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Over the past decades, shockwave therapy (SWT) has gained increasing interest as a
therapeutic approach for regenerative medicine applications, such as healing of bone
fractures and wounds. More recently, pre-clinical studies have elucidated potential
mechanisms for the regenerative effects of SWT in myocardial ischemia. The mechanical
stimulus of SWT may induce regenerative effects in ischemic tissue via growth factor
release, modulation of inflammatory response, and angiogenesis. Activation of the
innate immune system and stimulation of purinergic receptors by SWT appears to
enhance vascularization and regeneration of injured tissue with functional improvement.
Intriguingly, small single center studies suggest that SWT may improve angina, exercise
tolerance, and hemodynamics in patients with ischemic heart disease. Thus, SWT may
represent a promising technology to induce cardiac protection or repair in patients with
ischemic heart disease.
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BACKGROUND

Ischemic heart disease (IHD) remains the most frequent cause of death in the Western World
(1). IHD can result in necrotic death of cardiomyocytes and their subsequent replacement by
non-functional scar tissue (2). Contractile function of the scarred and ischemic myocardium
is impaired in ischemic cardiomyopathy (ICMP). One strategy to preserve myocardial tissue is
myocardial protection. For example, myocardial protection may be achieved during cardiac surgery
by applying cold cardioplegic solution to decrease myocardial oxygen consumption and thus, avoid
myocardial damage during ischemia. Remodeling of the heart is an alteration in the dimensions
of the ventricular wall and/or chambers. Correction of myocardial ischemia can lead to reduced
left ventricle chamber volume. Myocardial regeneration is achieved when new myocardial cells
(cardiomyocytes, endothelial and/or vascular smooth muscle cells) are generated from progenitor
cells or proliferation of resident cardiac cells. The optimal management of ICMP would restore
perfusion, increase proliferation and function of cardiac cells, to improve ventricular function and
structure.

One way of improving heart function is the re-establishment of adequate blood supply to
perfuse the chronically ischemic border zone recruiting hibernating myocardium (3). Surgical
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or interventional revascularization is limited to large coronary
vessels, and a microvascular deficit may remain.

Angiogenic and regenerative treatment options may address
this deficit. Cardiac shockwave therapy (SWT) has had promising
effects in small clinical trials, and pre-clinical studies indicate that
this benefit may be due to angiogenic, vasculogenic, and tissue
regenerative responses (4–7). Several studies over the past years
have repeatedly confirmed the angiogenic and regenerative effects
of SWT in cell culture and various animal models, including
hind limb ischemia and acute or chronic myocardial ischemia (8–
11). In parallel, clinical studies investigating cardiac SWT have
observed symptomatic relief in patients with refractory angina
(5, 12, 13) as well as improvement of left ventricular function in
patients with ICMP (14–16) indicating its promise in clinical use.

This review summarizes our present knowledge on this
promising technology and addresses gaps of knowledge that have
yet to be answered in future trials.

SAFETY ASPECTS

Shockwaves are specific sound-pressure waves appearing as
transient pressure oscillations with characteristic wave profiles.
The specific features defining the different types of shockwaves
and the four technologies currently available to produce them
have been discussed in previous reviews (17, 18). Notably, only
focused shockwaves are used in the context of heart failure
therapy. Shockwaves were originally applied for the purpose of
lithotripsy to disintegrate kidney and urethral stones (19). As
an incidental finding, iliac bone thickening was observed upon
SWT. This serendipitous observation led to studies to assess
SWT for bone regeneration in patients with non-unions and
bone defects (20). Subsequent studies revealed that SWT could
enhance healing of soft tissue defects or non-healing wounds
(21, 22).

