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A B S T R A C T   

Seismic design principles advocate for simple and regular structures to minimize earthquake 
damage. However, this frequently does not lead to unique and aesthetically pleasing designs, 
leading some engineers to select irregular structures despite the potential risks. The primary aim 
of this investigation is to achieve the optimal design of torsional irregularity coefficients for 
planar irregular reinforced concrete (RC) frames under static and dynamic loads, utilizing a 3D 6- 
layer model. Structural ground vibration analysis was conducted using the ETABS software. By 
imposing limits on the torsional irregularity coefficients for each layer of the frame layout, we 
subsequently applied the combination of artificial neural networks (ANN) with the particle swarm 
optimization (PSO) algorithm, namely ANN-PSO, to address the size distribution issue across the 
structure. The design variables included the dimensions of the columns located in each layer of 
the layout. The results demonstrate that the ANN-PSO algorithm optimizes the cross-sectional 
area of columns with significant variations. The coefficients of the torsion inequality rule in 
the optimized solution closely approach the minimum values. The dimensions and orientations of 
the optimized columns slightly differ from the pre-optimized scheme. In the optimized scheme, 
the coefficients of the torsional irregularity in the Y-direction meet the requirements, preventing 
any torsional irregularities from occurring. The research presented an effective method, including 
an innovative combination of ANN-PSO and the finite element method (FEM), for designing RC 
structures. The findings of the research provided a practical solution to fulfill torsional regularity 
criteria, indicating the proposed approach is an effective method for the economical and safe 
design of RC structures in earthquake-prone areas. The outcomes of the present study highlighted 
the innovative framework to achieve optimal and safe designs for irregular RC structures while 
minimizing torsional damage during earthquakes.   

1. Introduction 

Reinforced concrete (RC) combines concrete with strong resistance to compression and steel with high resistance to tension. In the 
field of civil engineering, it is essential to gain comprehensive knowledge about the behaviors of materials in various conditions to 
employ for civil engineering projects [1–5]. Furthermore, it is important to have a comprehensive understanding of the different 
fracture and failure mechanisms that lead to the destruction of the strength of materials [6,7]. RC structures play a crucial role in 
contemporary construction due to several advantages, including durability, high strength, flexibility, fire resistance, and economic 
efficiency. Therefore, in order to enhance the efficiency of RC structures, many research studies have been conducted in recent years 
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[8–12]. 
Experimental research is a vital component in the design of concrete structures [13,14]. Laboratory studies allow the evaluation of 

concrete properties, material properties analysis, investigation of failure mechanisms, simulation of various environmental conditions 
like extreme temperatures and loading conditions, and development and assessment of different structural elements [15–19]. Despite 
the mentioned advantages of experimental works, they suffer from scale limitations and are costly and time-consuming [20]. 
Nowadays, significant advancements have been made in the field of structural design using numerical analysis and finite element 
methods (FEM) that enable engineers to accurately simulate the three-dimensional behavior of large-scale structures [21,22]. 
Moreover, in parallel with laboratory studies, computational intelligence methods have seen a significant increase in related structural 
engineering and have demonstrated practical tools for optimizing structural designs, improving material utilization, and accurately 
predicting possible failure points [23–27]. Many investigations have emphasized the significance of understanding and employing 
data-driven and evolutionary algorithms for the safe and economical design of structures. 

