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Abstract

Despite of an extensive statistical literature showing that discretizing continuous variables

results in substantial loss of information, categorization of continuous variables has been a

common practice in clinical research and in cancer dose finding (phase I) clinical trials. The

objective of this study is to quantify the loss of information incurred by using a discrete set of

doses to estimate the maximum tolerated dose (MTD) in phase I trials, instead of a continu-

ous dose support. Escalation With Overdose Control and Continuous Reassessment

Method were used because they are model-based designs where dose can be specified

either as continuous or as a set of discrete levels. Five equally spaced sets of doses with dif-

ferent interval lengths and three sample sizes with sixteen scenarios were evaluated to com-

pare the operating characteristics between continuous and discrete dose designs by Monte

Carlo simulation. Loss of information was quantified by safety and efficiency measures. We

conclude that if there is insufficient knowledge about the true MTD value, as commonly hap-

pens in phase I clinical trials, a continuous dose scheme minimizes information loss. If one

is required to implement a design using discrete doses, then a scheme with 9 to 11 doses

may yield similar results to the continuous dose scheme.

Introduction

Measurements of continuous variables are made in all fields of medicine. In medical

research such continuous variables are often converted into categorical variables by group-

ing values into two or more categories in order to have easier interpretations. Cox [1] pre-

sented the first optimization criterion for discretizing a continuous variable showing the

minimum loss of information as a function of the number of categories. Since then, several

authors [2–7] have pursued methodologies to provide optimal criteria of discretization for

continuous variables based on test statistics. On the other hand, extensive statistical litera-

ture [8–14] has advised against categorization due the loss of power and precision of the esti-

mated quantities.
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This debate has been ignored for cancer phase I clinical trials. Phase I trials are the first step

of translation of a new drug from laboratory research to clinical practice. The aim in phase I

trials is to identify a maximum tolerable dose (MTD) for subsequent phase II and III trials.

The compromise underlying the design of cancer phase I clinical trials is that reaching the

MTD as fast as possible while at the same time avoiding unacceptable toxic events. [15] Tradi-

tionally, dose finding has been designed according to the 3 + 3 principle and its variants,

which was first described by Dixon and Mood [16] and requires a pre-specified set of discrete

doses. Following the up-and-down approach, a large collection of methods estimates the MTD

of a new agent using a pre-specified set of doses. However, Hu et al. [17] and Chu et al. [18]

pointed out that the common assumption underlying almost all existing methods is that one of

the pre-specified doses is the MTD does not hold in practice because often only limited prior

information regarding the dose-toxicity relationship of the experimental drug is available

prior to the first-in-human trial.

Although the use of rule-based designs still prevails, model-based designs such as the

continual reassessment method (CRM) introduced by O’Quigley et al. [19] and Escalation

With Overdose Control (EWOC) by Babb et al. [20] have been gaining popularity in clinical

practice. [21] In these model-based designs, a parametric model is used to describe the rela-

tionship between the probability of a dose-limiting toxicity (DLT) and the dose level of the

new agent, which is either a continuous or a discrete variable. Even though intravenous

drugs are still more prevalent than oral drugs [22, 23], clinical trials using continuous

dose [24, 25] are less often performed since clinicians are used to the up-and-down

approach.

In this work, a Monte Carlo simulation study to compare the operating characteristics of

continuous and discrete dose using model-based designs is presented. The loss of information

is evaluated using the statistical measures bias and mean squared error as well as specific mea-

sures for phase I clinical trials to quantify safety and efficacy of the trial. Even though, results

are presented for EWOC and CRM, our goal is not to compare these two methods. Other

authors (e.g., Chu et al. [26]) have compared the performance of different versions of CRM

and EWOC. This article is organized as follows. In the next section, the EWOC design is

briefly introduced. Then, a simulation study is described and its results are presented with

discussion.

CRM and EWOC

Let Xmin and Xmax denote the minimum and maximum dose levels available for use in the trial.

Note that the dose given to the first cohort of patients is not necessarily equal to Xmin but there

must be strong evidence that it is a safe dose.

