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The purpose of this study was to evaluate the use of a double delay alternating with

nutation for tailored excitation (D-DANTE)-prepared sequence for banding-free

isotropic high-resolution intracranial vessel wall imaging (IC-VWI) and to compare its

performance with regular DANTE in terms of signal-to-noise ratio (SNR) as well as

cerebrospinal fluid (CSF) and blood suppression efficiency. To this end, a

D-DANTE–prepared 3D turbo spin echo sequence was implemented by interleaving

two separate DANTE pulse trains with different RF phase-cycling schemes, but

keeping all other DANTE parameters unchanged, including the total number of pulses

and total preparation time. This achieved a reduction of the banding distance compared

with regular DANTE enabling banding-free imaging up to higher resolutions. Bloch sim-

ulations assuming static vessel wall and flowing CSF spins were performed to compare

DANTE and D-DANTE in terms of SNR and vessel wall/CSF contrast. Similar image

quality measures were assessed frommeasurements on 13 healthy middle-aged volun-

teers. Both simulation and in vivo results showed that D-DANTE had only slightly lower

vessel wall/CSF and vessel wall/blood contrast-to-noise ratio values compared with

regular DANTE, which originated from a 10%–15% reduction in vessel wall SNR but
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not from reduced CSF or blood suppression efficiency. As anticipated, IC-VWI acquisi-

tions showed that D-DANTE can successfully remove banding artifacts compared with

regular DANTE with equal scan time or DANTE preparation length. Moreover, applica-

tion was demonstrated in a patient with an intracranial aneurysm, indicating improved

robustness to slow flow artifacts compared with clinically available 3D turbo spin echo

scans. In conclusion, D-DANTE provides banding artifact-free IC-VWI up to higher iso-

tropic resolutions compared with regular DANTE. This allows for a more flexible choice

of DANTE preparation parameters in high-resolution IC-VWI protocols.
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1 | INTRODUCTION

Intracranial vessel wall imaging (IC-VWI) has been shown to be a powerful tool with which to identify and characterize atherosclerotic plaques in

major brain-feeding arteries around the circle of Willis, such as the basilar, middle and anterior/posterior cerebral arteries. The application of IC-

VWI has become increasingly feasible since the introduction of 3D variable refocusing angle turbo spin echo (TSE) imaging sequences, which pro-

vide both the inherent blood suppression and high isotropic resolution imaging necessary to delineate the thin intracranial vessel wall (VW).1,2

One major challenge for IC-VWI, however, is the remaining signal from the cerebrospinal fluid (CSF), which compromises qualitative and quantita-

tive evaluation of the intracranial vessels directly in contact with CSF. A straightforward solution to suppress CSF signal is the use of fluid-

attenuated inversion recovery (FLAIR) preparation, but this sequence has low signal-to-noise ratio (SNR) efficiency, and achieving the required

spatial resolution in a reasonable acquisition time is therefore only feasible at high field strength (7T) in combination with high parallel imaging fac-

tors.3 At clinical 3T, CSF suppression can be achieved more efficiently by means of additional flow-sensitive prepulses. Two possible types of

prepulses have been proposed in the literature, motion-sensitized driven equilibrium (MSDE)4 and delay alternating with nutation for tailored exci-

tation (DANTE),5 which are also commonly used for blood suppression in various other vascular beds.6,7 DANTE, as opposed to MSDE, also has

highly effective flow suppression up to very slow velocities of less than 1 cm/s,5 which is very advantageous to obtain adequate CSF suppression.

This explains the increasing use of DANTE for IC-VWI applications.8–10

An important property of the DANTE prepulse is the periodically changing signal amplitude as a function of the off-resonance frequency, sim-

ilar to what has been described for steady-state free precession (SSFP) sequences.11 While this has been exploited successfully in MR tagging

applications,12 this is obviously an undesired phenomenon in IC-VWI because of possible banding artifacts across the image, which occur if the

banding separation Δr is not small enough compared with the voxel dimension along the DANTE gradient direction. More specifically, Δr is

directly related to the DANTE pulse interval τ and gradient strength G as follows:

Δ r¼ 2π
τ γG

: ð1Þ

Whereas increasing τ compromises the duration of the DANTE prepulse or efficiency of flow suppression,9 an increase in G might also be com-

promised by hardware limitations, restrictions related to peripheral nerve stimulation and intolerable acoustic noise levels. This may compromise

DANTE in achieving isotropic high-resolution IC-VWI, which is needed because of the thin wall and strong tortuosity of the intracranial arteries.

