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a b s t r a c t

The immense structural diversity of products and intermediates of plant specialized metabolism (specia
lized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. 
With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, 
along with recent advances in machine learning, this review sets out to outline how supervised machine 
learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will 
first examine the various sources from which reactome data can be obtained, followed by explaining the 
different machine learning encoding methods for reactome data. We then discuss current supervised 
machine learning developments that can be employed in various aspects to help redesign plant specialized 
metabolism.
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1. Introduction

A substantial part of terrestrial plants' remarkable adaptability is 
attributed to specialized metabolism (also known as secondary 
metabolism) [1]. For instance, metabolites produced by specialized 

metabolism (termed specialized/secondary metabolites) such as 
saiginols, lignin and wax provide desiccation defense, mechanical 
support, and protective sunscreen against damaging UV-B radiation 
[2-4]. Because specialized metabolism does not play a direct role in 
the development, growth and reproduction of plants, the pathways, 
intermediates and products of specialized metabolism can be highly 
lineage-specific and diverse [5], as exemplified by betalains in Car
yophyllales [6], steroidal glycoalkaloids in Solanaceae [7], and glu
cosinolates in Brassicales [8]. As a result, specialized metabolites far 
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outnumber metabolites produced by primary metabolism (primary 
metabolites) with as many as 21,000 alkaloids, 5000 flavonoids, and 
22,000 terpenoids identified to date, but this number is probably 
understated given that many plant metabolomes remain un
characterized [1]. Since specialized metabolites make up more than 
one-third of human medications (including paclitaxel, vincristine, 
morphine and artemisinin) [9] and can be used to make our food 
healthier [10], specialized metabolites have a significant impact on 
our lives [9].

Despite the medicinal and industrial promise of plant specia
lized metabolites, their total chemical synthesis can be cost pro
hibitive or even unattainable due to their structural complexity 
[11]. Consequently, the majority of specialized metabolites are still 
harvested from plant sources. Firmoss (Huperzia serra, source of 
Huperzine A, a potential Alzheimer's disease treatment), the pacific 
yew (Taxus brevifolia, source of anti-cancer drug taxol), and golden 
root (used in traditional medicine for various ailments) are ex
amples of plant sources that can be difficult to grow, leading in the 
overharvesting of these species from the wild [12,13]. Furthermore, 
many beneficial specialized metabolites may be found in plants in 
low quantities, preventing the cost-effective manufacture of these 
valuable compounds. As a result, significant efforts are being made 
to uncover the biosynthesis pathways of specialized metabolites 
which may be engineered into more efficient microbial or plant 
hosts and/or further manipulated via enzyme / metabolic en
gineering to increase their yield or generate novel, more useful 
compounds [14-18]. However, this approach is often an arduous 
endeavor due to the large number of reaction steps involved, cou
pled with the low efficiency of some enzymes that require ex
tensive enzyme / metabolic engineering. For example, the total 
chemical synthesis of anti-cancer drug taxol is non-commercially 
viable as it consists of up to 40 reaction steps [19]. However, the 19- 
step biosynthetic pathway of taxol is highly complex and still not 
fully elucidated since the discovery of taxol more than four decades 
ago [20]. This has prevented the complete transfer of the taxol 
pathway into microbial hosts amenable to metabolic engineering 
even till this day [17,20]. Consequently, taxol is still mainly pro
duced via plant tissue culture [17,20]. This highlights the need for 
methods to redesign shorter and more efficient routes of bio
synthesis for natural products.

Enzyme promiscuity can be useful to redesign biosynthetic 
pathways. Briefly, promiscuous enzymes can accept different sub
strates (substrate promiscuity) [21], generate different products 
from the same substrate (product promiscuity) [22] and catalyze 
different reactions depending on the substrate (catalytic pro
miscuity) [23,24]. This promiscuity can be leveraged to produce 
novel compounds [25-27] and thus, allows for the exploration of 
new biosynthetic routes for valuable specialized metabolites using 
retrobiosynthetic approaches [28]. Additionally, promiscuous en
zymes can also be used to catalyze the derivatization of these me
tabolites into compounds with desirable (therapeutic) qualities. The 
exponential accumulation of reactome data in the public domain 
and recent advances in machine learning has made it opportune to 
explore the uses of supervised machine learning in redesigning 
pathways.

This review will explain supervised machine learning basics in 
brief, discuss available sources for reactome data, and how they can 
be encoded for machine learning. Later sections will explain the 
concept of retrobiosynthesis and how supervised machine learning 
can be used to aid retrobiosynthetic route planning in redesigning 
plant specialized metabolism. Due to the multidisciplinary nature of 
the topics discussed in this review (i.e., Machine learning, 
Cheminformatics, bioinformatics), first occurrences of certain tech
nical terms beyond the introduction are bolded in-text and can be 
referred to in the glossary for their definitions together with relevant 
reference material for further reading.

