit for—climate change, rate of biodiversity loss, and changes to the global nitrogen cycle has 
already been surpassed; thus causing an irreversible loss.

Thus, dedicated efforts are required to tackle the uncertainties associated with the study and modeling of 
biodiversity change, climate change, land-use alteration, etc. As discussed earlier, biodiversity change is broadly 
categorized into—biodiversity loss and biodiversity  alterations12; spanning over four dimensions of biodiver-
sity viz.—species extinctions, species abundances, species distributions, and genetic diversity (Supplementary 
Fig. 1). Similarly, climate change could be defined as—“A statistically significant trend of climate state on longer 
timescales (decades or more)47.” It could be classified primarily into—natural and anthropogenic (Supplemen-
tary Fig. 2). With the advent of climate modeling, it has now become possible to interpret physical aspects of 
climate system viz.—land, ocean and atmosphere; in the form of equation sets for energy, momentum and mass 
conservation. Additionally, climate models could be classified either into—coupled general circulation models 
(GCMs) that employ spatial discretization & are extremely computer intensive or simple climate models employ-
ing coarse spatial resolution that cater to a limited subset of physical processes. A new class of models with 
intermediate complexity has emerged recently to optimize the degree of complexity with computational cost. 
These intermediate models are found most appropriate in studying past climate changes for long-term predic-
tion of future climate change. Furthermore, modeling land-cover change is expected to tackle varying spatial 
and temporal  scales48; furthering the focus on local models to minimize the trade-off between different socio-
economic  factors49. These bottlenecks in the modeling and analysis of different drivers of biodiversity change; 
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push the need to incorporate machine learning based techniques like quantum inspired community detection 
for empirical analysis of biodiversity change.

Thus, climate change driven landscape based dataset and land-use conversion driven Number of Tiger 
reserves based dataset are designed to predict biodiversity change across eighteen states harboring Tiger Reserves 
in India. The two novel datasets classify the 18 states into four sub-groups; taking the percentage increase in 
Tiger population recorded between 2010 and 2014 as the criteria for establishing intra-links (Supplementary 
Table 1 and Supplementary Table 2). Inter links are formulated for 18 states (excluding Goa and Nagaland for 
incomplete data) in two ways:

1. Landscape based dataset: Grouping the 18 states surveyed into 4 subgroups based on their geographical 
landscape. (Supplementary Table 1).

2. Number of Tiger reserves based dataset: Bifurcating the 18 states into 2 subgroups based on the no. of Tiger 
reserves present in each state. (Supplementary Table 3 and Supplementary Table 4).

This leads us to the benchmarking of two novel datasets in the form of Landscape based dataset and number 
of Tiger reserves based dataset; both drawn after establishing percentage increase based intra-links. The criteria 
for the identification of distinct subgroups thus form the basis of community detection in the analysis of com-
plex networks. Accordingly, the percentage increase wise division of states with Tiger population for the year 
2014 helps predict future trends; validated by the trend recorded for the year 2018 (Supplementary Table 1 and 
Supplementary Table 2).

As evident from Supplementary Table 2, This splitting of states considering percentage increase in Tiger 
population as the chosen parameter of interest for Landscape and Number of Tiger reserves based distribution; 
divulges hidden patterns associated with the given ecosystem that helps in prioritizing the sub-communities 
(states) showing better results (see “Results and discussion” section). It also goes a long way in defining the 
future trends as evident from the similar trend recorded for the year 2018 as shown in Supplementary Table 1.

As stated already, Landscape based distribution is used to classify inter-links based on the landscape a given 
state falls into; as shown in Supplementary Table 1. For the second dataset, we consider the number of Tiger 
reserves found in each state [https:// bigca tsind ia. com/ tiger- census- 2018/.] (Supplementary Table 3) and group 
them into 2 subgroups with the states with 3 or more reserves forming one class and the rest forming the second 
(Supplementary Table 4).

Before going for the empirical evaluation on two novel datasets, we briefly discuss the literature associated 
with community detection for the study of interactions governing biodiversity  change22–25 and how the existing 
CD approaches could be applied for analysis of biodiversity  change50,53–57.

As discussed  in22, a method is proposed that enables community detection by incorporating details of the 
response variable leading to a graphical illustration of spatiotemporal data combined from different variables. It 
is found to perform better than existing methods used for climate index discovery linked with seasonal rainfall 
variability based on network analysis as well as statistical validation. Similarly, a community detection  method23 
is used to identify multivariate clusters based on cross-correlation assisted network weight assignment. It also 
offers a climatological interpretation of climate anomalies; devising a way to detect the disturbances efficiently. 
Additionally, a geographical location embedded community detection  method24 is put forth to analyze climate 
data in meteorological networks. It further reveals the link of community structure with topographical and land-
use related data and how climate change and land-use related data could be modeled topologically to decipher 
their underlying structure.