The observed regenerative effects were mainly attributed to
inducing micro-injuries to the tissue, followed by subsequent
repair. However, studies published over the recent years clearly
showed a beneficial effect of SWT even at lower energies.
Thorough examinations of tissues after SWT were not able
to detect any signs of cellular damage. Transmission electron
microscopy analyses of hearts treated with SW showed no
changes of the myocardial ultrastructure upon therapy (7).
Treatment of ischemic hearts in large animal models resulted in
no signs of arrhythmia or functional impairment (23). A recent
paper provided evidence for a therapeutic range of SWT, showing
no cellular damage of cardiac cells beneath energy levels of
0.27 mJ/mm2 total flux density. Regenerative effects including
endothelial cell proliferation and angiogenic gene expression
are induced dose-dependently until 0.15 mJ/mm2 energy flux
density. In vitro studies to characterize the effects of SWT
revealed that in addition to the intensity of shockwaves, the effects
of SWT were influenced by the geometry of the cell culture flask
due to physical phenomena including reflection and interference
(24). Moreover, the number of impulses has an impact on cell
viability (25). However, there is no evidence that SWT induces
cellular damage when used within a therapeutic range.

PROLIFERATION

One crucial mechanism underlying the regenerative effect of
SWT is the induction of cellular proliferation. With respect
to the heart, this proliferative effect was described mainly
for endothelial cells. Although SWT induces proliferation of
fibroblast cell lines in vitro possibly via transforming growth
factor beta (TGF-β) upregulation (25), there is no evidence of
proliferation of cardiac fibroblasts upon SWT in vivo (24). As
cardiomyocytes are post-mitotic cells with very limited capacity
of proliferation, it seems very unlikely that SWT might cause
proliferation in primary cardiac myocytes. Indeed, in vitro studies
of a cardiomyocyte cell line showed no proliferative effects of
SWT upon treatment, irrespective of treatment dose (24).

There is ample evidence that SWT induces proliferation of
endothelial cells (26). This might be due to the release of vascular
endothelial growth factor (VEGF) and activation of VEGF
receptor 2 (VEGFR2) with subsequent activation of AKT/ERK
pathways resulting in endothelial cell proliferation (growth
factor release upon SWT is discussed below). Interestingly, the
proliferative effects of SWT are abolished upon inhibition of
VEGF or VEGFR2 (27). Moreover, proliferation of endothelial
cells upon SWT was described in vivo after induction of hind limb
ischemia (28).

PRO-SURVIVAL/ANTI-APOPTOTIC

Myocardial hypoxia causes loss of cardiac cells. Tissue necrosis
within the ischemic core is accompanied by apoptosis of cells
in adjacent cardiac tissue, especially in the border zone of
infarcted areas (29). At the same time, the evolutionary conserved
process of autophagy is initiated, recycling damaged cellular
components (30). Autophagy allows cells to adapt to various
environmental stresses via degradation of defective proteins or
organelles by lysosomes. Post-mitotic cells rely on autophagic
processes upon stress since cell replacement is not an option (31).
In rat cardiomyocytes, SWT promotes autophagy after hypoxia,
probably via regulation of mammalian target of rapamycin
(mTOR) and subsequent activation of AMP-activated kinase
(AMPK) and Beclin 1 (32).

The limitation of cell death upon infarction is a valuable
therapeutic strategy to preserve cardiac function after ischemia
(33). SWT inhibits apoptosis in a myocardial cell line upon
in vitro hypoxia and increases cell viability, thereby having a
protective rather than regenerative effect on cardiomyocytes. It
increases the expression of the crucial anti-apoptotic protein Bcl-
2 and decreases the expression of the pro-apoptotic protein Bax.
This effect reduces the activation of Caspase 3, a crucial mediator
of the intrinsic pathway of apoptosis. The anti-apoptotic effects
might depend on phosphorylation of AKT (34) (Figure 1).