The artificial neural network (ANN) has emerged as a popular and powerful method for solving engineering problems [28,29]. ANN 
resembles the neural architecture of the human brain by employing an enormous number of interconnected neurons that operate in 
parallel to analyze and interpret data [30]. ANN, as well as the good applicability of particle swarm optimization (PSO) algorithms for 
solving engineering structural optimization problems. ANN is often used as a proxy model for PSO fitness functions, i.e., ANN-PSO 
[31–33]. The combination of the ANN-PSO model indicated an efficient, practical, and simple approach for practical engineering 
applications regarding RC structures [34–36]. Bayari et al. [37] employed the ANN-PSO for the estimation and assessment of collapse 
danger and the determination of structural reliability. Nguyen et al. [38] have developed ANN-PSO to predict the shear strength of 
reinforced concrete (RC) beams. The mentioned studies illustrated that the hybridization of ANN with PSO improves convergence and 
enhances the accuracy of the quality of results for modeling concrete structure elements. The need to apply optimization-based 
evolutionary and meta-heuristic algorithms in RC structural design is highlighted by Afzal et al. [39]. Sánchez-Olivares and Tomás 
[40] presented the Firefly Algorithm (FA) and GA to determine the most cost-effective design of RC subjected to compression forces. 
Hong et al. [41] illustrated the effectiveness of ANN-based optimization methods in improving the design process of structural ele-
ments related to pre-tensioned concrete beams. Yazdani et al. [42] demonstrated that their gravitational search algorithm (GSA) could 
significantly benefit engineers in the design of reinforced concrete (RC) structures under seismic loading, taking into account nonlinear 
soil-structure interaction effects. Esfandiari et al. [43] proposed a novel approach combining multi-criterion decision-making (DM) 
and PSO techniques. Their approach was used to optimize RC structures under seismic loads. Martins et al. [44] developed an 
optimization-based computational approach for designing RC-framed structures, focusing on minimizing costs while meeting strength 
and serviceability requirements as defined by Eurocode 2. Mergos [45] conducted a study implementing a surrogate-based optimi-
zation (SBO) method for the economical design of RC frames, specifically examining a 4-story and a 12-story building as per Eurocode 
regulations. 

The optimal design of irregular structures regarding their performance subject to seismic forces is one of the main research areas in 
structural engineering. This goal can be achieved by using structural optimization techniques [46,47]. During the optimization pro-
cess, it is essential to adhere to the strength and serviceability constraints specified in contemporary earthquake codes for reinforced 
concrete structures. Irregularities in architectural designs, irregular geometry features, and mistakes caused by aesthetic concerns can 
cause serious damage or collapse of the building against seismic loads [48,49]. The response and behavior of this building structure 
when subjected to static and dynamic loading mostly depend on the dimensions of the sections and the spatial configuration of the 
columns and shear walls [50]. Although some of these irregularities can be mitigated by adjusting the cross-sectional dimensions of the 
structural elements, it is not always cost-effective or possible to eliminate all irregularities. Therefore, optimization emphasizes the 
importance of designing a structurally suitable solution that also takes into account the cost of the project [51,52]. 