Lastly, a recent  study25 has demonstrated how CD techniques could be altered to make them geographically 
sensitive by adding spatial weighting to the input flow network. It may also be used to study how the communities 
change over time (days, weeks, day, night, etc.) and by incorporating contextual information (temp., pollution, 
weather, etc.) to it. Adding geographical weighting to LOUVIAN  algorithm50 boosts the number of detected 
communities from 3 to 14 while raising this number from 1(i.e. adding no new information about passenger 
commute) to 99 for hierarchical link clustering  algorithm51 for a given sample  graph25. This spatial classifica-
tion works well for overlapping communities as well by allowing movement-based classification in addition to 
location-based classification.

Thus, integration of CD techniques with geographical weighting is expected to serve as an effective tool in 
designing Wildlife Corridors, to reunite misplaced animals with their flock; by analyzing the movement patterns 
of animals in locating high breeding areas and isolating the links acting as bridges across varied ecosystems, 
thereby promoting Habitat  Preservation25,52. It not only safeguards endangered species but also offers a symbiotic 
solution for human coexistence with nature. Thus, geographical weighting based CD techniques that analyze 
movement patterns to assist habitat preservation would also check anthropogenic climate forcings.

Over the years, there are a number of standard CD algorithms developed like—LPROP53,  LOUVIAN50, 
 CNM54, N-eigen55,  Walktrap56, GN  fast57, etc. that have been evaluated on various parameters including their 
execution time, the effect of average network degree and the mixing parameters, memory requirement, scal-
ability, etc. Although, most of these algorithms register good modularity or NMI values; yet they suffer from 
memory constraints imposed by the absence of quantum parallelism, inability to balance between local and 
global exploration and needing prior information about cluster size and  architecture4,27,52–57. Also, modularity 
based comparative analysis of the proposed novel implementation of quantum inspired community detection 
algorithms against the std. CD  approaches50,53–57 is illustrated in (Fig. 5 and Supplementary Fig. 3); where quan-
tum inspired CD algorithms are found to outperform the std. CD algorithms.

This leads to the emergence of quantum inspired machine learning (QIML) based community detection 
to remove most of the bottlenecks associated with classical CD approaches. Existing studies demonstrate how 

https://bigcatsindia.com/tiger-census-2018/
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quantum approaches like quantum walks and quantum transport clustering have been employed to locate marked 
nodes in a network demonstrating a complexity of O(√n) which is not achievable by classical  algorithms58,59. 
A quantum approach in community detection could range from—detecting communities in quantum com-
plex  networks60, implementing CD techniques in small quantum  computers61 to formulating quantum inspired 
machine learning techniques for community detection (Table 1).

As evident from Table 1, quantum inspired machine learning based CD algorithms like—(parallel and serial 
versions of  binQIEA62,65,  numQIEA63,65),  IMOQPSO64,  QDMPSO66, QIEA-net67, iQIEA-net67 and  QA69 have 
evolved by the amalgamation of QC with ML techniques—giving birth to QML. QIML forms a class of QML 
that relies on quantum characteristics but is realized on classical machines, displaying the capacity for easy 
translation on a quantum machine. With an exception of  QA69 and hybrid quantum classical  framework68 that 
work on a quantum machine; all the above mentioned QML algorithms fall in the class of QIML algorithms 
realizable on classical machines.

Moreover, as discussed  in70,71, quantum supremacy in the domain of community detection is established 
and validated by the modularity based comparative analysis for real world datasets; where quantum machine 
learning (QML) based CD algorithms (forming a superset for QIML) outperform the standard state of the art 
as well as classical ML based CD algorithms. Also, criteria for the selection of a suitable CD algorithm based 
on optimized memory usage, computational complexity, scalability, dynamic nature, etc. is a driving force for 
efficient network analysis as elaborated  in4,70. All these factors play a crucial role in selecting CD methods for the 
analysis of any complex network including the networks governing biodiversity change. Accordingly, quantum 
inspired CD algorithms have been found to outperform most std. CD algorithms due to—quantum parallelism, 
dynamic allocation of cluster size and architecture, reduced parameter dependency, etc.

As already known, QML serves to supersede a set of NP hard problems by remodeling them into a class of 
quantum easy  problems20. Quantum inspired machine learning (Supplementary Fig. 4) is thus, fated to prove 
advantageous for learning problems and in reducing the computational time of ML algorithms.

Additionally, the leap from classical to quantum is characterized by the translation from a bit to qubit. “A 
physical realization of a qubit makes use of both energy states of an atom: an excited level representing |1>, a 
ground level representing |0> and a superposition of both the states by being in the ground and excited state 
simultaneously. A single qubit could be constrained into a superposition of two states expressed by adding the 
state vectors mathematically:

where α1 and α2 are complex numbers satisfying the condition as given:

In the previous Eq. (2), ||α1|2 denotes the possibility of the superposition collapsing to |0>.”
Let us consider the example of our two novel datasets to understand how quantum inspired algorithms 

operate on quantum characteristics to optimize modularity in the community detection process. A sequence 
forming initial network skeleton for two datasets comprising of 18 nodes, along with its transformation obtained 
by hierarchical bi-partitioning applied at each level is shown in Supplementary Fig. 5.