GROWTH FACTOR RELEASE

The release of growth factors is crucial for successful
regeneration. Growth factors are tissue-specific proteins with
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FIGURE 1 | Molecular mechanisms of shockwave therapy in ischemic heart disease. Several mechanisms of positive impacts mediated by SWT on the course of
ischemic heart disease have been described. By regulation of anti-apoptotic proteins, cardiomyocyte survival is enhanced and hence, cardiac damage limited.
Angiogenesis upon shockwave therapy is mediated via release of endothelial growth factors VEGF and PlGF. SDF-1 acts as a chemoattractant of angiogenic bone
marrow derived stem cells. Migration of these progenitor cells is crucial for induction of vasculogenesis and revascularization of ischemic tissue. Moreover,
shockwave therapy was shown to reduce the number of fibrocytes within chronic ischemic myocardium, thereby promoting reverse LV remodeling.

pivotal roles in both development and healing. The subtype of
released growth factor upon SWT depends on the treated tissue
and pathology. Regenerative effects of SWT in musculoskeletal
disorders are mediated by released TGF-β, insulin-like growth
factor 1 (IGF-1) and bone morphogenetic proteins (BMPs) (35,
36). These growth factors regulate proliferation of mesenchymal
cells, thereby mediating bone, cartilage, and tendon repair.
On the other hand, healing of chronic wounds depends on
different factors, as these wounds are associated with persistent
inflammatory dysregulation. SWT has beneficial effects on the
healing of chronic wounds by modulating the inflammatory
response. The release of platelet-derived growth factor (PDGF)
modulates macrophage recruitment and function and thus
contributes to wound healing (37). Macrophages play a
prominent role in wound healing by creating granulation tissue,
protecting from infection, and facilitating re-epithelization (38).
Besides modulation of inflammation, induction of angiogenesis
is the key for successful wound healing. Angiogenic growth
factors such as VEGF and fibroblast growth factor (FGF) are
major determinants of microvessel formation (27, 39). In
ischemic tissue, including the heart, SWT induces the release
of angiogenic growth factors including VEGF, placenta growth
factor (PlGF) and FGF (26, 27, 40). These growth factors might be
stored in the extracellular matrix and released upon mechanical
stimulus (27).

ANGIOGENESIS

Angiogenesis is a vital part in regeneration of ischemic tissue.
It improves perfusion preventing further ischemic damage
and restores tissue function. Angiogenesis is defined as the
formation of new capillaries from pre-existing vessels. This
process is initiated by angiogenic growth factors driving
the sprouting and proliferation of endothelial cells. The
most prominent and angiogenic factor is VEGF. VEGF
appears in four isoforms, VEGF-A, VEGF-B, VEGF-C, and
VEGF-D (41). These peptides bind to and activate their
receptors VEGFR1, VEGFR2, and VEGFR3. VEGFR3 is
activated by VEGF-C and VEGF-D and generally limited to
lymphatic endothelial cells. VEGFR2 binds the most abundant
form VEGF-A and facilitates endothelial cell proliferation,
migration and survival. Activation of VEGFR1 by VEGF-B
and PlGF, another member of the VEGF-subfamily, leads to
monocyte recruitment rather than induction of angiogenesis
(41). Hence, decisive angiogenic mechanism are depending
on VEGFR2 activation. SWT induces VEGF release and
subsequent VEGFR2 activation in endothelial cells in vitro,
resulting in endothelial cell proliferation (42). Moreover,
SWT promotes the sprouting of new vessels from ex vivo
cultured aortic rings (40). In this assay, the same molecular
mechanisms are observed.
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Similarly, SWT induces angiogenesis in a variety of animal
models and tissues. Shockwaves enhance blood flow in epigastric
skin flaps and hence, improves skin flap survival. In this
case, the increase in microvascular density is associated with
the generation of VEGF and nitric oxide (NO) (43, 44). NO
is synthesized by endothelial nitric oxide synthase (eNOS),
a direct downstream target of VEGFR2-signaling. NO is a
potent vasodilator, which also regulates endothelial cell growth
and cellular homeostasis (45). SWT similarly improves limb
perfusion and function in a hind limb ischemia model in
rodents, an effect which is associated with an increase in
VEGF and VEGFR2 activation. The treatment increases the
number of endothelial cells and capillaries in the ischemic limb
musculature (28). Similar results are obtained in the ischemic
heart. Shockwave therapy enhances capillary density in the
border zones of experimental myocardial infarction, resulting
in decreased infarct size and hence, improved cardiac function
(27). In addition to angiogenesis, the increase in capillary density
might also be due to vasculogenesis, the process by which
circulating progenitor cells contribute to the microvasculature.
Of interest, shockwave-treated hearts show a greater number
of arterioles within the ischemic myocardium, indicative of
arteriogenesis, which is the positive remodeling of existing
collateral channels.