In this way, the minimum and maximum doses are the lower and upper bound of the sup-

port of the MTD γ, which is defined by

PðDLTjdose ¼ gÞ ¼ y; ð1Þ

such that θ is defined as the target toxicity level corresponding to the expected proportion of

patients to experience a medically unacceptable, dose-limiting toxicity if the MTD γ is admin-

istered. The relationship between toxicity and dose level is defined as

PðDLTjdose ¼ xÞ ¼ Fðb0 þ b1xÞ; ð2Þ

where F is a specified distribution function, and β0, β1 are unknown parameters such that β1 >

0. The usual choice is the Logistic distribution, F(u) = (1 + exp(−u))−1. Following (1) and (2),
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the MTD will be given by

g ¼
F� 1ðyÞ � b0

b1

¼ Xmin þ
F� 1ðyÞ � F� 1ðr0Þ

b1

;

ð3Þ

where ρ0 denotes the probability of a DLT at the minimum dose. Using the definition of the

MTD and probability of toxicity at initial dose, one can show that

b0 ¼
gF� 1ðr0Þ � XminF� 1ðyÞ

g � Xmin
;

b1 ¼
F� 1ðyÞ � F� 1ðr0Þ

g � Xmin
:

ð4Þ

Denote by yi the toxicity response (1 for DLT and 0 for no DLT) of the ith patient. The likeli-

hood of the data Dk = {(xi, yi), i = 1, . . ., k} after observation of k patients is

Lðr0; gjDkÞ ¼
Yk

i¼1

Fðb0 þ b1xiÞ
yi ½1 � Fðb0 þ b1xiÞ�

1� yi : ð5Þ

for (β0, β1) defined as funtions of (ρ0, γ) given in (4).

Prior information is incorporated for (ρ0, γ) under the restrictions of γ 2 [Xmin, Xmax] and

ρ0 2 (0, 1). Since the parameter space is bounded, a flexible choice is a Beta(aρ, bρ) distribution

for ρ0 and a re-scaled Beta(aγ, bγ) distribution for γ can represent prior beliefs. Tighouart et al.

[27] examined a large class of prior distributions that also could be considered. Uniform distri-

butions will be used for both parameters for simplicity.

Finally, the calculation of the posterior distribution for (ρ0, γ) can be evaluated [28] and

implemented using numerical integration and a Markov chain Monte Carlo sampler

pðr0; gjDkÞ ¼ cðDkÞLðr0; gjDkÞpðr0; gÞ; ð6Þ

where c(Dk) is a normalizing constant. The choice of the next dose based on the posterior

information depends on the design.

CRM

Following [19], the (k + 1)st patient receives the dose given by

arg min
xkþ1

jy � Fðxkþ1b̂Þj ð7Þ

where b̂ is the posterior estimate obtained from γ posterior distribution using (4).

For a discrete set of doses, both designs are performed using continuous dose with an addi-

tional step that one could either round down xk+1 to the closest dose prioritizing safety or

round to the nearest dose preferring the ability to explore the available set of doses. Notice that

there are many versions of CRM (i.e., proposed by [29–31]) with different models and algo-

rithms, but they follow the same principle of assigning the next patient a dose that has an an

estimated toxicity probability closest to the target toxicity level θ.

Comparison between continuous and discrete doses
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EWOC

Following Babb et al. [20], the (k + 1)st patient receives the dose given by the α-quantile of the

γ posterior distribution

xk ¼ P� 1ðajDkÞ; ð8Þ

where α is the probability that the dose selected by EWOC is higher than the MTD.

The feasibility bound could vary during the trial as discussed by Tighiouart and Rogatko

[32]. The rationale behind this approach is that uncertainty about the MTD is high at the onset

of the trial and a small value of α offers protection against the possibility of administering dose

levels much greater than the MTD. As the trial progresses, uncertainty about the MTD declines

and the likelihood of selecting a dose level significantly above the MTD become significantly

smaller.

There are several suggestions for the choice of the feasibility boundary. Originally Babb

et al. [20] suggested a fixed feasibility boundary α equal to 0.25. Babb and Rogatko [33] sug-

gested an increasing feasibility boundary until 0.5 with initial α equal 0.25. Wheeler et al. [34]

suggested a similar strategy, but conditional on the previous patient having no DLT, denoted

by C(0.25, 0.05).