Furthermore, as the system evolves, measure operation causes each qubit to converge to either 1 or 0 accord-
ing to the wave function collapse. If the mutated gene in P(t) boosts the network modularity, then the mutation 
is accepted. Similarly, quantum versions pertaining to diverse problems could be defined for all other classes of 
quantum inspired machine learning (QIML) based community detection algorithms.

Thus, we observe that the formulation of two novel datasets is followed by their empirical validation based on 
standard CD metrics like—degree centrality, edge-betweenness centrality and degree distribution. Accordingly, 
the novel benchmarked datasets are further evaluated based on the most commonly used performance measures 
like—modularity, NMI and ARI using Girvan Newman algorithm as a standard CD approach. Lastly, QIML 
based CD algorithms are implemented—to obtain modularity based distribution to compare the two datasets 
and for modularity based comparative analysis with Std. CD methods to cement the superiority of the proposed 
QICD approach for analysis of biodiversity change.

Lastly, Pearson’s correlation coefficient and p value test are introduced for statistical validation of correlations 
established between biodiversity change and land-use conversion or climate change. The framework used for 
the design and implementation of the proposed approach in the analysis of biodiversity change is explained in 
(Supplementary Fig. 6).

Results and discussion
The network diagrams obtained for the two datasets viz.—Landscape based dataset and Number of Tiger reserves 
based dataset are plotted as shown in [Supplementary Fig. 7(a) and Fig. 7(b)] respectively.

As evident from degree  distributions30,31 of the two novel datasets as shown in Fig. 1a,b; the second dataset 
based on the number of Tiger reserves displays higher centralization of nodes (also observed in the network 
diagrams) thereby illustrating a more defined community structure.

A comparative analysis based on centrality measures on the given datasets further proves the superiority of 
the second dataset based on the number of Tiger reserves in subgroup discovery for predicting more important 
nodes. Centrality based comparative analysis on given datasets is shown in Fig. 2.

Figure 2a,b show degree centrality based representation of individual nodes, while Fig. 2c,d show edge-
betweenness based centrality based representation of individual nodes for Landscape based dataset and Number 
of Tiger reserves based dataset, respectively. The vertex size of each node is plotted as a function of its degree or 

(1)|�� = α1|0� + α2|1�

(2)|α1|
2 + |α2|

2 = 1
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Figure 1.  Degree distribution for Landscape based dataset and Number of Tiger reserves based dataset.

Figure 2.  Degree and edge-betweenness centrality for Landscape based dataset and Number of Tiger reserves 
based dataset.
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edge-betweenness, thus highlighting the most important vertices based on degree  centrality32 and betweenness 
 centrality33.

Degree  distribution31 for each node is shown for both datasets in Fig. 1, recording higher centralization of 
nodes for Number of Tiger reserves based dataset; advocating its supremacy in prioritization of states for Tiger 
conservation activities. Additionally, the importance of a node is ascertained by its degree  centrality32 given by 
the number of nodes adjacent to it (the greater the number, the more crucial the node). As evident from Fig. 2a,b, 
the nodes with the highest degree centrality are determined more accurately by the Number of Tiger reserves 
based dataset. The second dataset assigns the highest degrees to five states that record maximum increase in Tiger 
population in 2018 with an addition of Uttar Pradesh (12) and Karnataka (11); including the only three states 
[Madhya Pradesh(11), Maharashtra(11) and Rajasthan(11)] determined by the first dataset. Also, it might be 
noted that Tamil Nadu, Assam and Uttarakhand fall in the next most important node category recording nominal 
growth for both datasets [node degree ranging between (7–10)]; while Chhattisgarh (10) and Arunachal Pradesh 
(9) mark the states of least priority for Tiger population growth related activities; recognized as crucial nodes 
(with higher DC) only by the second dataset. Thus, degree centrality based analysis of given datasets helped in 
identifying states likely to show a similar trend in the future and validated by the actual trend observed in 2018.

Similarly, edge betweenness is also calculated using betweenness  centrality33; which counts the number of 
shortest paths that pass one node. As shown in Fig. 2c,d, edge betweenness is calculated using igraph pack-
age for—Landscape based dataset and Number of Tiger reserves based dataset, respectively. Nodes with high 
betweenness are important in communication and information diffusion. Landscape based dataset marks Mizo-
ram (11.83), Sunderbans (10.52) and Assam (10.52) as the most crucial nodes based on edge-betweenness making 
them most suitable for edge-removal; enabling separation into subgroups. The number of Tiger reserves based 
dataset, on the other hand; assigns the highest edge-betweenness to Uttar Pradesh (52) followed by Chhattisgarh 
(30); leading to improved community division in line with degree centrality based analysis.

Additionally, subgroup discovery using Girvan  Newman72 based community detection algorithm divides the 
two datasets viz.—Landscape based dataset and Number of Tiger reserves based dataset into four communities 
each; as shown in (Supplementary Fig. 8(a) and Fig. 8(b)] respectively.