PROGENITOR CELLS

Circulating progenitor cells may play a role in revascularization.
Such circulating cells may be capable of differentiation toward
mature endothelial cells and participate directly in the formation
of new vessels (46). On the other hand, other circulating
progenitor cells may act in a paracrine fashion by releasing
growth factors and creating an angiogenic milieu. Physiologically,
endothelial progenitor cells (EPCs) and mesenchymal stem cells
(MSCs) are involved in revascularization of ischemic tissue.
EPCs are capable of both differentiation toward endothelial
cells and release of growth factors (46). Only a small subset
of EPCs is of true endothelial lineage in humans, most
being of hematopoietic lineage. The great majority of these
circulating angiogenic cells promote angiogenesis by secreting
angiogenic cytokines and matrix metalloproteinases (47, 48).
Some circulating cells that contribute to angiogenesis may be
derived from mature endothelial cells from other sites that are
mobilized into the systemic circulation by angiogenic cytokines
released from the ischemic tissue (49). In addition, resident tissue
MSCs may differentiate into pericytes stabilizing the endothelial
network and supporting blood vessel growth via paracrine
secretion (50).

Shockwave therapy may affect progenitor cells in several
ways. First of all, SWT induces the release of stromal-
derived factor 1 (SDF-1), a chemoattractant and ligand of
CXC chemokine receptor 4 (CXCR-4) on EPCs (28, 51,
52). Hence, increased numbers of EPCs migrate to the
ischemic tissue and contribute to the process of new vessel
formation. Enhanced recruitment of multipotent cells and
concomitant vasculogenesis is observed in shockwave-treated

ischemic hind limbs as well as in chronic IHD (28, 53).
Since SWT improves migration of intrinsic multipotent cells
via upregulation of chemoattractants, it is also able to induce
homing of systemically injected stem cells (52). In addition, SWT
appears to enhance regenerative potential of injected cardiac stem
cells significantly in human patients (54). Mechanistically, AKT-
mediated upregulation of eNOS upon SWT induces beneficial
effects on migration, proliferation, and angiogenic potential
of injected cells (52). Moreover, SWT induces the release of
adenosine tri-phosphate (ATP) from mesenchymal cells and,
activation of purinergic receptors (55). Purinergic signaling
enhances stem cell proliferation significantly. Notably, treated
progenitor cells maintain multipotency in vitro and improve
wound healing significantly by their enhanced differentiation
potential (55, 56).

LEFT VENTRICULAR REMODELING

Acute myocardial infarction leads to a loss of cardiomyocytes
and subsequent replacement of viable myocardium with
non-contractile fibrotic scar tissue. Notably, extensive
fibrosis emerging from the infarction border zone can be
found as well in non-infarcted myocardium. This process
of adverse left ventricular (LV) remodeling extends tissue
damage, further impairs cardiac function, and ultimately
worsens heart failure. LV remodeling is associated with poor
prognosis and revascularization often fails to ameliorate this
pathologic process. Several studies observed beneficial effects
of mechanical stimulation with SWT after acute myocardial
infarction. Thereby, cardiac function is preserved, possibly
by limiting fibrotic remodeling of the heart (15). Effects are
accompanied by angiogenesis as well as lower numbers of
fibrocytes within the infarction border zone (9). Similarly,
a reduced number of TGF-β positive cells is found upon
SWT in a model of acute myocardial infarction in rats (57).
A potential mechanism by which SWT reduces cardiac
fibrosis in ischemic hearts might be through the regulation
of the phosphoinositide-3-kinase (PI3K)/AKT pathway, as
inhibition of PI3K abolished the observed improvement
of left ventricular function and reduced cardiac fibrosis
(58). Notably, similar effects are observed in myocardial
ischemia/reperfusion injury (59). This model is of high clinical
relevance, as SWT might be beneficial to alleviate cardiac
ischemia/reperfusion injury.