Simulation study

Both designs were applied for continuous dose and discrete dose. The minimum and maxi-

mum doses were standardized as Xmin = 0 and Xmax = 1. Considering the discrete dose, five

equally spaced sets with different interval lengths between two doses given by 0.05, 0.10, 0.2

and 0.25 were established: D0.05 = {0, 0.05, . . ., 0.95, 1} has 21 doses, D0.10 = {0, 0.10, . . .,

0.90, 1} has 11 doses, D0.125 = {0, 0.125, . . ., 0.875, 1} has 9 doses, D0.20 = {0, 0.20, . . ., 0.80, 1}

has 6 doses and D0.25 = {0, 0.25, 0.50, 0.75, 1} has 5 doses. The working model is the logistic

model. The feasibility strategy C(0.05, 0.05) was applied. There are 12 (4 true MTD × 3 sample

sizes) simulations for each dose scheme and true model.

The target toxicity level θ was set equal to 0.33, with four true values for the MTD = {0.2,

0.4, 0.6, 0.8} and four true distributions Logistic(μ = 0, σ2 = 1), Normal(μ = 0, σ2 = 2), Skew-

Normal(m ¼ 0;s2 ¼
ffiffiffi
2
p

; l ¼ 3) and Skew-Normal(m ¼ 0; s2 ¼
ffiffiffi
2
p

; l ¼ � 3), where the

parameters μ, σ2, λ are mean, variance and skewness, respectively. The distributions are illus-

trated in Fig 1.

Three different sample sizes n = 20, 40, 60 with cohorts of one patient were treated. In the

discrete dose scheme, the rounding to the nearest dose approach was applied and skipping

doses was not allowed.

A Monte Carlo study was performed with 1000 replicates for each study design. Posterior

distribution was sampled using JAGS [35], in particular the algorithm Slice Sampling, with

5000 iterations for the adapt phase, and 10000 iterations for burn-in resulting in a sample of

1000 values for each parameter of interest without thinning.

Bias and the root of mean square error (RMSE) of the MTD estimate were calculated to

compare accuracy and precision across scenarios. Average DLT rate and percentage of trials in

which DLT proportion is inside the target toxicity level interval defined as θ ± 0.05 were calcu-

lated to quantify safety. In addition, the correct MTD recommendation was quantified using

the percentage of trials with the estimated MTD within the optimal MTD interval defined as

fdose : g � 0:10� g < dose < gþ 0:10� gg; ð9Þ

Comparison between continuous and discrete doses
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and the optimal target toxicity level interval defined as

fdose : y � 0:10 < FðdoseÞ < yþ 0:10g; ð10Þ

and the percentage of patients receiving optimal doses defined by those optimal intervals.

Notice that these two criteria of optimality for doses are different measures of the distance

between the true MTD and a dose. The optimal MTD interval defines a interval around the

MTD, while the optimal toxicity interval defines a interval around the target toxicity level.

From the perspective of a patient participating in a dose finding trial, the best design is the one

Fig 1. Probability of DLT as function of dose.

https://doi.org/10.1371/journal.pone.0210139.g001
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with the highest proportion of patients receiving optimal doses. Therefore, it is important to

characterize the discrete dose schemes based on the number of possibles doses that could be

considered optimal.

Table 1 presents the number of possible optimal doses using the optimal MTD interval for

all four true distributions. Dose schemes D0.05 and D0.10 for some true MTD values present

more than one dose which is an optimal dose. The dose scheme D0.25 does not contain any

possible dose which could be considered as an optimal dose for the true MTD values 0.2, 0.4

and 0.6. The dose scheme D0.125 does not contain any possible dose that is considered optimal

dose for the true MTD value 0.2, but it contains more than one dose that can be considered

optimal dose for the true MTD value 0.8.

The dose schemes are evaluated based on the optimal toxicity interval in Table 2. All dis-

crete dose schemes contain at least one optimal dose under the definition of the optimal toxic-

ity interval if the true distribution is logistic(0, 1) or skew-normal(0, 2, 3). There are scenarios

where the dose schemes D0.125 and D0.25 do not contain any optimal toxicity dose for the

normal(0, 2), and skew-normal(0, 2, -3) distributions. If the toxicity optimal interval is defined

as θ ± 0.05 instead of θ ± 0.10, then the results for optimal toxicity interval for logistic distribu-

tion are identical to the results in Table 1.

Table 1. Percentage (Number) of doses relative to each discrete dose scheme which are optimal doses based on the optimal MTD interval (True MTD ± 0.15 × True

MTD).