A heatmap based illustration of the numeric analysis is drawn using python 3.8 for performance measures 
like—modularity (Q), NMI and ARI as given in Fig. 3. This further cements the effectiveness of the partitioning 
undertaken in the form of four communities for each dataset.

As evident from the heatmap, the second dataset based on the number of Tiger reserves records better perfor-
mance with modularity (Q) [0.177], NMI [0.6749] and ARI [0.56459] values obtained as compared to modularity 
(Q) [0.133], NMI [0.2327] and ARI [0.1058] values recorded for Landscape based dataset. Consequently, not 
only have we benchmarked two novel datasets for the application of community detection algorithms in the 
analysis of growth trends in the Tiger population; but have also been able to assess their performance by centrality 
measures and empirical analysis. This goes a long way in the identification and selection of requisite parameters 
of interest for the design of complex networks, including species distribution models.

Figure 3.  Modularity (Q), NMI and ARI based numerical analysis of Landscape based dataset and Number of 
Tiger reserves based dataset.
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Lastly, QIML based CD is explored for further validation of the efficacy of the two novel datasets in captur-
ing the structure of the network analyzing biodiversity change. It has also been observed that parameter tuning 
plays a prominent role in determining the efficiency of any evolutionary algorithm as shown in Table 2. The best 
values obtained corresponding to each dataset for the three QIML based CD algorithms have been highlighted 
in bold as shown in Table 2 while the best values obtained corresponding to each dataset using Pearson’s r-value 
test for statistical analysis have been highlighted in bold as shown in Table 3. Parameters are tuned as per NSGA-
II73 with standard values of θ1 , θ2 , α and β ; with varying values of mixing parameter (µ) leading to comparative 
modularity distribution for the two datasets as shown in Fig. 4. 

As evident from Table 2, modularity based comparative analysis on the two novel datasets proves the superior-
ity of the second dataset based on the number of Tiger reserves; where the second dataset records better perfor-
mance with maximum modularity values obtained as—binQIEA [0.3155], numQIEA [0.3732] and QDMPSO 
[0.3507] as compared to binQIEA [0.2068], numQIEA [0.2784] and QDMPSO [0.2787] for Landscape based 
dataset.

Correspondingly, the modularity distribution for varying values of mixing parameter (µ) for the two novel 
datasets also validates the above observation; with the second dataset based on the number of Tiger reserves 
showing better modularity distribution averaged over 40 runs as shown in Fig. 4 a–c.

Table 2.  Modularity based analysis of QIML based CD algorithms for varying values of mixing parameter—
for Landscape based and Number of Tiger reserves based datasets.

Datasets Nodes Edges NC µ (Mixing parameter)

Modularity (Q)

binQIEA numQIEA QDMPSO

Landscape based distribution 18 70

4 0.0 0.1996 0.2017 0.2218

4 0.05 0.1832 0.1834 0.1946

4 0.1 0.2068 0.2215 0.2787

4 0.15 0.1865 0.2784 0.2337

4 0.2 0.1957 0.2219 0.2114

4 0.25 0.1832 0.1887 0.1932

4 0.3 0.2066 0.2411 0.2244

4 0.35 0.1995 0.2237 0.2145

4 0.4 0.2065 0.2248 0.2119

4 0.45 0.1188 0.1587 0.1014

4 0.5 0.0799 0.0999 0.1012

Number of Tiger Reserves based distribution 18 63

4 0.0 0.2397 0.2474 0.2513

4 0.05 0.2304 0.2689 0.2984

4 0.1 0.2530 0.2759 0.2654

4 0.15 0.3155 0.2474 0.3507

4 0.2 0.2530 0.3732 0.3116

4 0.25 0.2304 0.2759 0.2984

4 0.3 0.2398 0.2881 0.2647

4 0.35 0.2355 0.2689 0.2654

4 0.4 0.2475 0.2997 0.2449

4 0.45 0.1304 0.2474 0.1654

4 0.5 0.1050 0.1504 0.1449

Figure 4.  Comparative modularity (Q) based distribution of QIML approaches for varying values of mixing 
parameter (µ) for two novel datasets.
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Thus, the proposed novel implementation of quantum inspired community detection algorithms viz.—bin-
QIEA, numQIEA and QDMPSO and their modularity based comparative analysis with varying values of mixing 
parameter (µ) on two novel datasets; further cements the superiority of the second dataset based on the number 
of Tiger reserves by registering better modularity distribution for all the three QIML based CD techniques.

Consequently, the modularity based comparative analysis of QIML v/s std. CD algorithms for the same 
two novel datasets viz.—landscape based dataset and Number of Tiger reserves based dataset is carried out to 
validate the improved performance recorded by QIML based CD algorithms for the novel datasets. Out of the 
six QIML based CD techniques considered for the comparative analysis  in70, we have taken the most suitable 
three hybrid algorithms for subsequent modularity based comparison on the two novel datasets; implemented 
on a classical machine.