INFLAMMATION

Upon myocardial infarction, subsequent inflammation
determines the fate of the myocardium contributing to cell
death, fibrosis, healing, and scar formation. Wound healing upon
myocardial infarction occurs in a biphasic manner with an initial
strong pro-inflammatory response followed by a prolonged
resolution of inflammation, which governs tissue repair and scar
formation (60). Accordingly, a balanced inflammatory response
is crucial for adequate healing (61). An early proinflammatory
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response is necessary to remove cellular debris after ischemia,
whereas the later anti-inflammatory response promotes a milieu
of angiogenesis and tissue repair (62).

SWT improves myocardial function via modulation of the
inflammatory response. SWT of endothelial cells induces the
release of endogenous RNA, causing activation of innate immune
receptor Toll-Like receptor 3 (TLR3) (63). This inflammatory
signaling via TLR3 activation promotes angiogenesis after
SWT in ischemic hind limbs. In vivo, restoration of blood
flow in ischemic tissue is abolished in Tlr3−/− animals (63).
TLR3 typically activates an early pro-inflammatory and a late
anti-inflammatory response (64). In this manner, shockwave-
induced activation of TLR3 leads to an initial release of
pro-inflammatory cytokines including cyclophilin A and
interleukin 6 (IL-6). With some delay after treatment, anti-
inflammatory interleukin 10 (IL-10) is upregulated (65). IL-10
is a major regulator of inflammation by restricting excessive
pro-inflammatory cytokine production of migrating immune
cells (66). Migrating immune cells, primarily macrophages,
are mainly responsible for cytokine production within
ischemic tissue (67). In the tissue, macrophages polarize
toward a M1 or M2 subtype. M1 macrophages maintain the
inflammatory cytokine production and enhance the further
recruitment of immune cells (68). M2 macrophages on the
other hand suppress the immune response and resolve acute
inflammation (67). Polarization toward anti-inflammatory
M2 macrophages is driven again by IL-10 and SWT thereby
enhances this process (69). Similar observations of enhanced
M2-presence are observed in ischemic mouse hind limbs treated
with SWT (70).

In addition, SWT elevates NO levels via eNOS (51, 57)
and neural NOS (71) induction and even non-enzymatic NO
formation (72). Elevated NO levels increase local blood flow
and thereby reduce ischemic necrosis and ensuing inflammatory
processes (21). Thus, SWT reduced inflammation in a porcine
model of myocardial ischemia (51). In the ischemic rat
heart, it suppresses the infiltration of TGF-β positive cells
and reduces the release of several pro-inflammatory cytokines
while enhancing anti-inflammatory cytokines (57). Overall,
these findings confirm that a modified inflammatory response
mediated by TLR3 is involved in the positive effects elicited by
SWT (Figure 2).

Besides the above-described mechanisms, recent research
showed an emerging role of TLR3-mediated inflammation on
cellular plasticity and concomitant cell fate transitions. This
process, termed transflammation, may provide a mechanism
by which mechanical activation of immune signaling facilitates
angiogenesis in ischemic tissue.

TRANSFLAMMATION

As described earlier, activation of pattern recognition receptors
(such as TLR3) by cellular damage or pathogens triggers cell-
autonomous inflammatory signaling that leads to the release
of inflammatory cytokines and chemokines that initiate tissue

inflammation. We have discovered another limb of this pathway
that mediates cellular plasticity.