True MTD Optimal Interval Dose scheme

D0.05 D0.10 D0.125 D0.20 D0.25

0.2 (0.17; 0.23) 4.8 (1) 9.1 (1) 0.0 (0) 16.7 (1) 0.0 (0)

0.4 (0.34; 0.46) 14.3 (3) 9.1 (1) 11.1 (1) 16.7 (1) 0.0 (1)

0.6 (0.51; 0.69) 14.3 (3) 9.1 (1) 11.1 (1) 16.7 (1) 0.0 (0)

0.8 (0.68; 0.92) 23.8 (5) 27.3 (3) 22.2 (2) 16.7 (1) 20.0 (1)

https://doi.org/10.1371/journal.pone.0210139.t001

Table 2. Percentage (Number) of doses relative to each discrete dose scheme which are optimal doses based on the optimal toxicity interval (θ ± 0.10).

True Distribution True MTD Dose scheme

D0.05 D0.10 D0.125 D0.20 D0.25

logistic(0, 1) 0.2 14.3 (3) 9.1 (1) 11.1 (1) 16.7 (1) 20.0 (1)

0.4 23.8 (5) 27.3 (3) 22.2 (2) 16.7 (1) 20.0 (1)

0.6 38.1 (8) 36.4 (4) 33.3 (3) 33.3 (2) 40.0 (2)

0.8 47.6 (10) 45.5 (5) 44.4 (4) 50.0 (3) 40.0 (2)

normal(0, 2) 0.2 4.8 (1) 9.1 (1) 0.0 (0) 16.7 (1) 0.0 (0)

0.4 14.3 (3) 9.1 (1) 11.1 (1) 16.7 (1) 0.0 (0)

0.6 23.8 (5) 27.3 (3) 22.1 (2) 16.7 (1) 20.0 (1)

0.8 33.3 (7) 27.3 (3) 33.3 (3) 16.7 (1) 20.0 (1)

skew-normal(0, 2, -3) 0.2 4.8 (1) 9.1 (1) 0.0 (0) 16.7 (1) 0.0 (0)

0.4 9.5 (2) 9.1 (1) 11.1 (1) 16.7 (1) 0.0 (0)

0.6 14.3 (3) 9.1 (1) 11.1 (1) 16.7 (1) 0.0 (0)

0.8 19.0 (4) 18.2 (2) 22.2 (2) 16.7 (1) 20.0 (1)

skew-normal(0, 2, 3) 0.2 23.8 (5) 27.3 (3) 22.2 (2) 16.7 (1) 20.0 (1)

0.4 42.9 (9) 45.5 (5) 33.3 (3) 50.0 (3) 20.0 (2)

0.6 61.9 (13) 63.6 (7) 55.6 (5) 50.0 (3) 40.0 (2)

0.8 61.9 (13) 63.6 (7) 55.6 (5) 66.7 (4) 60.0 (3)

https://doi.org/10.1371/journal.pone.0210139.t002
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All the simulations were performed using the R-package EWOC with the development

branch CRM available at GitHub [36].

Results

The results are evaluated based on median and quantiles over 16 scenarios (4 True MTD × 4

True Distributions). Absolute bias and RMSE are in Fig 2. Average DLT rate and percentage

of trials in which the DLT proportion is inside the target toxicity level are in Fig 3. Percentage

of trials in which the estimated MTD is inside the optimal MTD interval and average percent-

age of patients receiving doses inside the optimal MTD interval are in Fig 4. Percentage of tri-

als in which the estimated MTD is inside the optimal toxicity interval and average percentage

of patients receiving doses inside the optimal toxicity interval are in Fig 5.

Bias

The differences in absolute bias are negligible among the dose schemes for both designs. It is

still possible to observe some patterns. CRM: For n = 20, continuous dose presents a lower

median value of absolute bias than D0.05, D0.25, and a close median value to D0.10, D0.125,

D0.20. The same pattern is observed when n = 40, 60, with D0.25 showing the highest values.

EWOC: For n = 20, the continuous dose presents a lower median value of absolute bias than

D0.05, a close value to D0.10, and a higher value than D0.25. If n = 40, continuous dose, D0.05

and D0.25 show comparable median values of absolute bias, and D0.10 has lower values than

all three. When n = 60, continuous dose, D0.05, D0.10, and D0.25 have similar median values

to each other. The dose schemes D0.125 and D0.20 show the lowest median values of absolute

bias for all sample sizes.