The torsional irregularities play a crucial role in identifying structural weaknesses due to torsional forces during earthquakes. 
Although the significance of evaluating the seismic behavior of planar, irregularly reinforced concrete frames is highlighted, there are 
few investigations on the optimization of torsional irregularities in RC buildings. Goldberg [53] was one of the pioneering researchers 
in engineering optimization problem-solving. Following Goldberg’s work, many researchers have applied various algorithms to 
address different structural design problems. As mentioned earlier, there are many research projects on the structural optimization of 
RC structures, and most of these studies focus on the cost of structures. When earthquake codes are examined, the most prominent 
structural irregularity is torsional irregularity. Several studies explored torsional irregularity from various aspects [54,55]. For 
instance, Archana and Akbar [56] focused on the torsional irregularity guidelines outlined in the Indian standard code. They analyzed 
35 buildings with varying shapes related to torsional irregularity using ETABS software. They suggested recommendations aimed at 
refining the code to enhance the structural safety of buildings. Botis and Cerbu [57] introduced a theoretical approach to minimize 
torsional irregularities in multi-story concrete buildings by aligning the center of mass with the center of stiffness on each floor. They 
employ the MATLAB program and ETABS software for the modeling of structures. They suggested the proposed methods be examined 
for actual structural scenarios. Demir and Dönmez [58] investigated the torsional irregularity factors affecting multistory shear frame 
systems according to the Turkish Seismic Code. They considered six types of reinforced concrete buildings with different plan ge-
ometry, number of stories, and shear placements used in the study. Özmen et al. [59] investigated torsional irregularities in multistory 
buildings. They investigated six typical buildings with different shear locations, stories, and axis numbers. They found that the 
torsional irregularity increases as the number of stories decreases, with maximum irregularity coefficients occurring for single-story 
structures. However, due to the complexity and variability of irregular structures, there is often a lack of sufficient measured struc-
tural and ground vibration data, resulting in designs that rely on empirical or simplifying assumptions. In addition, seismic design 
optimization usually requires the use of optimization algorithms for searching and solving, but for irregular structures, the complexity 
and high dimensionality may lead to the inefficiency of traditional optimization algorithms. 
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In this study, the torsional irregularities of reinforced concrete structures with slab discontinuity irregularities in the plan under an 
earthquake were investigated and analyzed. By implementing ANN-PSO in MATLAB, the optimum dimensions of the vertical carriers 
were designed to bring the torsional irregularity coefficient of reinforced concrete structures to a certain limit. For this purpose, 
building systems, namely 3D 6-story frame systems, are modeled by the finite element method (FEM) under static and dynamic loads, 
and the irregularity conditions are investigated. The optimum design of the relative story drift for setting a lower limit on the torsional 
irregularity coefficient is realized by ANN-PSO applications. To the best of the authors’ knowledge, few studies have been conducted 
about the application of hybrid and advanced optimization algorithms in dealing with irregular structures. On the other hand, the 
hybridization of PSO with ANN improves performance and yields promising results for solving complex processes and engineering 
problems [60,61]. In addition, in some studies, compared to the GA algorithm, PSO has fast convergence and a lower number of 
computational formulations [62,63]. The PSO algorithm demonstrated that it is an efficient method with the combination of ANN for 
modeling complex problems in various scientific fields [64,65]. The concept adopted in the present study examined the application of 
data-driven and meta-heuristic algorithms (i.e., ANN-PSO) in cooperation with the FEM method for the safe and economical design of 
RC structures. 

Overall, the present study highlights the significance of eliminating torsional irregularities. This work presented a novel approach 
for solving torsional irregularities through coupling evolutionary algorithms and the FEM method. The findings of the research can be 
used by structural engineers to reduce torsional irregularities. Therefore, structural engineering can fulfill the criteria for torsional 
regularity and improve structural performance. In summary, the suggested approach is regarded as a reliable and efficient technique 
for the economic and safety design of reinforced concrete structures in seismic conditions. 

2. Optimization problem 

Section 2 provides a definition of an optimization problem and discusses its various components, including size optimization, 
objective function, design variables, and design constraints. Furthermore, it explains the mathematical definition of the optimization 
problem and addresses the specific issues related to irregularly reinforced concrete structures. 

Optimization refers to the process of achieving the most favorable outcome given certain conditions [66]. Engineers are required to 
make numerous scientific and administrative decisions during every phase of the design, development, and repair of any engineering 
system [67–69]. The general goal of these decision-making processes is to reduce the necessary work or maximize the intended 
advantage. 

By adjusting the member sizes of irregular structures, selecting appropriate objective functions, design variables, and constraints, 
and combining the search and optimization capabilities of the PSO algorithm, optimization schemes applicable to the seismic design of 
irregular reinforced concrete structures can be obtained. These schemes can improve the structural response to seismic forces, reduce 
the inter-story displacement of the structure, and give the structure better stability and safety under the action of external forces such 
as earthquakes. A discrete structural optimization issue is expressed by Eqs. (1) and (2). 

Objective : minf (X),X=X1,X2,…,Xn (1)  

Limit : gj(X)≤ 0, j = 1, 2,…,m; XL ≤ X ≤ XU (2)  

where f(X) represents the objective function and should be minimized depending on the requirements of the problem; gj(X) represents 
inequality constraints; the number of boundaries m and the number of variables n should not be related in any way; j is an n- 
dimensional vector called the design variable. The variables XL and XU correspond to the lower and upper limits, respectively, and are 
called geometric or side constraints. The aforementioned mathematical model includes inequality constraints because equality con-
straints are typically absent in structural optimizations. 