To increase the flexibility in DANTE preparation, we here propose the use of a different type of DANTE preparation, called “Double DANTE”
(D-DANTE).13,14 D-DANTE can reduce the banding separation without changes in the DANTE pulse train length or any of the DANTE parameters,

except for the specific phase-cycling scheme employed. In this study, we aimed to compare the performance of DANTE and D-DANTE in terms

of SNR as well as CSF and blood suppression efficiency through simulations and a feasibility study in healthy volunteers.

2 | METHODS

2.1 | DANTE versus D-DANTE

Figure 1A shows the sequence designs for both DANTE and D-DANTE preparation. In general, DANTE preparation consists of alternating RF and

gradient pulse trains, causing a tagged-like pattern across the field of view (FOV) (Figure 1B). Regular DANTE is generally performed with RF

2 of 10 COOLEN ET AL.



phase increment values of ΔΦ = 0� or ΔΦ = 180�,5 which effectively only differ in the location of the signal bands, as described in detail by

Bernstein et al.14 Conversely, D-DANTE has two interleaved pulse trains, with ΔΦ = 0� for odd RF pulses and ΔΦ > 0� for even RF pulses.

Because each individual pulse train then effectively has a pulse interval 2τ (Equation 1), it can be shown that for D-DANTE the banding separation

is decreased by a factor of 2, even for small values of ΔΦ, and even by a factor of 4 when choosing ΔΦ = 180� (Figure 1B). This is also clear from

Bloch simulations of the D-DANTE frequency response, as shown in Figure S1. Notably, the total number of pulses (N) as well as the actual inter-

pulse time τ remain equal to that of regular DANTE, thereby not increasing the total DANTE pulse train length. This means that, regardless of the

DANTE preparation parameters, D-DANTE allows for a higher spatial resolution compared with regular DANTE before the appearance of banding

artifacts would occur.

2.2 | Simulations assuming CSF flow

To compare DANTE and D-DANTE in terms of CSF suppression, Bloch simulations were performed in MATLAB2017b (MathWorks, Natick, MA,

USA), similar to Viessmann et al.,10 using an ensemble of 1000 individual spins. For CSF, a linear velocity profile within a simulated voxel of

0.8 mm was assumed with a velocity distribution of 2 cm/s ± 10%. Relaxation parameters of CSF and VW tissues were assumed as follows:

T1CSF = 4000 ms, T2CSF = 2000 ms, T1VW = 1000 ms, T2VW = 55 ms.15–20 Based on earlier optimizations,21 DANTE parameters in simulations

F IGURE 1 (A) DANTE and D-DANTE preparations, both consisting of a pulse train with flip angle α, RF pulse interval τ, combined with
gradients with strength G during each interval. Whereas DANTE has a regular phase increment (ΔΦ) for each pulse, which is generally 0� or 180�,
D-DANTE has two interleaved pulse trains with ΔΦ = 0� for uneven RF pulses and ΔΦ > 0� for even RF pulses. This produces distinct phase
evolutions between DANTE and D-DANTE, as can be seen from the examples provided. (B) DANTE (ΔΦ = 0� or ΔΦ = 180�) and D-DANTE
(ΔΦ = 22.5� or ΔΦ = 180�) acquisitions in a cylindrical phantom. Whereas for regular DANTE applying a different phase increment only shifts
the location of the bands, with D-DANTE additional bands are created, of which the exact distribution depends on the choice of ΔΦ. For this
particular purpose, the gradient strength was chosen to be very low (2 mT/m) to accentuate the banding effect. An acquisition with a higher
gradient is shown as well, which is needed in practice to decrease banding distance below the voxel dimensions. DANTE, delay alternating with
nutation for tailored excitation; D-DANTE, Double DANTE
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as well as in the volunteer study were chosen as follows: α = 8�, N = 300, τ = 1 ms, G = 22.5 mT/m (three directions). DANTE was performed

with ΔΦ = 0�, whereas for D-DANTE, ΔΦ was either 22.5� or 180�. An example of such a simulation showing the saturation of longitudinal mag-

netization by DANTE preparation can be found in the supporting information (Video S1).