2. Supervised machine learning basics

Despite encompassing many different algorithms under its um
brella, all supervised machine learning (SML) workflows essen
tially involve training a model with a training dataset containing 
input-output pairs. This “learning” is achieved as the model self- 
adjusts its parameters in an iterative fashion so that the accuracy of 
the predictions based on the input matches the output. The accuracy 
of the trained model is then tested on a never-before-seen testing 
dataset, by employing a train/test split of the data during model 
validation. Therefore, the algorithm’s predictive ability is exclusively 
data-driven and does not contain any defining rules of mechanistic 
understanding a priori. Consequently, a model’s performance is 
heavily influenced by the quality of the training set in a phenom
enon known as “garbage in, garbage out” within the SML commu
nity. For example, the model’s performance can be heavily 
influenced by the size, sample bias, and data labeling/annotation of 
the training dataset.

A large training dataset can prevent overfitting [29], especially 
for models with many parameters, such as structural information of 
proteins and substrates. Besides a large dataset size, credible la
beling of the training data is also paramount as mislabeled data will 
ultimately degrade the model’s performance [30,31]. As such, best 
practices in SML often call for manual and expert curation to be 
involved in labeling training data (for further discussion on the topic 
in the context of metabolic studies please see [32]).

3. Publicly available data sources for machine learning

The machine learning use-cases relevant to the redesigning of 
plant specialized metabolism predominantly involves the utilization 
of data describing enzymatic reactions (reactome data). Reactome 
data should comprise information describing the substrate, en
zymes, and products of enzymatic reactions. Aggregating enzymatic 
reaction data from KEGG [33-35], Reactome [36,37], MetaCyc 
[38,39], EcoCyc [40,41] and M-CSA [42], Rhea [43] is debatably the 
most comprehensive database that hosts expert-curated and ex
perimentally validated reactions, satisfying the size and label cred
ibility requirements for a good training dataset. In the most recent 
release (release 122 of May 2022), Rhea hosts data for 14,583 unique 
reactions, with 12,601 unique reactants and supported by 16,520 
unique citations of PubMed literature (https://www.rhea-db.org/ 
statistics), while reactions link to at least 222,000 UniProtKB/Swiss- 
Prot and 32.2 million UniProtKB/TrEMBL accessions [43]. In addition, 
Rhea unifies various databases by providing (1) identifier mappings 
of reactions to aforementioned reaction databases, (2) UniProtKB 
accessions, Enzyme Commision (EC) numbers and Gene Ontology 
(GO) terms for enzymes, and (3) Chemical Entities of Biological 
Interest (ChEBI) ontology and InChIKeys for reactants/substrates. 
This allows one to select relevant features and compile a dataset 
tailored to the task of interest. For example, UniProtKB accessions 
can be used to acquire protein 3D structures of enzymes from Al
phaFoldDB [44,45], EC numbers can be used to acquire heuristically 
generated reaction rules from RetroRules [46], and InChIKeys can be 
used to obtain toxicity information of reactants from PubChem [47].

While mining chemical and biological “knowledge(data)bases” is 
an efficient and inexpensive way of gathering a large reactome da
taset for machine learning, this approach also confers a set of unique 
challenges that have yet to be thoroughly investigated. Despite 
featuring information that are supported experimentally, these da
tabases often lack experimental metadata by virtue of their design as 
well as intended utility. Although the spectrum of physiological 
conditions that facilitate enzymatic reactions is much narrower than 
chemical synthetic reactions, permitting-conditions for enzymatic 
reactions can differ greatly due to the heterogeneous environments 
between cellular compartments. As a case in point, proton 
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concentrations in plastids (pH 7.2) are two orders of magnitude 
lower than in vacuoles (pH 5.2) of Arabidopsis thaliana [48]. Reaction 
databases like MetaCyc and Rhea do not include experimentally 
validated conditions for catalysis (e.g., substrate/enzyme con
centrations, ionic environment, and pH). This hinders the identifi
cation and exclusion of enzymatic reactions that are specific to niche 
physiological conditions. Moreover, this may confound SML models 
as associations between features and ground truths to be learned by 
the model might be different for these reactions (e.g. protonation 
states of active site residues, and therefore catalytic activities of 
enzymes might be determined to be unfavorable in one pH and fa
vorable in another [49]). The lack of these niche reaction subsets also 
precludes the use of a transfer-learning strategy to generate models 
specific to these “niches” by repurposing general models pre-trained 
on all enzymatic reactions.

Another issue with publicly available data mined from knowl
edge(data)bases is a bias towards positive relationships between 
substrate-enzyme pairs (e.g., an enzyme acts on a given substrate), 
while negative relationships (e.g., experimentally validated lack of 
catalysis between substrate and enzyme) are underrepresented. This 
is an issue for SML models, as the training data should represent 
positive and negative relationships equally, to avoid bias. If one were 
to use data from these sources exclusively, negative samples would 
have to be assigned unconfirmed data labels randomly, resulting in 
a dataset without true negative samples to train robust classification 
models [50].

Furthermore, experimental data sourced from the scientific 
community might also be biased towards well-studied pathways or 
chemical classes (composition bias), which can limit the predictive 
scope, as well as the performance of the resultant model [51,52]. For 

Fig. 1. Protein representations for machine learning. A) Simplified schematic showing how different protein representations can be derived from raw sequence data. Formats for 
sequence-based vectors using one-hot encoding and physiochemical properties encoding are colored green and blue, respectively, while amino-acid level embeddings and 
protein/domain embeddings are colored red and purple, respectively. VHSE8 and ESM-1b were used to exemplify approaches in physiochemical properties encoding and learned 
embeddings, respectively. B) Format of distance/contact maps. Cells shaded with deep yellow within the adjacency matrix represent high proximity amino acids and correspond 
to similarly coloured amino-acid contact points observed in the protein structure illustration (left). C) Hierarchical categorization of different types of protein representations for 
machine learning. Coloured labels within the different types of representations correspond to their formats in panels A and B. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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Table 1 
Glossary of terms. 