As shown in the heatmap given in Fig. 5, QIML based CD community detection algorithms viz.—bin-
QIEA62,65,  numQIEA63,65,  QDMPSO66 perform better than the standard state of the art algorithms like—LPROP53, 
 LOUVIAN50,  CNM54, N-eigen55,  Walktrap56 and GN  fast57 in terms of the modularity values obtained for the 
two novel datasets benchmarked for analyzing biodiversity change dynamics. Moreover, out of the two datasets 
studied, the second dataset viz.—Number of Tiger reserves based dataset is found to perform better than the first 
dataset by demonstrating a more refined community structure validated by its modularity based comparative 
analysis using both QIML as well as standard state of the art CD algorithms as shown in Fig. 5.

Finally, the statistical validation of the proposed framework designed for analysis of biodiversity change 
is performed using Pearson’s correlation coefficient and p value test. Correlation of land-use conversion with 
biodiversity change for Number of Tiger Reserves based dataset is plotted as a function of four communities 
predicted by QICD algorithms (See Fig. 6a,b). Increase in the number of Tiger Reserves and Avg. % increase in 
core area of Reserves are recorded for intervals  I1 (2010–2014) and  I2 (2014–2018) based on data referred  from74 
(Supplementary Table 5).

Similarly, the correlation of climate change with biodiversity change for Landscape based dataset is plotted 
as a function of four communities predicted by QICD algorithms (See Fig. 6c,d). Temperature anomalies and 
Precipitation anomalies are recorded for timestamps  I1 (2010),  I2 (2014) and  I3 (2018) based on data referred 
 from75 and other reports extracted from https:// mausam. imd. gov. in (Supplementary Table 6).

Next, the correlation between  I1 (2010–2014) and  I2 (2014–2018) drawn for the Number of Tiger Reserves 
based dataset as illustrated in Fig. 6a,b, is validated by Pearson’s correlation coefficient as shown in Table 3. Also, 
the correlation between pairwise sets of  I1 (2010),  I2 (2014) and  I3 (2018) drawn for Landscape based dataset as 
illustrated in Fig. 6c,d, is validated by Pearson’s correlation coefficient as shown in Table 3.

As evident from Fig. 6, correlation of land-use conversion with biodiversity change for Number of Tiger 
Reserves based dataset is found to be direct and stronger against the indirect and weaker correlation of climate 
change with biodiversity change for Landscape based dataset; both plotted as a function of four communities 
predicted by QICD algorithms. Also,  I1 (2010) and  I2 (2014) record best r value (0.83) with p value (0.1) in 
correlating climate change with biodiversity change for Landscape based dataset; while  I1 (2010–2014) and 
 I2 (2014–2018) record the best r-value (0.97) with a p value (0.028) in correlating land-use conversion with 
biodiversity change for Number of Tiger Reserves based dataset as inferred from Table 3, Thus, we infer that 
not only are biodiversity change, land-use conversion and climate change correlated, but also that the detected 
correlation is statistically significant.

Thus, Quantum inspired community detection not only provides modularity distribution and comparative 
modularity analysis with std. CD methods based empirical evaluation for two datasets; but also successfully 

Figure 5.  Modularity comparison of QIML versus standard CD techniques for two novel datasets.

https://mausam.imd.gov.in
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validates association between biodiversity change, land-use conversion and climate change by Pearson’s cor-
relation coefficient and p value test.

Consequently, the species distribution modeling aimed at analysis of different components of biodiversity 
change could harness the power of QML by either overcoming the computational constraints using quantum 
devices with classical or quantum algorithms, or by handling uncertainties in associated drivers of biodiversity 
change like—climate change and land-use conversion and recording improved efficiency by augmenting quantum 

Table 3.  Statistical validation of the correlation between land-use conversion, climate change and biodiversity 
change for Landscape based dataset and Number of Tiger reserves based dataset.

Datasets Nodes Edges Correlating criteria

Pearson’s 
correlation 
coefficient 
(r)

Landscape based distribution 18 70

Temperature anomalies per  Ci

I2  I1 0.41

I3  I1 0.83

I3  I2 0.82

Precipitation anomalies per  Ci

I2  I1 0.41

I3  I1 0.58

I3  I2 0.47

Number of Tiger Reserves based distribution 18 63
Number of Tiger Reserves per  Ci I2  I1 0.97

Avg % increase in core area of Reserve per  Ci I2  I1 0.4

Figure 6.  (a) and (b) Correlating land-use conversion with biodiversity change as a function of four 
communities predicted by QICD for intervals  I1 (2010–2014) and  I2 (2014–2018), (c) and (d) Correlating 
climate change with biodiversity change as a function of four communities predicted by QICD for timestamps  I1 
(2010),  I2 (2014) and  I3 (2018).
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parallelism with evolutionary algorithms as discussed earlier. Although quantum computers with as many as 2000 
qubits have been built, yet its accessibility to most researchers remains an issue. Accordingly, Quantum inspired 
machine learning (QIML) as a sub-class of QML allows the use of quantum inspired algorithms that could be 
run on classical computers. Thus, the latter has been found to be used more explicitly as yet in quantum machine 
learning based algorithms. Properties like—quantum parallelism, absence of the need to prior decide cluster size 
and architecture, etc. have made QIML based CD algorithms one of the most suitable class of algorithms to be 
used for the analysis of biodiversity change in the coming future.