2.3 | Feasibility study

All experiments in this study adhered to the guidelines of the local Medical Ethical Committee and were performed in accordance with the decla-

ration of Helsinki. All participants provided written informed consent prior to the start of the study. DANTE and D-DANTE were implemented on

a 3-T Philips Ingenia CX MRI scanner. To assess differences in contrast-to-noise ratio (CNR) and flow suppression efficiency between DANTE and

D-DANTE in vivo, 13 healthy middle-aged volunteers (seven males, six females; age 58 ± 8 years) were scanned. After scout scans of the brain,

phase-contrast angiography was performed for visualization of the main intracranial arteries. Subsequently, DANTE/D-DANTE–prepared variable

refocusing angle TSE sequences were performed in the region covering the circle of Willis at a moderate angulation (25�–35�) with respect to the

AC-PC line. Because pilot measurements revealed that regular DANTE produced banding artifacts at 0.6-mm isotropic resolution (also see Discus-

sion), we used a more conservative resolution of 0.8 mm to ensure accurate VW delineation and comparison between the two DANTE prepara-

tions in terms of flow suppression. Next to these scans, an additional D-DANTE acquisition at a higher isotropic resolution of 0.6 mm was

performed. All DANTE-prepared scans were performed in random order. To clarify, we used the same gradient strength of 22.5 mT/m in all direc-

tions, which means the effective gradient is sqrt (3) * 22.5 = 39 mT/m. Because of the isotropic voxel size, the minimum banding distance Δr is

then equal to 1/(42.57 * 39 * 0.001) = 0.6 mm for regular DANTE and 0.3 mm for D-DANTE. As the banding distance needs to be significantly

smaller than the voxel size to effectively average out the frequency-dependent signal response within each voxel, banding artifacts occur for

regular DANTE at 0.6-mm isotropic resolution using our DANTE settings, but not at 0.8-mm isotropic resolution. By contrast, when applying D-

DANTE, both resolutions do not show any banding artifacts. Other DANTE parameters were as described in the simulations (see above), except

that only ΔΦ = 22.5� was used for D-DANTE. Other TSE readout parameters were as follows: TR/TE = 1500/46 ms, refocusing pulse

train = 40�–120�, TSE factor = 56, interecho time = 4.5 ms, startup echoes = 6, FOV = 200 � 180 � 60 mm3, SENSE factor (A-P) = 2, profile

order = radial, elliptical k-space shutter = yes. Acquisition times were 3 min 30 s and 5 min 46 s (excluding additional noise scans) for 0.8-mm

and 0.6-mm isotropic scans, respectively.

To correctly assess noise in the region of interest (ROI), which may be affected by SENSE-related noise amplification, each scan was followed

by a “noise-specific” scan, which was implemented as a second dynamic scan but with RF and gradients turned off (and reduced dead times to

minimize acquisition time). In addition to the experiments with healthy volunteers, a high-resolution D-DANTE scan was performed in a clinical

setting in a patient with a known intracranial aneurysm.

2.4 | Image analysis and statistics

For comparison of DANTE and D-DANTE scans, signal intensities (S) of VW, lumen and CSF were assessed both at the middle cerebral artery

(MCA) and basilar artery (BA) locations in the 0.8-mm isotropic resolution scans. For each of the arteries, segmentation of different tissue ROIs

was performed in ITK-SNAP22 in at least five slices where the arteries were clearly visible. Segmentations at the different slice locations were con-

sidered as one large ROI, from which the mean signal intensity value was calculated. Mean noise (N) values for each scan were extracted from the

additional noise scans (see above) using circular ROIs representing an area with homogenous noise amplitude covering the overall imaging ROI.

Because the reconstruction procedure of the noise scan is identical to its preceding scan, this allows direct noise measurements at the same

region for which the tissue signal measurements are taken, avoiding the need for alternative techniques as proposed by Kellman and McVeigh.23

Because noise values were calculated from magnitude noise images, SNR within each ROI was defined as 1.25 * S/N,24 assuming a the Rayleigh

distribution of noise values. Similarly, CNR between tissues was calculated as 1.25*(Stissue1-Stissue2)/N.

Differences in SNR and CNR between DANTE and D-DANTE were assessed using repeated-measures ANOVA with vessel type (BA/MCA)

and DANTE type as within-subject factors. The level of statistical significance was set at p = 0.05.