Term Description Further reading / reference material

Chem- / bioinformatics related terms
Chemical Entities of Biological 

Interest (ChEBI) ontology
Controlled vocabulary used to classify small molecules 
used to intervene in the processes of living organisms, 
based on e.g, their biological role, chemical properties.

Degtyarenko et al. [67]

Computer-aided synthesis 
planning (CASP)

Computational planning of steps to synthesize a target 
chemical compound from available starting materials.

Engkvist et al. [68], Ravitz [69], Warr [70]

Enzyme Commission (EC) 
numbers

Numerical classification system for enzymes based on 
the reaction they catalyze. The first three numbers 
(levels) describe the type of catalytic activity while the 
fourth level specifies the substrate.

McDonald and Tipton [71]

Gene Ontology (GO) Controlled vocabulary that can be used to classify the 
function of gene products (e.g. proteins) based on 
biological process, molecular function and site of cellular 
localization.

Gene Ontology Consortium [72]

InChIKeys Widely-used and unique identifiers for chemical 
compounds that are derived from hashing InChI 
(International IUPAC Identifiers) notations.

Goodman et al. [73]

Orphan enzymatic reactions Reactions not known to be catalyzed by enzymes. -
Reaction rules A scheme that describes how reactants are converted to 

products. Useful for cheminformatic tasks such as 
retrosynthesis route-planning to transform reactants 
into products.

Plehiers et al. [74]

Retrosynthesis A way of synthesis route planning that begins with the 
target chemical product and searches for the best 
possible synthetic route, arriving at reactants that are 
inexpensive and easily obtainable.

Klucznik et al. [75]; 
https://www.elsevier.com/solutions/reaxys/predictive-retrosynthesis)

Retrobiosynthesis An approach of route planning for biochemical synthesis. 
Biosynthetic routes that arrive at abundant reactants 
(cellular metabolites) are prioritized in order to 
maximize biosynthetic yield.

de Souza et al. [28], Mohammadi Peyhani et al. [76], Probst et al. [29]

Structure-activity 
relationship (SAR)

Relationship that describes how structural properties of 
molecules relate to their (bio)activities.

Guha [77]

Machine-learning related terms
Data labels Targeted output to train a supervised machine learning 

model.
-

Data labeling / annotation Generation of data labels for sample data that are 
otherwise unlabelled. Labeling / annotation can be 
achieved via manual, semi-automatic or automatic 
means.

-

Dimensionality (of features) The number of features. -
Features Refers to Input that has been preprocessed from sample 

data (often into numerical or binary values) to be fed 
directly into a machine learning model in order to 
generate an output value. Feature (singular) refers to a 
single numerical / binary value from the set of input.

-

Machine learning Use of data and algorithms that learns iteratively to 
improve its accuracy of predictions or make decisions 
that can give the best outcome.

Greener et al. [78]

Model An algorithm that can recognize patterns, make 
predictions or make decisions based on given input.

-

Model validation Process of using the model to predict the output of 
samples outside of the training dataset to evaluate the 
predictive performance of a model.

-

Reinforcement learning A machine learning method that improves iteratively to 
maximize reward.

[79]

Neural Network A type of supervised machine learning algorithm that 
comprises an input layer, a hidden layer (can be more 
than one) and an output layer. Each layer consists of 
nodes that are connected to every node in adjacent 
layers via edges. Data is fed into the network via the 
input layer and processed as it propagates through the 
hidden layer(s) towards the output layer to give an 
output (often a prediction). Each edge is associated with 
weights (parameters) that transform the data from one 
node to another and can be adjusted during learning to 
improve accuracy of the prediction. Neural networks are 
also known as artificial neural networks (ANN).

Greener et al. [78]; https://playground.tensorflow.org)

One-hot encoding A way of converting one column of categorical features 
into multiple binary columns.

Greener et al. [78]; https://scikit-learn.org/stable/modules/generated/ 
sklearn.preprocessing.OneHotEncoder.html)

(continued on next page) 
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example, the number of enzymatic reactions covered by the Rhea 
database (https://www.rhea-db.org/statistics) involving macro
molecules and polymers is one and two orders of magnitude smaller 
than small molecule reactions, respectively. To give another ex
ample, 8 % of entries in UniProtKB/TrEMBL are represented by only 
20 species, while the rest are made up of sequence data from more 
than 1.2 million species (https://www.ebi.ac.uk/uniprot/TrEMBL
statsl).

Due to the above-stated inadequacies, it is important for data 
drawn from public databases to be specifically curated in chemi- and 
bioinformatic SML workflows according to the problem at hand [53], 
which is contingent on metadata availability. This calls for the need 
of relevant databases, especially reaction databases, to include more 
metadata or the establishment of SML benchmarking datasets for 
enzymatic reaction data, similar to ones generated for chemical 
toxicity [54], bioactivity [55], and molecular docking [56].