2.1. Size optimization 

In size optimization problems, the cross-sectional dimensions of the structural system elements—the area or thickness of the 
plate—are the design variables. The connections between the different elements and the modal points of their coordinates do not 
change [70–72]. By using component sizes of the PSO algorithm and setting appropriate ranges and accuracies, such as upper and 
lower bounds, increments, etc., different combinations of component sizes can be explored during the optimization process to find a 
better solution. 

The objective function typically encompasses the mass, stiffness, or cost of the building. Since the geometry and boundary con-
ditions (such as loads and constraints) are already identified, these can be used to define the constraints for columns and beams with 
respect to geometry, strength, deformation, etc. [73–75]. The values that the design variables can take in the sizing optimization 
problem can be discrete or continuous. No elements of the structural system are added or removed during dimension optimization. 
Therefore, the size and number of elements are usually defined by designers based on their experience and structural design 
constraints. 

2.2. Objective function 

The criterion or objective function refers to the measure by which the design is optimized when represented as a function of the 
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design variables. For an ideal solution, the objective function should sometimes have a minimum and sometimes a maximum value 
[76,77]. The selection of the objective function is determined by the characteristics of the problem. In civil engineering, the objective 
function can be easily defined by the weight, cost, displacement, or other objectives of the building. In the seismic optimization scheme 
of irregular structures, a common objective function is to reduce the movement between adjacent floors. The inter-story displacement 
is the difference between adjacent floors and is a crucial indicator for evaluating the seismic vulnerability of structures with irregu-
larities. By setting the objective function as the weighted sum or integrated value of the inter-story displacement and determining the 
weight assignment according to the importance of the structure and design requirements, the optimal design for minimizing the 
inter-story displacement can be achieved. 

2.3. Design variables 

In order to develop a mathematical formulation of the problem, some parameters of the building system must first be determined. 
These parameters are not changed by the optimization algorithm and are called predetermined parameters when the system is 
regulated. Parameters that cannot be determined a priori are called design variables. In mathematical terms, design variables can be 
continuous or discrete. Design variables that express the solution in structural optimization problems can take discrete values [78]. The 
design factors for irregularly reinforced concrete structures include the cross-sectional dimensions and the number of beams and 
columns. In the PSO algorithm, these design variables can be encoded in binary, integer, or real numbers and converted to actual 
member sizes and quantities using appropriate decoding methods. The proper selection and range setting of the design variables will 
have a significant impact on the optimization results. 

2.4. Design constraints 

Limitations related to the cross-sectional dimensions of structural elements are called design constraints. There are several con-
straints that need to be satisfied in order to create a design that is deemed satisfactory [79]. The minimum dimensions of a beam or the 
minimum thickness of a slab are important examples of design constraints. These a priori constraints arise from many different sit-
uations, such as regulatory requirements or architectural requirements. Constraints can be expressed in two different ways.  

(1) Behavioral or functional constraints refer to limitations that define the boundaries of the system’s behavior or performance. For 
instance, the behavior of maximal displacement or torsion. 

Fig. 1. ANN-PSO algorithm process.  
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(2) Geometric constraints refer to the restrictions that impose physical limitations on design variables, including usability and 
manufacturability. 

During the design process, a number of variable constraints are required to be considered. For example, member dimensions need 
to meet the requirements of structural strength, stability, and stiffness; column spacing needs to meet the practical conditions of use 
and construction; member dimensions need to meet the requirements of workability and site construction, etc. These constraints can be 
considered by setting appropriate constraints to ensure that the optimized solution is feasible and reasonable. In the PSO algorithm, the 
variable restriction problem can be handled by designing a suitable fitness function or constraint function. 

3. Working principle of ANN-PSO 

Section 3 provides a detailed explanation of the working principle of the ANN-PSO algorithm, the specific parameters considered, 
and the process of optimizing the design to minimize torsional irregularities for optimal design analysis of irregular frame structures. 