RMSE

CRM: The median values of RMSE of all discrete designs are higher than the continuous dose

for all sample sizes. The dose schemes D0.05, D0.10 and D0.125 show median values of RMSE

that approximate to the continuous dose as the sample size increases. In addition, D0.20 and

D0.25 have the poorest performance for all sample sizes, with D0.25 displaying the highest val-

ues. EWOC: The dose schemes D0.05, D0.10 and D0.125 display median values of RMSE that

are slightly higher than the continuous dose for all sample sizes, except D0.125 when n = 20. In

addition, D0.20 and D0.25 have poorer performance than for the continuous dose as the sam-

ple size increases.

Average DLT rate

CRM: When n = 20, the continuous dose presents a median value closer to the target toxicity

level compared to all discrete dose schemes, with D0.05 displaying the lowest value. For n = 40,

the median value for the continuous dose exceeds the target toxicity level θ; D0.10, D0.125,

D0.20 present median values close to θ; and D0.05, D0.25 have the lowest median values. For

n = 60, the continuous dose still exceeds the target toxicity level; the median value of D0.125

reaches θ followed closely by D0.10, D0.05, D0.125 and D0.25. EWOC: All dose schemes pres-

ent median values below the target toxicity level θ when n = 20, with D0.05 showing lower val-

ues than all other dose schemes. For n = 40, the median value of the continuous dose reaches

the target toxicity level followed by D0.10, D0.125, and D0.20. When n = 60, the dose schemes

D0.10 and D0.125 also reach the target toxicity level, in addition to the continuous dose. More-

over, D0.05, D0.20 and D0.25 show slightly lower median values than θ.

Comparison between continuous and discrete doses
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Fig 2. Absolute bias and RMSE as a function of sample size and dose scheme.

https://doi.org/10.1371/journal.pone.0210139.g002
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Fig 3. DLT average and percentage of trials such that the observed DLT probability is inside the interval [θ − 0.1; θ + 0.1]as a function of true

distribution and dose scheme.

https://doi.org/10.1371/journal.pone.0210139.g003
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Fig 4. Percentage of trials with the estimated MTD inside the optimal MTD interval and average percentage of patients receiving doses inside the

optimal MTD interval as a function of true sample size and dose scheme.

https://doi.org/10.1371/journal.pone.0210139.g004
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Fig 5. Percentage of trials with the estimated MTD inside the toxicity optimal interval and average percentage of patients receiving doses inside the

optimal toxicity interval as a function of true distribution and dose scheme.

https://doi.org/10.1371/journal.pone.0210139.g005
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Percentage of trials in which DLT proportion is inside the target toxicity

level interval

CRM: The continuous dose shows higher median value than all discrete dose schemes when

n = 20, 40. When n = 60, D0.05 outperforms the continuous dose; D0.10 is similar to the

continuous dose, followed by D0.125, D0.20, and D0.25 dose schemes. EWOC: Similar

median percentages are found to all dose schemes when n = 20. However, the performance

of discrete designs decreases compared to the continuous dose as the sample sizes increases,

except D0.05 which displays similar performance to the continuous dose for all sample

sizes. D0.25 shows notably worse performance than all discrete dose schemes when n = 40,

60.

Percentage of trials in which the estimated MTD is inside the optimal MTD

interval

CRM and EWOC: The continuous dose presents median percentages close to D0.05, D0.10,

D0.125 when n = 20, 40, 60. The dose scheme D0.20 surpasses all the other dose schemes, and

D0.25 shows the poorest performance for all sample sizes. It is noteworthy that D0.125 pres-

ents values equal to zero for 50% of the scenarios as expected based on Table 1.

Average percentage of patients receiving optimal MTDs

CRM and EWOC: The continuous dose presents a median percentage close to D0.10, higher

than D0.05, and lower than D0.125 for n = 20; when n = 40, D0.05 approximates to the con-

tinuous dose; when n = 60, D0.125 also approaches the continuous dose. On the other hand,

D0.20 surpasses all the dose schemes for all sample sizes. As expected based on Table 1,

D0.25 underperforms all other designs and D0.125 shows 50% of scenarios with values equal

to zero.