4. Encoding enzymes as features for machine learning

To train machine-learning models to make predictions relating to 
different aspects of enzymatic pathway design, information on en
zymes, substrates, products, and details about the reactions they 
catalyze (reaction data) have to be provided as input in a machine- 
readable format. Since the conception of SML, many studies have 
investigated and demonstrated the effect of features on the perfor
mance of SML [57]. To recapitulate the finding of these studies 
briefly, the ideal input for SML should consist of a small (low-di
mensionality) and condensed set of features that encapsulate all 
information useful for learning. This is due to the well-established 
phenomenon of “the curse of dimensionality”, where any un
necessary increase of feature dimensions degrades a model’s gen
eralization ability (overfitting) given the same dataset size. As such, 

deriving and selecting features from raw data (feature engineering) 
is a sophisticated process that often constitutes a considerable por
tion of SML workflows [58].

Many predictions in the SML use-cases for enzymatic pathway 
design (e.g. compound toxicity, substrate-enzyme binding, the fea
sibility of a particular catalytic reaction on a compound) are essen
tially extensions of an enzyme’s / compound’s intrinsic properties 
that are not unlike their molecular weights and solvent solubilities. 
Therefore, all useful information should theoretically be self-con
tained within the enzyme/compound’s molecular structure. As a 
case in point, the prediction of protein 3D structure using features 
exclusively derived from sequence data has been practically realized 
using supervised machine learning by DeepMind’s AlphaFold [44]. 
This was possible as all instructions needed for protein folding can 
be found in a protein’s primary sequence, as was established more 
than four decades ago [59].

Enzymes can be represented by protein-level global descriptors, 
sequence-based feature vectors, and learned protein embeddings 
(Fig. 1). Global descriptors capture the biophysical and sequence- 
derived properties of the proteins as a whole (e.g., amino acid 
composition, isoelectric point) but are poor in predicting protein 
function, structure, and interaction when they are used as input 
features [60,61]. This is because these predictions are almost always 
mediated by specialized regions (protein domains) that might not be 
captured by global descriptors [61]. Conversely, sequence-based 
feature vectors can encapsulate region-specific information at 
amino-acid resolution and are more commonly used for the stated 
predictions than their global counterparts. The most direct form of 
generating these vectors is through one-hot encoding, where the 
protein sequence is vectorized into bits (binary values) within an L x 
20 matrix where L is the length of the protein and each column 
indicates one of the 20 residues for each amino-acid position in the 

Table 1 (continued)   

Term Description Further reading / reference material

Overfitting A phenomenon where a model learns irrelevant 
information from the training dataset resulting in the 
degradation of predictive performance on never-before- 
seen data. This can be caused by having a model that has 
too many parameters (too complex) or not having 
enough sample data to train the model.

Chicco [80], Greener et al. [78]

Parameters Variables within the model that governs how input data 
is transformed into the output. Machine learning models 
self-adjust these parameters during training to minimize 
the error between output and labels.

-

Self-supervised (machine 
learning)

A subset of unsupervised machine learning algorithms 
that are able to take on tasks which are traditionally 
tackled by supervised machine learning, without using 
data labels.

Spathis et al. [81]

Sparsity (of features) The number of features with zero values. -
Supervised (machine learning) A machine learning approach that uses a labeled dataset 

to improve the its prediction of outcomes.
-

The curse of dimensionality The relationship between the predictive performance of 
machine learning models and dimensionality of input 
features. Performance first improves with increased 
dimensionality but starts to degrade past a certain point 
if the number of training samples remains the same. This 
is attributed to the exponential increase in training data 
needed to prevent overfitting as dimensions increase.

(https://deepai.org/machine-learning-glossary-and-terms/curse-of- 
dimensionality)

Training dataset and testing 
dataset

Subsets of sample data generated after a train/test split. 
Training data are used to train the model while testing 
dataset will be used to evaluate the model performance.

-

Transfer-learning An approach of applying knowledge learned for one task 
to a different but related task to improve sample 
efficiency. This can effectively be achieved by training an 
already pre-trained model instead of building a model 
from scratch.

Cai et al. [82]

Unsupervised (machine 
learning)

A machine learning approach that uses algorithms to 
infer patterns from a dataset without the use of data 
labels.

-
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protein [62,61,63] (Fig. 1A). However, one-hot encoding is highly 
dimensional and assumes similarity between amino acids to be 
equidistant, leading to large data requirements in order to train a 
robust model (see Curse of dimensionality, Table 1) [61]. To mitigate 
this, several approaches have been developed to encode each posi
tional amino acid as numerical values which represent their physi
cochemical properties [64,65]. One such encoding scheme, VHSE8 
(principal components score Vectors of Hydrophobic, Steric, and 
Electronic properties) encodes proteins into a L x 8 matrix with re
sidues represented as scores across 8 principal components that 
were derived from more than 50 hydrophobic, steric, and electro
chemical properties [66]. Despite reducing dimensions effectively, 
there are drawbacks when using VHSE8-like encoding schemes to 
construct sequence-based vectors. For one, the reliance on expert 
intuition in property selection fails to account for important physi
cochemical properties that are yet unknown. Furthermore, because 
full-length proteins do not readily yield vectors of fixed length, se
quence-based vectors are often used to only encode overlapping 
peptide regions between input proteins via multiple-sequence 
alignment (MSA), thus limiting the analysis to proteins that share a 
certain degree of homology [63].