3 | RESULTS

Simulation results in Figure 2 show the evolution of longitudinal magnetization (Mz) during the 300-ms DANTE preparation. As expected, regular

DANTE preserves most of the VW (Mz) magnetization at the end of preparation (0.88 M0), whereas for D-DANTE an additional signal loss was

observed to a value of 0.76 M0 as a result of the increased number of signal modulation bands and therefore lower overall voxel intensity. More

importantly, because suppression of flowing CSF remains effective for D-DANTE, VW/CSF contrast (fraction of M0) is affected to a similar degree

4 of 10 COOLEN ET AL.



compared with regular DANTE (0.6 * M0), with a slightly better performance for ΔΦ = 22.5� (0.49 * M0) compared with ΔΦ = 180� (0.45 * M0).

For the current sequence parameters, VW/CSF contrast plateaued towards the end of the preparation time.

Figure 3A and 3B show representative examples of DANTE and D-DANTE scans as well as representative BA and MCA segmentations of the

same volunteer. In both cases, adequate CSF suppression and delineation of the vessel wall can be appreciated. Table 1 contains quantitative

results comparing SNR and CNR calculated for different ROIs. In line with simulations, in vivo results show D-DANTE slightly compromises

VW/CSF as well as VW/lumen CNR values for both BA and MCA regions. This predominantly seems to originate from a reduced SNR within the

VW, rather than a reduction in CSF and/or blood suppression. The reduction in SNR as measured in VW (11% for both BA and MCA regions) is

close to simulated values (14%), as well as that of the brain tissue reference region (14%). There was no significant interaction between the type

of DANTE preparation (DANTE vs. D-DANTE) and artery location (BA vs. MCA). For both DANTE types, MCA regions showed slightly higher VW

SNR, but also slightly worse CSF suppression compared with the BA region, which resulted in similar VW/CSF CNR values. By contrast,

VW/lumen CNR seemed slightly higher for MCA than BA regions.

When applying VWI at 0.6-mm isotropic resolution (Figure 4), banding artifacts were noticed for regular DANTE, compromising image quality

and VW delineation. On the other hand, D-DANTE showed no banding and clear delineation of all major intracranial arteries. VW/CSF CNR

(BA: 4.3; MCA: 4.1) and VW/lumen CNR (BA: 4.3; MCA: 4.1) were 45%–50% lower compared with values at 0.8-mm isotropic resolution, which

corresponds well with the expected SNR loss solely based on voxel size.

As an additional clinical feasibility test, we scanned a patient with a known cerebral aneurysm in the left MCA using 0.6-mm isotropic

D-DANTE (Figure 5). The aneurysm wall can clearly be seen using our new method. Moreover, when comparing D-DANTE with a regular TSE,

which was part of the clinical research protocol, postcontrast scans without DANTE showed regional enhancement in the MCA, as well as around

small peripheral brain vessels, whereas these enhancement patterns were absent for the D-DANTE scans. Upon closer inspection of the vessel

structures, the enhancement at the MCA was proven to originate from a crossing vein, for which the slow-flowing blood was only suppressed by

D-DANTE.

4 | DISCUSSION

IC-VWI has quickly gained interest in recent years, especially because it has allowed a detailed evaluation of intracranial artery plaques as an alter-

native source of stroke when no plaque or stenosis is found in the carotids. The need for isotropic high-resolution imaging in this application

arises from the VW being thin and from the strong tortuosity of the arteries. In addition, adequate CSF suppression is needed to achieve sufficient

VW visibility and delineation. Although some studies have already demonstrated the superiority of 3D DANTE compared with normal 3D TSE in

terms of VW/CSF contrast,10,21 the banding artifact problem of DANTE is generally understated25 and often mitigated by using isotropic voxels

at moderate resolution,8 anisotropic voxels21 or either high DANTE gradients or RF pulse intervals.26 In this study, we have demonstrated an

alternative “double-DANTE” preparation, D-DANTE, which prevents banding artifacts at high isotropic resolution with only small compromises in

VW/CSF and VW/lumen contrast.

F IGURE 2 Bloch simulations of vessel wall (VW) and cerebrospinal fluid (CSF) longitudinal magnetization evolution during DANTE (black) and
D-DANTE preparations with either ΔΦ = 22.5� (green) or ΔΦ = 180� (red). Simulations were performed using an ensemble of 1000 spins at
different positions along the DANTE gradient. A linear velocity profile across the voxel was assumed for CSF tissue. To calculate VW/CSF
contrast, the proton density ratio was assumed to be 0.72.10 DANTE, delay alternating with nutation for tailored excitation; D-DANTE, Double
DANTE
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The maximum resolution we used was 0.6-mm isotropic, which clearly showed banding artifacts for regular DANTE but not for D-DANTE.