Specifically, we have observed that inflammatory signaling
causes a global alteration in the expression and activity
of epigenetic modifiers. For example, activation of TLR3
by retroviral RNA increases the expression of histone
acetyltransferases (HATs) and reduces the expression of
histone deacetylases (HDAC). This change in the balance of
epigenetic enzymes favors histone acetylation and thereby an
open chromatin state, which can facilitate cell fate transitions
(73). Furthermore, inflammation leads to nuclear translocation
of inducible nitric oxide synthase (iNOS). There, it binds to,
and S-nitrosylates epigenetic modifiers such as elements of the
polycomb repressive complex (PRC1) and the NURD complex,
causing these suppressive epigenetic enzymes to dissociate
from the chromatin, enabling access to previously repressed
transcriptional programs (74, 75). Finally, this inflammatory
pathway activates a glycolytic switch, which supplies more citric
acid to the nucleus, where it is converted to Acetyl-CoA to
facilitate histone modifications (76).

This process of transflammation is required for changes in
somatic cell fate, such as that which occurs when a fibroblast
is reprogrammed to an induced pluripotent stem cell, or to
an endothelial cell (73, 77, 78). Furthermore, transflammation
appears to be activated in the setting of ischemia and may play
a role in perfusion recovery. Specifically, we have observed a
role for transflammation in the transdifferentiation of resident
fibroblasts to endothelial cells in recovery of limb ischemia. Anti-
inflammatory agents impair the transdifferentiation of fibroblasts
to endothelial cells, impair perfusion recovery, and exacerbate
tissue necrosis in a murine model of limb ischemia (79).

Since the underlying mechanism of this regenerative process is
a modest activation of inflammatory signaling, as observed after
shockwave therapy, further research should be done to clarify
if mechanical conditioning could potentially have its effect on
therapeutic cell fate transitions.

MECHANOTRANSDUCTION

The beneficial effects of SWT were initially thought to be due
to mechanical, non-selective tissue damage followed by repair
mechanisms. However, more recent work indicates that SWT
induces a specific tissue response. How the physical stimulus of
SWT is translated into a specific biological response is beginning
to be elucidated. Cells are equipped with mechanosensors
responsible for the translation of mechanical input to a
biological response, a process termed “mechanotransduction”
(80). Integrins play a major role within the process of
mechanosensing. Integrins are cell surface receptors binding
proteins of the extracellular matrix (80). They are linked
intracellularly to actin filaments of the cytoskeleton, initiating
their reorganization, and transducing molecular mechanism
among others via AKT/ERK activation. Mechanical stimulation
of cells with shockwaves induces this particular integrin-
mediated AKT/ERK signaling (81). Besides activation of
cellular mechanosensors, the cellular membrane itself is highly
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FIGURE 2 | Mechanotransduction and modulation of inflammatory response upon SWT. Mechanical stimulation with shockwaves induces cellular mechanosensing.
Activation of beta 1 integrin on the cell surface induces intracellular upregulation of ERK, which in turn activates caveolin 1 (CAV-1). Caveolin is a potent regulator of
microvesicle release and hence, intercellular communication. Microvesicles, particularly exosomes, are loaded with specific cargo and released to the extracellular
space. Uptake of shockwave-derived exosomes activates the innate immune receptor TLR3. TLR3 signaling results in an inflammatory response that may induce
epigenetic alterations required for the regenerative effects of SWT.

responsible to mechanical stimulation. Under the influence of
SWT, the membrane can release vesicles from its surface. These
reactive mechanisms rely on expression of caveolin 1 (CAV-
1), which is upregulated upon SWT (81). CAV-1 governs the
release of microvesicles, an important component of intercellular
communication (82).