Conclusion and future scope
The proposed novel implementation of quantum inspired machine learning (QIML) based CD algorithms viz.—
QIEA bin, QIEA num and QDMPSO to analyze Tiger population in India led to benchmarking of two novel 
datasets (Landscape based and Number of tiger reserves based datasets). This was followed by their empirical 
validation based on standard CD metrics like—degree centrality, edge-betweenness centrality and degree distri-
bution. Accordingly, the benchmarked datasets are further evaluated based on the most popularly used perfor-
mance measures like—modularity, NMI and ARI using Girvan Newman algorithm as a standard CD approach. 
Lastly, QIML based CD algorithms are implemented—to obtain modularity based distribution to compare the 
two datasets and for modularity based comparative analysis with Std. CD methods to cement the superiority of 
the proposed QICD approach for analysis of biodiversity change.

Consequently, both performance measures and centrality measures based comparison has revealed the bet-
ter of the two datasets; as the number of Tiger reserves based dataset is found to deliver a more defined and 
centralized community structure based on the given criteria. Modularity based comparative analysis of QIML 
based CD algorithms with the existing state of the art CD algorithms on the same datasets further validated 
the supremacy of QIML algorithms over the standard state of the art CD algorithms. Additionally, modularity 
distribution based on parameter tuning obtained using QIML based CD algorithms also establishes the supe-
riority of the second dataset based on the number of Tiger reserves—in predicting more important nodes and 
recording higher centralization of nodes.

Lastly, Pearson’s correlation coefficient and p value test are introduced for statistical validation of correla-
tions established between biodiversity change and land-use conversion or climate change. It clearly establishes 
how land-use conversion and climate change are two of the many drivers of biodiversity change; with land-use 
conversion based habitat change being a direct driver and anomalies in climate (Temp., Prec., etc.) being an 
indirect driver of biodiversity change.

As a future initiative, other centrality measures could also be used like—closeness centrality and eigenvector 
 centrality35. Performance evaluation using measures like—purity42, fuzzy rand  index43, etc. could also be used for 
overlapping as well as disjoint communities. Moreover, community detection approaches could be extended for 
analysis with other drivers and their interactions; ameliorating or exacerbating biodiversity change. Metrics like 
Community Temperature  Index44 and Living Planet  Index45 could also be explored to study species abundance 
change in the future. Box-plot based comparative analysis could also be done to assess computational time for 
proposed implementations of CD algorithms.

Thus, the formulation of strategies and reforms to contain biodiversity change needs special focus to realize 
the goals of sustainable development. Hybridization of machine learning techniques with quantum algorithms 
could completely revolutionalize the analysis of biodiversity change in the coming time.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).

Received: 4 December 2020; Accepted: 21 June 2021

References
 1. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).
 2. Knoke, D. & Yang, S. Social Network Analysis Vol. 154 (Sage Publications, 2019).
 3. Schaub, M. T., Delvenne, J. C., Rosvall, M. & Lambiotte, R. The many facets of community detection in complex networks. Appl. 

Netw. Sci. 2(1), 4 (2017).
 4. Papadopoulos, S., Kompatsiaris, Y., Vakali, A. & Spyridonos, P. Community detection in social media. Data Min. Knowl. Disc. 

24(3), 515–554 (2012).
 5. Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005).
 6. Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94(1), 16–36 (2019).
 7. Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as 

affected by land use across Europe. Appl. Soil Ecol. 97, 112–124 (2016).
 8. Gogaladze, A. et al. Using social network analysis to assess the Pontocaspian biodiversity conservation capacity in Ukraine. Ecol. 

Soc. 25(2), 25 (2020).
 9. Braunisch, V. et al. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions 

under climate change. Ecography 36(9), 971–983 (2013).
 10. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), 8466 (2016).
 11. Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change 1(6), 313–318 (2011).
 12. Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. 

Resour. 37, 25–50 (2012).
 13. Smith, R. et al. Ensuring Co-benefits for biodiversity, climate change and sustainable development. In Handbook of Climate Change 

and Biodiversity (eds Filho, W. L. et al.) 151–166 (Springer, 2019).
 14. Rands, M. R. et al. Biodiversity conservation: Challenges beyond 2010. Science 329(5997), 1298–1303 (2010).



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14332  | https://doi.org/10.1038/s41598-021-93122-x

www.nature.com/scientificreports/

 15. Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. 117(29), 
17074–17083 (2020).

 16. Greenwood, G. W. Finding solutions to NP problems: Philosophical differences between quantum and evolutionary search algo-
rithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) Vol 2, 815–822 (IEEE, 2001).