Therefore, to ensure accurate VW delineation and comparison between the two DANTE preparations in terms of flow suppression, we chose a

conservative resolution of 0.8-mm isotropic. Besides the possibility of achieving higher spatial resolution without banding, the application of

D-DANTE in general, and also for extracranial arteries, will allow more flexibility in choosing the gradient strength and pulse interval τ, in case

gradient strength is limited or to mitigate high acoustic noise levels commonly associated with DANTE at specific values for τ. Examples of high-

resolution (0.5–0.6 mm) imaging using regular DANTE have been reported in the literature.8,9,27 One reason for the small discrepancy between

our study and others regarding the exact resolution at which banding occurs is that our DANTE sequence implementation probably did not lead

to the absolute maximum gradient moment possible during the DANTE pulse interval. Note that this does not change the fact that D-DANTE will

F IGURE 3 (A) Representative DANTE and D-DANTE intracranial vessel wall imaging (IC-VWI) scans at 0.8-mm isotropic resolution. The
basilar artery (BA) and middle cerebral artery (MCA) are indicated. Schematic regions of interest (ROIs) (green = vessel wall [VW];
blue = cerebrospinal fluid [CSF]; red = blood) used for quantitative comparisons in image quality between the different IC-VWI sequences are
indicated. The orange line indicates the region from which noise was calculated from the additional noise scan. Additionally, a reference region
(yellow) was drawn in the pons, which was the most proximal brain tissue region. (B) Representative segmentation ROIs for one volunteer as
drawn in ITK-SNAP for DANTE and D-DANTE scans. DANTE, delay alternating with nutation for tailored excitation; D-DANTE, Double DANTE;
GM, gray matter
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always lead to less banding than regular DANTE for equivalent parameters, which is the main conclusion of the current study. Other reasons for

the absence of banding in the literature might be a mismatch between acquired and reconstructed resolution, or that banding occurs in the slice-

selection direction and is therefore not apparent on individual images of the 3D volume. Finally, other researchers have performed IC-VWI with-

out DANTE at higher resolutions of up to 0.4-mm isotropic,28–31 which naturally compromises imaging time and SNR. An increase in resolution

affects the 3D TSE readout and total acquisition time, but not the DANTE preparation itself. Because the main objective of this study was to

assess the added value of D-DANTE compared with regular DANTE by exact comparison of the two sequences, the 3D TSE readout may be

TABLE 1 Quantitative results
comparing signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR) outcome
measures between DANTE and D-
DANTE scans at 0.8-mm isotropic
resolution

DANTE D-DANTE p value

CNR VW/CSF BA 9.0 +/� 2.2 7.9 +/� 2.2 <0.01

MCA 9.7 +/� 2.1 8.8 +/� 1.9 <0.01

VW/lumen BA 8.9 +/� 2.4 8.0 +/� 2.4 0.03

MCA 12.9 +/� 1.9 11.1 +/� 1.2 <0.01

SNR Vessel wall BA 12.5 +/� 3.0 11.1 +/� 2.5 0.01

MCA 16.5 +/� 2.1 14.6 +/� 1.3 <0.01

CSF BA 3.4 +/� 1.6 3.3 +/� 1.2 0.58

MCA 6.8 +/� 2.5 5.8 +/� 2.0 0.03

Lumen BA 3.6 +/� 0.8 3.2 +/� 0.7 0.18

MCA 3.6 +/� 0.5 3.5 +/� 0.7 0.66

GM - 30.8 +/� 2.6 26.6 +/� 2.6 <0.01

Note: Resulting p values from post hoc paired t-tests. Statistically significant results are indicated in bold.

Abbreviations: BA, basilar artery; CSF, cerebrospinal fluid; DANTE, delay alternating with nutation for

tailored excitation; D-DANTE, Double DANTE; GM, gray matter; MCA, middle cerebral artery; VW,

vessel wall.