Percentage of trials with the estimated MTD inside the toxicity optimal

interval

CRM: When n = 20, the median percentage of the continuous dose is similar to D0.10, D0.20

and higher than D0.05, D0.125 and D0.25; D0.05 and D0.125 approach the continuous dose

when n = 40, 60 respectively. Furthermore, D0.125 show values equal to zero for a few scenar-

ios. The variability of performance for D0.25 is large and the median value lower than the con-

tinuous dose for n = 40, 60, with some values equal to zero. EWOC: All dose schemes present

similar median values to each other, except D0.05 when n = 20 and D0.25 when n = 60. The

results under D0.25 and D0.125 are more variable than those of other dose sets.

Average percentage of patients receiving toxicity optimal interval

CRM: The continuous dose presents a median value close to D0.10, D0.125 and D0.25, higher

than D0.05, and lower than D0.20 for n = 20; the continuous dose, D0.10, D0.20 are similar to

each other, and higher than D0.05, D0.125 and D0.25 for n = 40, 60. EWOC: The continuous

dose presents median value close to D0.10, D0.125 and D0.25, higher than D0.05, and lower

than D0.20 for n = 20, 40. When n = 60, the continuous dose, D0.10, D0.125 and D0.25

approximate to D0.20. For both designs, D0.25 and D0.125 show a large variability in perfor-

mance, with values equal to zero as expected based on Table 2. Moreover, D0.05 underper-

forms other dose schemes for all sample sizes.
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Discussion

EWOC and CRM are model-based designs where dose can be specified either as continuous

or as a set of discrete levels. Therefore, they offer an ideal framework to compare the loss of

information incurred by using a discrete set of doses to estimate the MTD in phase I trials,

instead of a continuous dose support. This work compared such dose schemes considering six-

teen scenarios and three samples sizes, with a conditional feasibility strategy for EWOC. The

six doses schemes were one with continuous dose and five different pre-specified set of doses.

The set of doses are equally spaced between the minimum and maximum doses, with two dose

schemes that do not contain the true MTD values. The dose schemes were evaluated based on

safety and efficiency measures.

Phase I clinical trials usually are performed with 5 or 6 doses chosen based on arbitrary cri-

teria. Based on the simulations, discrete dose schemes containing 9 or 11 doses equally spaced

between the minimum and maximum doses produce operating characteristics similar to the

continuous dose. A dose scheme containing 6 pre-specified doses performed well, but with an

increased RMSE. Nonetheless, the assumption that the pre-specified set of doses contains the

true MTD is essential to obtain acceptable operating characteristics such as: the percentage of

trials such that the MTD is inside the optimal MTD and toxicity intervals, and average per-

centage of patients receiving optimal MTD and toxicity doses. The challenge with this assump-

tion is that it cannot be verified in the real world, outside a simulation setup.

Theoretically, the probability of selecting a point for a continuous random variable is equal

to zero. Thus, defining a pre-specified set of doses that contains the exact true MTD value

seems improbable. Notwithstanding, increasing the number of doses could be adopted as a

possible solution to increase the chance that the pre-specified set of doses is close to the true

MTD. On the other hand, a large number of doses can generate inefficient designs with low

operating characteristics as was observed for the dose scheme D0.05.

Discrete dose schemes with 9 to 11 doses produce fine enough grids of the dose support to

present similar results to the continuous dose scheme. Thus, they can be recommended when

a discrete dose scheme needs to be implemented. However, the original implementation of the

CRM design [19] requires initial guesses of the toxicity probabilities for the pre-specified dose

set, which could be a daunting task as pointed out by Lee and Cheung [37] even if 9 to 11

doses are used.

The continuous dose scheme showed equal or better results than the discrete dose schemes

D0.05, D0.10, D0.125, D0.25 for samples sizes of 20, 40, and 60 patients. The only exception is

the dose scheme D0.20, which presented the best results for optimal MTD and toxicity criteria

surpassing all dose schemes. Such performance is not a surprise, considering that D0.20 con-

tains the smallest set of pre-specified doses such that each dose is the true MTD for at least 4

out of 16 possible scenarios. Furthermore, caution should be taken when continuous dose is

used in the CRM design because an excessive median value for the average DLT was observed.

Recent works [17, 18] presented ideas to add new doses during the trial into the pre-speci-

fied discrete dose scheme. Based on the simulations, if there is not enough knowledge about

the true MTD value as commonly happens in the real world, continuous dose scheme is advo-

cated as an attractive and more genuine option to discrete dose schemes, which may require

protocol amendments to add new doses in the course of the trial.
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