These observations are consistent with findings that
SWT induces paracrine effects, as transfer of supernatant
from SWT-treated cells recapitulates the direct effect of
SWT. Treated supernatants contained increased amounts of
released growth factors, protein/RNA complexes as well as
exosomes (26, 83, 84). These specific extracellular vesicles
are derived from cytosolic multivesicular bodies upon
treatment and show distinct angiogenic potential in vitro
as well as in vivo. Shockwave-derived exosomes improve
vascularization and cardiac function in ischemic hearts. Of
interest, inhibition of exosome release abolished the angiogenic
effects of SWT. Intriguingly, shockwave-derived exosomes
differ from control exosomes by their cargo. The angiogenic
microRNA miR19a-3p mediates angiogenesis and reduction
of myocardial fibrosis upon SWT (83). Use of miR19a-3p
obtained the same results as shockwave-derived exosomes,
whereas antagonizing this specific miRNA abolished the
angiogenic potential of SWT exosomes. Further studies are
needed to elucidate the exact mechanisms of extracellular vesicle
release upon SWT and their potential interplay with innate
immunity (Figure 2).

DISCUSSION AND PERSPECTIVE

Ischemic heart disease and ischemic heart failure are ever
increasing in the western world. Together they are a leading cause
of death and disability, representing a major socio-economic
burden for healthcare systems (1). Current treatment strategies
fail to regenerate damaged heart muscle. Cell-based regenerative
options have been disappointing (85). However, small single-
center studies suggest that SWT may be useful in patients
with ICMP (5). However, most clinical studies of cardiac SWT
used symptomatic relief as a primary endpoint rather than
objective improvement in heart function. Moreover, all available
clinical data was generated by extracorporeal application of SWT.
Extracorporeal application of SWT to the ischemic heart has
several limitations: (a) a small acoustic window, (b) accessible
treatment regions being restricted to the anterior myocardium,
and (c) the risk of potential lung injuries (86, 87). Hence, a direct
epicardial approach during surgical procedures may be more
favorable to obtain optimal treatment efficacy since beneficial
effects are directly associated with the intensity of mechanical
stimulation (24). A new clinical trial of direct epicardial SWT
in patients with ICMP undergoing coronary artery bypass
grafting aims to determine if direct application of SWT to the
myocardium can increase cardiac function (88).

To conclude, effects of shockwaves have been studied
extensively in ischemic tissue, including the ischemic heart.
Thereby, it is application has been tested in models of both acute
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and chronic myocardial ischemia (23, 27, 58). In both settings
SWT showed positive effects on cardiac function, although
clinical settings are mainly focused on chronic IHD. SWT
induces various molecular mechanisms leading to the release
of angiogenic growth factors, enhanced survival of hypoxic
cells and regenerative epigenetic mechanisms via induction
of inflammatory signaling. Underlying these observed effects
is the process of mechanotransduction, the translation of a
mechanic stimulus to a biological signal. The cell membrane is
highly responsive to shockwaves and sheds extracellular vesicles
upon treatment. These vesicles have angiogenic activity and
are capable of improving vascularization in ischemic tissue
(83). The effect of SWT to induce angiogenesis may not
fully explain the observed improvement of LV remodeling.
Although angiogenesis is the most prominent factor in
regenerating chronic ischemic tissue, mechanical conditioning
also seems to have a protective role via anti-apoptotic
effects. Both effects are accompanied by reduction of cardiac
fibrosis, either by preventing its initial formation or by
degradation of fibrotic material when tissue perfusion is restored.
Further research should show whether mechanical stimulation
via shockwaves may induce cardiac-specific mechanisms in
comparison to other soft tissue applications. Furthermore, it
remains to be clarified which cell types within the ischemic
heart are primarily responding to the mechanical stimulation
with shockwaves since different cell types showed varying
effects upon treatment in vitro (24). In addition, further
in-depth analysis of the SWT-induced release of exosomes
and their cargo is required to provide more comprehensive

insight how this may interplay with or activate other crucial
mechanisms such as the inflammatory response. Although the
molecular mechanisms are incompletely characterized, evidence
is accumulating that SWT has beneficial effects in patients
suffering from myocardial ischemia. Notably, existing data
is restricted to small observational monocentric studies with
limitations regarding variations in extent of myocardial injury,
treatment protocols and endpoint analyses. Therefore, multi-
center adequately powered randomized double-blind studies are
warranted to assess the safety and efficacy of SWT in IHD.
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