Consequently, recent models have transitioned from heuristically 
encoding proteins to using neural-network architectures designed 
for natural language processing (NLP) known as transformers that 
are pre-trained using unsupervised (more specifically, self-su
pervised) learning to predict representations of proteins (learned 
protein embeddings). The use of unsupervised learning allows em
beddings to be learned from the vast amount of unlabeled protein 
sequence data (i.e., proteins without functional, structural, and/or 
interaction annotations) that have exploded in recent years due to 
the increasing affordability of sequencing technologies, as well as 
advances in gene prediction [83]. As such, protein embeddings excel 
at capturing all manners of biological information and can be gen
eralized across a range of applications. This allows for pre-trained 
transformers to be deployed to embed proteins for SML [84-87,63]. 
ESM-1b [85], a transformer trained using 250 million protein se
quences, can convert protein sequences into either amino-acid level 
embeddings of variable lengths (L x 1280 matrix similar to sequence- 
based feature vectors) or protein-/domain-level embeddings of fixed 
length (1280 features) by amino-acid level embeddings along the 
length-dimension. Embeddings generated by ESM-1b have been 
shown to predict regional and global protein properties [85] and 
outperform other embedding models in several metrics when uti
lized in fold prediction [86].

Besides sequence-derived representations, proteins can also be 
represented based on their 3D structure in distance maps in the 
form of an L x L adjacency matrix. Such matrices contain proximity 
values for each amino acid pair, or contact maps where binary 
values indicate a close contact between amino acid pairs (Fig. 1B). 
These maps can be used together with sequence-based vectors or 
amino-acid level embeddings to enrich input features for su
pervised learning predictions [88]. However, the usage of struc
tural data to encode proteins for SML is still comparatively rare due 
to the highly dimensional nature of distance maps and that some 
level of structural information is already present in embeddings 
[85]. The chief reason for the rare use of protein structural data is 
undoubtedly due to its scarcity relative to sequence data. This 
predicament has recently (July 2022) been alleviated with the 
release of predicted structures for over 200 million proteins by 
AlphaFold [44]. As such, we anticipate seeing further development 
of structural representations and even learned embeddings pre
dicted from both sequence and structural data. Moreover, the 
underlying neural network architecture employed by AlphaFold 
might allow for an interesting transfer-learning approach in tack
ling the dimensionality and sparsity problem of conventional 
protein structural representations. Instead of using readily- 

interpretable but highly-dimensional distance/contact maps, node 
values of hidden layers generated within AlphaFold during the 
forward propagation of protein sequence data can be vectorized 
into compact structural protein representations for machine 
learning although the effectiveness and practicality of this ap
proach has yet to be evaluated given the relatively recent devel
opment of AlphaFold.

Despite the utility of currently available protein representations, 
they fail to account for post-translational modifications (PTM) and 
binding to non-protein entities (e.g., co-factors), both of which have 
been known to confer biological activity. However, the success of 
current representations used in SML models reinforces the theory 
that this information are sequence-embedded along with protein 
function. This is also supported by the fact that PTM and binding 
information can be predicted by protein sequence [89,90]. Current 
protein representations are also limited by their very design to re
present a single continuous polypeptide, thereby failing to represent 
multimeric proteins.

5. Encoding substrates as features

Enzyme substrates are small molecules that can be encoded for 
machine learning as molecular graphs, linear notations, chemical 
descriptor vectors, structural keys, hashed fingerprints, and learned 
fingerprints (Fig. 2) [91,92]. For more in-depth information about 
molecular representations for machine learning, we refer readers to 
excellent resources by [91,93,94].

Despite being smaller than proteins, small molecules can be 
highly diverse in structure due to the different permutations of 
atoms and bonds that can make up their structure. Molecular graphs 
(Fig. 2A) describing bond connectivities between every atom within 
small molecules consists of an adjacency matrix (n x n, where n is 
the number of atoms present in the molecule), a one-hot matrix of 
atom features (n x a, where a is the number of atom features) and a 
one-hot matrix of bond features (nC2 x b, where b is the number of 
bond features) [93]. Features used to describe atoms include atom 
type, formal charge, and number of implicit hydrogens bound to the 
atom, while bonds can be described as single, double, or triple 
covalent bonds [93]. Small molecules can also be represented with 
linear notations such as Simplified Molecular Input Line Entry 
System (SMILES) [95] or SMILES Arbitrary Target Specification 
(SMARTS) (https://www.daylight.com/dayhtml/doc/theory/theory.s
marts.html), where bonds and atoms are directly encoded by char
acters on a linear vector and formatted into a feature matrix (L x c, 
where c is the number of different characters in the notation system 
and L is the length of the linear notation) (Fig. 2A) [91].