 17. Kaminsky, W. M. & Lloyd, S. Scalable architecture for adiabatic quantum computing of NP-hard problems. In Quantum Computing 
and Quantum Bits in Mesoscopic Systems (eds Leggett, A. J. et al.) 229–236 (Springer, 2004).

 18. Brandes, U. et al. (2006). Maximizing modularity is hard. arXiv preprint physics/0608255.
 19. Fortunato, S. Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).
 20. Lev S. Bishop https:// devel oper. ibm. com/ code/ videos/ qiskit- quant um- compu ting- tech- talk/.
 21. De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. 

Change 19(2), 306–315 (2009).
 22. Bello, G. A. et al. Response-guided community detection: Application to climate index discovery. In Joint European Conference on 

Machine Learning and Knowledge Discovery in Databases 736–751 (Springer, 2015).
 23. Steinhaeuser, K., Chawla, N. V. & Ganguly, A. R. (2009). An exploration of climate data using complex networks. In Proceedings 

of the Third International Workshop on Knowledge Discovery from Sensor Data 23–31.
 24. Ceron, W., Santos, L. B., Neto, G. D., Quiles, M. G. & Candido, O. A. Community detection in very high-resolution meteorological 

networks. IEEE Geosci. Remote Sens. Lett. 17(11), 2007–2010 (2019).
 25. Sekulić, S., Data, B. E. G., Long, J. & Demšar, U. Geographical context in community detection: A comparison of a node-based 

and a link-based approach.
 26. Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network 

properties. PeerJ 2, e251 (2014).
 27. Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).
 28. Strehl, A. & Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 

3, 583–617 (2002).
 29. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2(1), 193–218 (1985).
 30. Stumpf, M. P. & Wiuf, C. Sampling properties of random graphs: The degree distribution. Phys. Rev. E 72(3), 036118 (2005).
 31. Kumar, R., Novak, J. & Tomkins, A. Structure and evolution of online social networks. In Link Mining: Models, Algorithms, and 

Applications (eds Yu, P. et al.) 337–357 (Springer, 2010).
 32. Bródka, P., Skibicki, K., Kazienko, P. & Musiał, K. A degree centrality in multi-layered social network. In 2011 International Confer-

ence on Computational Aspects of Social Networks (CASoN) 237–242 (IEEE, 2011).
 33. Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007).
 34. Chakraborty, T., Dalmia, A., Mukherjee, A. & Ganguly, N. Metrics for community analysis: A survey. ACM Comput. Surv. (CSUR) 

50(4), 1–37 (2017).
 35. Freeman, L. The development of social network analysis. Study Sociol. Sci. 1, 687 (2004).
 36. Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of 

area surrounding Jaipur, India. Egyptian J. Remote Sens. Space Sci. 21(1), 87–94 (2018).
 37. Hamstead, Z. A., Kremer, P., Larondelle, N., McPhearson, T. & Haase, D. Classification of the heterogeneous structure of urban 

landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Ind. 70, 574–585 
(2016).

 38. Wang, Q., Peng, Y., Fan, M., Zhang, Z. & Cui, Q. Landscape patterns affect precipitation differing across sub-climatic regions. 
Sustainability 10(12), 4859 (2018).

 39. Ross, R. S., Krishnamurti, T. N., Pattnaik, S. & Pai, D. S. Decadal surface temperature trends in India based on a new high-resolution 
data set. Sci. Rep. 8(1), 1–10 (2018).

 40. Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K. & Pradhan, R. K. Investigation of temperature and its indices under climate 
change scenarios over different regions of Rajasthan state in India. Glob. Planet. Change 161, 82–96 (2018).

 41. Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11), e111207 (2014).
 42. Manning, C. D., Schütze, H. & Raghavan, P. Introduction to Information Retrieval (Cambridge University Press, 2008).
 43. Gregory, S. Fuzzy overlapping communities in networks. J. Stat. Mech. Theory Exp. 2011(02), P02017 (2011).
 44. Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 

275(1652), 2743–2748 (2008).
 45. Loh, J. et al. The Living Planet Index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 

Biol. Sci. 360(1454), 289–295 (2005).
 46. Rockström, J. et al.. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14(2), 10–11, 24, (2009).
 47. Ganopolski, A. Climate change models. In Encyclopedia of Ecology 2nd edn (ed. Fath, B.) 48–57 (Elsevier, Berlin, 2019). https:// 

doi. org/ 10. 1016/ B978-0- 12- 409548- 9. 11166-2. ISBN 9780444641304.
 48. Nagendra, H., Reyers, B. & Lavorel, S. Impacts of land change on biodiversity: Making the link to ecosystem services. Curr. Opin. 

Environ. Sustain. 5(5), 503–508 (2013).
 49. Verburg, P. H., Kok, K., Pontius, R. G. & Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-

Cover Change Global Change—The IGBP Series (eds Lambin, E. F. & Geist, H.) (Springer, Berlin, 2006). https:// doi. org/ 10. 
1007/3- 540- 32202-7_5.

 50. Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory 
Exp. 2008(10), P10008 (2008).