In this study, in view of the good performance of the ANN model in fitting problems and the good applicability of the PSO algorithm 
for solving engineering structure optimization problems, ANN is used as a proxy model for the PSO fitness function, and the ANN-PSO 
algorithm is used for optimal design analysis of irregular frame structures. ANN-PSO can exploit the nonlinear application of ANN but 
also overcome the ANN weights encountered at slow convergence speeds, making it easy to fall into the problem of local optimum. Its 
algorithm flow is shown in Fig. 1. 

ANN is the most widely used intelligent algorithm based on the error backpropagation algorithm for training, which is an algorithm 
containing hidden layers and multilayer feedforward neural networks [80,81]. ANN inspires the action of biological neurons in the 
brain for the modeling and formulation of complex problems [82]. ANN can model nonlinear problems with acceptable performance 
[83,84]. Fig. 2 indicates the architecture of ANN. The input vector of the ANN is x, the input layer has n nodes, the hidden layer has n1 
nodes, wi is the weight between the hidden and the output layers, θj is the threshold value of the output layer, and the output vector is y. 

This study is based on the ANN model to fit the complex implicit relationship between the number and size of column and beam 
elements versus the relative inter-story drift. Different combinations of variables are selected and numerically simulated separately, 
and the data generated by all combinations is used as the data set for training the neural network. The data set is divided according to 
the ratio of 7:3. The design parameters are optimized according to the PSO-BP algorithm process. The calculation of each computa-
tional node of the ANN is as follows (Eq. (3) to (5)): 

uj =
∑n

i=1
wixi − θj (3)  

yj = f
(
uj
) 1

1 + exp
(
− λuj

) (4)  

yj = f
(
uj
) λ exp

(
− λuj

)

1 + exp
(
− λuj

)
1

1 + exp
(
− λuj

)= λ
[
1 − f

(
uj
)]

f
(
uj
)

(5)  

Output nodes of each layer can be calculated from Eqs. (6) and (7) as follows: 

Fig. 2. The architecture of the ANN [85].  
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x′
j = f

(
∑n− 1

i=0
wij − θj

)

, j= 0, 1, 2,⋯, n1 − 1 (6)  

yj = f

(
∑n1 − 1

k=0
w′

ijx
′ − θ′

j

)

, k= 0, 1, 2,⋯,m − 1 (7)  

ANN has the ability to nonlinearly map from input to output, but it is easy to reach local minima after a certain number of iterations 
and other problems. Therefore, the PSO algorithm can be combined to improve it. Unlike the stochastic gradient descent method used 
for ANN training, the PSO algorithm is a global optimization-seeking algorithm that finds the optimal solution to the problem over the 
entire region. The weights and thresholds in the ANN are used as moving particles, and the positions of the particles indicate the 
magnitude of the current weights and thresholds. The sum of the squared deviation from the result of the neural network and the 
sample is used as the fitness function of the particle movement, as shown in Eq. (8). 

Jp =
1
2
∑N

k=1

[(
y1 − y′

1

)2
+
(
y2 − y′

2

)2]
(8)  

where y1 is the output value of the sample, y’ 1 is the resultant value of the ANN, and N is the number of groups in the number of 
samples. The smaller the value of JP, the higher the fitness of the particles and the smaller the error of the neural network training. In 
order to calculate the optimal solution to obtain the neural network weights and thresholds, the weights and thresholds of the trained 
ANN are obtained by iterating Eqs. (9) and (10) according to the PSO algorithm [86]. 

V(n+1) =V(n)ω+C1 × rand(θ)×
[
Pbest(n) − X(n)

]
+C2 × rand(θ) ×

[
Gbest(n) − X(n)

]
(9)  

Xn+1 =Xn + Vn+1 (10)  

where ω is the velocity inertia number; C1 and C2 are learning factors; V(n) is the particle movement velocity; and (θ) is a random 
number between 0 and 1; Pbest(n) is the particle position with the best adaptation during each particle movement; Gbest(n) is the particle 
position with the best adaptation among the population particles. 