Since information is captured at the atomic level, both mole
cular graphs and linear encodings have the benefit of being un
ambiguous and unique to one molecule while encapsulating 
structural stereochemistry. In addition, molecules can be re
presented in more than one way depending on atom numbering 
which allows for data augmentation in ML [96,97]. However, these 
atomic-level representations are sparse and highly dimensional 
due to the use of one-hot encodings which precludes their usage 
in cases without a large labeled dataset (curse of dimensionality, 
Table 1). Furthermore, these representations vary in size de
pending on molecular complexity and are limited to represent 
molecules with only covalent bonds [98]. As such, it is more 
common for molecules to be represented indirectly based on their 
global (molecular) properties (e.g. molecular weight, number of 
hydrogen-bond acceptors, octanol–water partition coefficient etc.) 
as opposed to direct representations at the atomic-level. This is 
despite the ambiguous and non-unique nature of molecular-level 
representations where they cannot be decoded back into the 
molecule it represents, and not being unique to a specific mo
lecule.
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RD-kit (https://www.rdkit.org/docs/GettingStartedInPython.html 
#list-of-available-descriptors), a popular chemoinformatics package 
for python, can be used to calculate chemical descriptors that de
scribe different chemical and structural properties of a molecule at 
the molecular level. These chemical descriptors can then be encoded 
as a molecular-level vector representation of a molecule (Fig. 2A) 
[99,93,100]. Other molecular-level representations like structural 
keys and hashed fingerprints are designed to describe the sub
structure of a molecule as a fixed-length bit-vector where each po
sition denotes the presence/absence of a particular structural 
fragment [91,93]. The key difference between these two re
presentations lies in the selection of substructures to be encoded in 
each position of the bit vector. While structural keys like MACCS 
(Molecular ACCess System) [101] look for predefined substructures 
(up to 960), substructures to be extracted are determined algor
ithmically from the molecule itself and mapped to a position in the 
bit vector using a hash function in hashed fingerprint representa
tions (Fig. 2B) [91,93]. Because extracted substructures are not pre
defined, hashed fingerprint representations can capture properties 
that are useful for different types of predictions without any prior 
structure-activity relationship (SAR) knowledge which sees their 
widespread use in many different chemoinformatics prediction 
models [102-106]. However, the use of a hashing function in the 
generation of bit-vectors may result in the loss of substructural in
formation in bit-collisions where the different substructures are 
mapped to the same bit (Fig. 2B). Although bit-vector length can be 
increased to minimize bit-collisions, doing so also increases the di
mensionality and sparsity of the fingerprint significantly (long bit- 
vector of mostly zeros). Commonly used hash fingerprints include 
ECFP (Extended Connectivity Fingerprints) [107] and Morgan’s fin
gerprints [108] which extracts substructures based on different 
atomic neighborhoods of non-hydrogen atoms (up to a given dia
meter/radius), and Daylight fingerprints (https://www.daylight.com/ 
dayhtml/doc/theory/theory.finger.html) which extracts sub
structures based on different paths that connect atoms (up to a given 
length).

Similar to protein representations, heuristically-generated mo
lecular representations (i.e. chemical descriptors) might fail to ac
count for certain properties that are important for different 
scenarios, limiting the universal applicability of these representa
tions. As a result, transformers pre-trained using self-supervision 
have also been developed to generate learned fingerprints [92,94]. 
However, these learned representations have not been shown to 
perform better than traditional representations in various drug-de
sign tasks [109] and learned representations dedicated to represent 
SM substrates have yet to be developed, but we envision that future 
developments might change this. For more in-depth information 
about molecular representations for machine learning, we refer 
readers to excellent resources [91,93,94].

6. Designing new compounds and pathways with 
retrobiosynthesis

Retrosynthesis is a method of deconstructing a target molecule 
into its starting materials, that can be employed in the route-plan
ning to chemically synthesize various organic compounds 
[75,110,111]. In retrosynthesis, molecules are recursively decon
structed into precursors, expanding the pathway from a target 

molecule until the entry into the pathway are starting materials that 
are relatively inexpensive and easily procurable. Similarly, retro
biosynthesis also involves working backwards from a target mole
cule but uses biochemical reactions instead of chemical reactions for 
route-planning. As such, retrobiosynthesis can be used to create/ 
redesign metabolic pathways that occur in nature and have been 
used extensively to produce a variety of specialized metabolites. As 
opposed to economically- and logistically-efficient starting mate
rials, retrobiosynthesis seeks to define the ideal entry into the 
pathway from the perspective of metabolic availability. The optimal 
starting materials should be abundant enough to prevent a large 
change in their molecular pool which can adversely affect the bio
logical system [28]. In addition, their regeneration pathways should 
be high in flux such that the rate limitation can be confined to the 
design space and controlled by the designer, and rapid synthesis of 
the target molecule can be accommodated.

There are several robust programs developed for computer- 
aided synthesis planning (CASP) of retrosynthetic [75,112,113] and 
more recently, retrobiosynthetic route-planning [114,28,115,116]. 
However, the exponential increase in possible pathway configura
tions with each enzymatic reaction step results in a large combi
natorial search space that is not only computationally intensive to 
simulate but also impossible for experts to evaluate manually. Fur
thermore, the majority of retrobiosynthetic CASP approaches are 
based on reaction rules [117,46,118], which require expert input. 
Consequently, these approaches are typically poorly scalable and 
inflexible due to the reliance on a select group of enzymes with 
manually defined reaction rules that may not account for various 
aspects of promiscuity and thus, limits the discovery of new bio
synthetic routes [119].