F IGURE 4 DANTE and D-DANTE imaging at 0.6-mm isotropic resolution. Whereas for regular DANTE scans banding artifacts compromise
image quality and vessel wall delineation, D-DANTE scans using the same imaging parameters do not suffer from these artifacts. DANTE, delay
alternating with nutation for tailored excitation; D-DANTE, Double DANTE; MCA, middle cerebral artery
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further optimized to facilitate imaging at such high resolutions. Again, we would like to highlight that because D-DANTE merely changes the spe-

cific phase evolution of the DANTE RF pulse train, we used optimized parameters from the literature21 and focused on a direct comparison of the

two sequences.

SNR and CNR values for regular DANTE as measured in this study were very similar to previous studies at 3T.21,32 A study performed at 7T

by Viessmann et al.10 reported much higher SNR values in VW tissue, although VW/CSF contrast was only moderately higher than that reported

here. This could indicate that CSF suppression using DANTE is slightly compromised by B1 inhomogeneities, which are common at field strengths

above 3T. Also, the use of 7T comes with slightly less favorable T1 values (less relaxation between shots and more saturation during DANTE prep-

aration) and T2 values (more relaxation during 3D TSE readout), but the gain in SNR should compensate for this sufficiently. These positive experi-

ences regarding the use of DANTE at 7T would, in our view, be directly applicable to D-DANTE as well and would facilitate IC-VWI at even

higher resolutions than reported here. In our comparison between D-DANTE and regular DANTE, we did not perform registration between

repeated scans. Instead, visual inspection of ROIs in repeated scans ensured that the same ROIs were chosen with no significant difference in the

number of voxels for both methods (data not shown).

As in our patient example, IC-VWI is often performed precontrast and postcontrast as a marker of VW inflammation.2,33 In this study, we did

not systematically assess the performance of contrast-enhanced D-DANTE imaging, although we believe this would perform equally well as for

regular DANTE, as shown by others in the literature.8,34,35 From our patient case included in this study, we indeed observed that (D-)DANTE

might be more robust to suppress slow-flow artifacts compared with regular 3D TSE sequences, especially for postcontrast scans. This is of inter-

est, because others have stressed the importance of adequate slow flow suppression to prevent misdiagnosis due to apparent VW enhance-

ment.36 Another important aspect for postcontrast imaging is to achieve proper T1 weighting of the signal. For this purpose, note that because of

the DANTE preparation, TR needs to be prolonged to achieve similar T1-weighting compared with regular 3D TSE sequences.

A limitation of the method as performed in this study is that to keep acquisition times within an acceptable range of 4–6 min, only one signal

average was used, which gave rise to TSE-related free induction decay (FID) artifacts.37 Although DANTE artifacts and FID artifacts have a similar

appearance, the latter present themselves locally and strongly depend on the underlying tissue characteristics, whereas DANTE artifacts appear

F IGURE 5 Feasibility of D-DANTE in a patient with an intracranial aneurysm. (A) MR angiography scan indicating the location of the

intracranial aneurysm at the M1/M2 junction. (B) Precontrast and postcontrast imaging using regular 3D turbo spin echo (TSE) or D-DANTE-
prepared 3D TSE. Contrast enhancement around the middle cerebral artery (MCA) was only seen for regular 3D TSE and was proven to originate
from a crossing vein, mostly likely due to unsuppressed slow flow. DANTE, delay alternating with nutation for tailored excitation; D-DANTE,
Double DANTE
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as structured bands across the entire FOV. In theory, the use of two averages in combination with phase-cycling would eliminate the FID artifact,

however, this would require an additional doubling of the SENSE acceleration, compromising SNR efficiency as a result of g-factor noise. How-

ever, as an alternative (see also Figure S2), we were able to show that the use of two averages in combination with four times the acceleration

using compressed sensing38 provided images of good quality without the presence of FID artifacts. Instead of using two signal averages, one can

also prevent the occurrence of FID artifacts by increasing the echo spacing during TSE readout. However, this lengthens the readout and reduces

the effective T1 relaxation during TR, and possibly the SNR efficiency of the sequence. Finally, D-DANTE was only evaluated for ΔΦ = 22.5� in

the in vivo experiments as this value provided the most homogenous distribution of signal bands and better SNR compared with the ΔΦ = 180�

case. The latter could, of course, become valuable in cases when even higher resolution imaging than presented here is required.

5 | CONCLUSION

D-DANTE can provide banding artifact-free IC-VWI up to higher isotropic resolutions compared with regular DANTE, however, with a modest

reduction in VW SNR. This allows for more a flexible choice of DANTE preparation parameters in IC-VWI applications.
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