 51. Ahn, Y. Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 
(2010).

 52. Soundarajan, S. & Gomes, C. Using community detection algorithms for sustainability applications. In Proceddings of the 3rd 
International Conference on Computational Sustainability (2012).

 53. Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. 
Rev. E 76, 036106 (2007).

 54. Clauset, A. et al. Finding community structure in very large networks. Phys. Rev. E 70(6), 1–6 (2004).
 55. Newman, M. E. Finding community structure in networks using the eigen vectors of matrices. Phys. Rev. E 74, 036104 (2006).
 56. Pons, P. & Latapy, M. Computing communities in large networks using random walks. Computer and Information Sciences—ISCIS 

2005 (2005).
 57. Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004).
 58. Chakraborty, S., Novo, L., Ambainis, A. & Omar, Y. Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. 

Lett. 116(10), 100501 (2016).
 59. Chakraborty, S., Novo, L., Di Giorgio, S. & Omar, Y. Optimal quantum spatial search on random temporal networks. Phys. Rev. 

Lett. 119(22), 220503 (2017).
 60. Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V. & Biamonte, J. D. Community detection in quantum complex networks. Phys. 

Rev. X 4(4), 041012 (2014).
 61. Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Network community detection on small quantum 

computers. Adv. Quantum Technol. 2(9), 1900029 (2019).

https://developer.ibm.com/code/videos/qiskit-quantum-computing-tech-talk/
https://doi.org/10.1016/B978-0-12-409548-9.11166-2
https://doi.org/10.1016/B978-0-12-409548-9.11166-2
https://doi.org/10.1007/3-540-32202-7_5
https://doi.org/10.1007/3-540-32202-7_5


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14332  | https://doi.org/10.1038/s41598-021-93122-x

www.nature.com/scientificreports/

 62. Gupta, S., Taneja, S. & Kumar, N. Quantum inspired genetic algorithm for community structure detection in social networks. In 
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation 1119–1126 (2014).

 63. Gupta, S. & Kumar, N. Parameter tuning in quantum-inspired evolutionary algorithms for partitioning complex networks. In Pro-
ceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation 1045–1048 (2014).

 64. Li, Y., Wang, Y., Chen, J., Jiao, L. & Shang, R. Overlapping community detection through an improved multi-objective quantum-
behaved particle swarm optimization. J. Heuristics 21(4), 549–575 (2015).

 65. Gupta, S. et al. Parallel quantum-inspired evolutionary algorithms for community detection in social networks. Appl. Soft Comput. 
61, 331–353 (2017).

 66. Li, L., Jiao, L., Zhao, J., Shang, R. & Gong, M. Quantum-behaved discrete multi-objective particle swarm optimization for complex 
network clustering. Pattern Recogn. 63, 1–14 (2017).

 67. Yuanyuan, M. & Xiyu, L. Quantum inspired evolutionary algorithm for community detection in complex networks. Phys. Lett. A 
382(34), 2305–2312 (2018).

 68. Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Community Detection Across Emerging Quantum 
Architectures (2018).

 69. Negre, C., Ushijima-Mwesigwa, H. & Mniszewski, S. Detecting multiple communities using quantum annealing on the D-Wave 
system. PLoS ONE 15, e0227538. https:// doi. org/ 10. 1371/ journ al. pone. 02275 38 (2020).

 70. Akbar, S. & Saritha, S. K. Towards quantum computing based community detection. Comput. Sci. Rev. 38, 100313. https:// doi. org/ 
10. 1016/j. cosrev. 2020. 100313. (2020). (ISSN 1574-0137)

 71. Akbar, S. & Saritha S. K. QML based community detection in the realm of social network analysis. In 11th International Conference 
on Computing, Communication and Networking Technologies (ICCCNT), July 1–3, 2020, IIT Kharagpur, India (2020).

 72. Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 
(2002).

 73. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Trans. Evolut. 
Comput. 6, 182–197 (2002).

 74. India’s tiger population sees 33% increase, BBC. 29 July 2019. https:// www. bbc. com/ news/ world- asia- india- 49148 174.
 75. Rathore, L. S., Attri, S. D. & Jaswal, A. K. State level climate change trends in India. Meteorological Monograph No. ESSO/IMD/

Education Multimedia Research Centre/02 (2013).

Author contributions
S.A. (Author1) has carried out the entire research and written the manuscript. S.K.S. (Author2) has supervised 
the work.

Funding
No funding was received for this study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 93122-x.

Correspondence and requests for materials should be addressed to S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1371/journal.pone.0227538
https://doi.org/10.1016/j.cosrev.2020.100313
https://doi.org/10.1016/j.cosrev.2020.100313
https://www.bbc.com/news/world-asia-india-49148174
https://doi.org/10.1038/s41598-021-93122-x
https://doi.org/10.1038/s41598-021-93122-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantum inspired community detection for analysis of biodiversity change driven by land-use conversion and climate change
	Materials and methods
	Results and discussion
	Conclusion and future scope
	References