7. Predicting outcomes of enzymatic reactions for single-step 
retrobiosynthesis using SML

Retrobiosynthetic CASP involves mapping out biosynthetic 
pathways from a natural compound and needs to derive substrates 
of enzymatic reactions from a given product (termed single-step 
retrobiosynthesis) in a recursive manner. To facilitate this, reaction 
rules of enzymes that describe how reactants can be converted to 
products (and vice versa), were typically used to computationally 
expand biosynthetic pathways in route-planning. As such, the library 
of enzymes considered in retrobiosynthetic CASP is subject to the 
availability of their corresponding reaction rules and fails to en
compass many specialized metabolism enzymes [120,118,32].

Traditionally, the establishment of enzymatic reaction rules re
quires extensive and expert knowledge of the enzyme, such as its 
promiscuity to act on different substrates [74]. Recent efforts have 
seen the automatic extraction of reaction rules from reactome data 
[46] where heuristics were used to identify the reaction center of 
enzymatic reactions. However, the reaction rules obtained from 
these approaches were still less than ideal as the exact reaction rules 
yielded are largely dependent on an arbitrarily selected promiscuity 
threshold (i.e. minimum diameter of the reaction center [denoted as 
d]) [46] which might not truly reflect on the true substrate/product 
specificities of enzymes. To expound upon this drawback, if reaction 
rules are extracted using the lowest possible promiscuity threshold 
(d = ∞), the retrobiosynthetic search space will be severely limited to 
enzymatic reactions that yielded the exact same product as the 

Fig. 2. Substrate representations for machine learning. A) Simplified schematic showing how molecular graphs (green), linear notations (blue) and chemical descriptor vectors 
(purple) can be used to encode small molecule substrates for machine learning. Different linear notations (exemplified using SMILES notation) and molecular graph re
presentations can be generated from the same molecule by changing atom numbering order (red), allowing for the use of data augmentation to enrich the dataset. B) Simplified 
schematic highlighting the difference between structural keys and hashed fingerprints. MACCS and ECFP representations were used to exemplify structural keys and hashed 
fingerprints respectively. An example of a bit collision (red) resulting in information loss in hashed fingerprints is also shown. C) Hierarchical categorization of different types of 
Substrate representations for machine learning. Coloured labels within the different types of representations correspond to their formats in panels A and B. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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query compound, thereby failing to incorporate any kind of pro
miscuity in route planning. On the other hand, using the highest 
possible promiscuity threshold (d = 2) to extract reaction rules for 
use in retrobiosynthesis will result in an astronomical search space 
that is too large to evaluate computationally. Additionally, it is not 
intuitive to use a single blanket threshold to extract reaction rules 
across all enzymatic reactions as enzymes of different classes have 
been known to possess varying degrees of promiscuity [26,24,121].

Despite using chemical reactions for route-planning instead of 
enzymatic reactions, traditional retrosynthesis methods also rely on 
chemical reaction rules, for which several issues have been identi
fied [119]. This has prompted the development of retrosynthetic 
approaches that use SML methods to circumvent the need to rely on 
reaction rules. These methods, termed template-free retrosynthesis 
[119], use sequence-based [122-125] and graph-based [126-128]
SML models trained on chemical reaction datasets that can be used 
to predict chemical reactants of a given compound, in order to re
verse engineer chemical synthesis pathways for a target compound. 
Likewise, a template-free method for retrobiosynthesis, BioNavi-NP 
[129], has also been recently developed by training an end-to-end 
transformer neural network with 33,710 enzymatic reactions mined 
from MetaNetX [130]. BioNavi-NP uses this SML model in place of 
enzymatic reaction rules, to suggest a set of possible enzymatic re
actions for a given product in retrobiosynthetic route-planning 
[129]. BioNavi-NP is able to predict the biosynthetic pathway of test 
compounds with an accuracy of 90.2 % which is 1.7 times higher 
than retrobiosynthetic methods using reactions-rules [129]. How
ever, unlike approaches using reaction rules, BioNavi-NP is unable to 
assign enzymes to enzymatic reaction steps. Instead, enzymes for 
catalyzing orphan enzymatic reactions in the biosynthetic routes 
proposed by BioNavi-NP have to be suggested using third-party 
enzyme selection tools like Selenzyme [131] or E-zyme 2 [132]
which assigns known enzymes that catalyzes similar reactions. As 
such, while BioNavi-NP claims to be fully data-driven as it does not 
rely on heuristically generated reaction rules [129], the assignment 
of enzymes to reactions is not data-driven. Even without considering 
the heuristic biases in how chemical similarity of reactions is cal
culated (for e.g., assuming all atoms are equidistant regardless of 
chemical properties), the basis of using chemical similarity of re
actants and products to suggest enzymes might be intrinsically 
flawed based on the fact that different enzymes can possess varying 
degrees of substrate specificity as previously discussed. To address 
this, it is conceptually possible to train a separate SML model for the 
purpose of suggesting enzymes for orphan enzymatic reactions. 
Recently, SML has been used to predict metabolite-protein interac
tions [133,134] and enzyme-substrate pairs [53,135] using proteins 
and substrates as input. The Enzyme Substrate Prediction model 
(ESP; [135]) in particular, trained with 18,351 experimentally con
firmed enzyme-substrate pairs obtained from the GO annotation 
database, is able to predict enzyme-substrate relationships with an 
accuracy of >  90 %. Briefly, ESP is based on a gradient-boosted de
cision tree model that accepts latent representations of enzymes 
generated by the ESM-1b transformer [85] and ECFP representations 
of substrates [107] as input. Therefore, it stands to reason that a 
similar model trained using enzyme-substrate and enzyme-product 
pairs can be developed in the future to suggest known enzymes or 
even predict sequences of novel enzymes to catalyze orphan enzy
matic reactions in template-free retrobiosynthesis.

8. Reducing the combinatorial search space of retrobiosynthesis 
route-planning using SML

In retrobiosynthetic CASP, one-step retrobiosynthesis is applied on 
reactants recursively to generate sets of reactants, which results in the 
exponential increase in possible pathways too computationally in
tensive to explore. Since route-planning involves exploring the large 

combinatorial space of different reaction permutations to find routes 
of biosynthesis, it can be phrased as a combinatorial search problem 
[136]. Consequently, retrobiosynthetic (as well as retrosynthetic) 
route-planning uses heuristical tree-searching methods [119,137] such 
as depth-first and best-first, as well as reinforcement-learning 
methods such as Monte Carlo tree-search [138,112,139] and others 
[129,140], to evaluate only an optimal subset of possible routes. The 
use of such methods relies on calculating a score (usually based on the 
chemical similarity between reactant and product) to evaluate the 
feasibility of proposed enzymatic reactions and biosynthetic pathways 
[140,138,112,139,129]. However, while this method of quantifying re
action feasibility has shown to be effective in reducing the combina
torial search space for retrobiosynthesis route-planning [138], this 
measure might not account for other factors that might influence re
action feasibility, such as enzyme sequence availability [140]. Recently, 
DeepRFC [141] a deep-learning approach has been developed to 
evaluate the feasibility of enzymatic reactions generated by retro
biosynthesis. DeepRFC is able to evaluate the feasibility of enzymatic 
reactions from inputted SMILES strings of a substrate-product pair 
[141] and achieves an accuracy of 0.73 which is 1.2 fold higher than 
similarity-based methods[141]. Trained on only 4626 manually-cu
rated positive reactions substrate-product pairs from KEGG [33-35]
and 4626 artificially generated negative substrate-product pairs reac
tions, it is likely that the predictive performance of models similar to 
DeepRFC will increase with more data. Future models trained on an 
even larger and diverse reaction dataset might be able to generalize 
novel enzymatic reactions for the biosynthesis of increasingly novel 
natural products.

Besides reducing the retrobiosynthetic search space in the con
text of evaluating reaction feasibility, the search space can also be 
reduced by penalizing / rewarding certain qualities of intermediates. 
Since pathways are to be expressed in biological systems, explora
tion of biosynthetic pathways that involve intermediates that are 
toxic should be avoided. SML approaches to predict the toxicity of 
reactants in silico have been developed to aid hit-screening in small 
molecule drug-discovery [142,143] and can potentially be used to 
eliminate biosynthetic pathways involving toxic intermediates as 
possible solutions for retrobiosynthetic route-planning. However, 
because drug-development is mainly concerned about a compound’s 
toxicity to humans, it might not be ideal to use these models directly 
for redesigning pathways for plant specialized metabolism. This calls 
for a need to develop models trained on predicting compound 
toxicity to heterologous hosts.

9. Concluding remarks and future perspectives

The wealth of publicly available reactome data as well as recent 
advances in SML has made it opportune to incorporate SML methods 
into retrobiosynthetic route-planning approaches. Importantly, 
neural-network transformers developed for NLP have for the first 
time been implemented in retrobiosynthetic route-planning to 
transform products into reactants, thereby eliminating the need to 
rely on expertly-crafted reaction rules. This method is especially 
important for the redesigning of plant specialized metabolism as it 
can take advantage of the rapidly-accumulating knowledge of ex
perimentally validated enzymatic reactions to uncover better route- 
planning solutions. Besides predicting reactions outcomes to derive 
reactants from products, SML models trained on specific tasks such 
as (1) assigning known enzymes for orphan reactions, (2) evaluating 
the feasibility of reactions and (3) predicting the toxicity of pathway 
intermediates, can also be used in an ensemble manner to improve 
the predictive and computation performance of current template- 
free retrobiosynthesis methods. Cutting edge methods to represent 
substrates, enzymes and reactions are constantly evolving, while 
more sophisticated and accurate SML models are being developed at 
a dizzying pace. The research community will be able to build on the 
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legacy of the present work to retrain models with higher accuracy 
and broader scope without the limitation of humanly curating re
action rules. This is contingent on the research community embra
cing the generation of open, well annotated data, which will provide 
the much-needed increase in quantity and quality training data for 
SML. This is especially important for plant sciences, as plant spe
cialized metabolism evolved independently from the metabolism of 
non-plant species, resulting in poor overlap between specialized 
metabolism enzymes between plants and other organisms [144]. We 
envisage that the coming years will see a boom in SML-driven ret
robiosynthetic approaches, allowing us to generate novel, useful 
compounds.
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