4. Torsional irregularity in reinforced concrete structures 

Section 4 examines torsional irregularity in reinforced concrete structures, which is a crucial concern in earthquake design. The 
purpose is to define torsional irregularity and establish criteria to gauge its significance. Additionally, this section presents approaches 
to seismic design, elaborating on static load analysis, mode combination methods, and limitations on relative floor drift. These ap-
proaches are implemented to enhance the safety and performance of structures during seismic events. It explores the mathematical and 
regulatory frameworks employed to evaluate and address torsional effects. 

When earthquake regulations are investigated, the most prominent structural irregularity is torsional irregularity. Torsional effects 
create bending and additional shear forces in reinforced concrete elements. This condition is difficult to assess properly and can be 
destructive. If the torsional irregularity coefficient is less than 1.2, it is assumed that the torsional irregularity has no significant effect 
on the behavior of the structure, and no additional treatment is required. 

4.1. Torsional irregularity 

Torsional irregularity is deemed to be significant when the torsional irregularity coefficient ηbi is greater than 1.2, as shown below 
(Eq. (11)): 

ηbi =(Δi)avg

/
(Δi)max > 1.2 (11)  

where ηbi is the torsional misalignment coefficient, (Δi)avg is the average relative displacement of layer i in the same direction, and 
(Δi)max is the maximum relative displacement of any layer i. 

4.2. Floor discontinuities 

If there are large gaps in the floor slab, the rigid diaphragm behavior is impeded so that the system stiffness required by the code 
cannot be achieved, and then the slab in part of the floor slab is discontinuous. This includes the following three specific cases:  

1) If the sum of the cavity area (including the stair cavity and elevator cavity) exceeds one-third of the total floor area, as follows (Eq. 
(12)): 

Ab =Ab1 + Ab2Ab/A > 1/3 (12) 

X. Zhang                                                                                                                                                                                                                 



Heliyon 10 (2024) e27179

7

where Ab is the sum of the void areas, and A is the gross floor area.  

2) Local slab voids make safely transmitting seismic forces to vertical structural elements challenging.  
3) The occurrence of sudden drops in the in-plane stiffness and strength of the slab is explained to cause slab discontinuity in the 

structure. 

In structures where unsymmetrical slab gaps and discontinuity of beams in these areas are not provided, the largest torsional effects 
occur, and horizontal displacements increase. It is recommended to avoid the formation of such irregularities. 

4.3. Methods used in seismic design 

4.3.1. Equivalent static load analysis 
In the equivalent static analysis method, the response of the structure is assumed to be linearly elastic. The total seismic force 

exerted on the entire structure in the considered earthquake path is determined by Eq.(13). 

Vt =(WA(T1) /Ra(T1)) ≥ 0.1A0IW (13)  

where W is the whole weight of the building, A (T1) is the spectral acceleration factor considered in determining the seismic load, A0 is 
the influential ground acceleration factor, Ra (T1) denotes the reduction factor for the seismic force, and I is the structural importance 
factor. 

The linear distribution of this load along the height is usually preferred, so the horizontal load (Fi) acting in the direction of dy-
namic degrees of freedom at the first floor is equivalent and calculated according to Eq. (14). 

Fi =(Vt − ΔFN)
WiHi
∑n

j=1
WjHj

(14)  

ΔFN = 0.0075NVt (15)  

where wi is the weight of the first floor of the structure, Hi is the height of the first floor of the structure measured from the top of the 
bottom, and ΔFN is the value of the additional equivalent seismic load acting on the top floor of the structure, as determined by Eq. (15). 

4.3.2. Mode combination method 
In the mode combining method, other vibration periods and mode shapes are also considered to find the total earthquake load, and 

the related mode shapes are taken as the basis for distributing this total load to the building floors. According to Eq. (16), the ordinate 
of the reduced acceleration spectrum to be considered in any nth vibration mode is determined. 

Sar(Tn)= Sae(Tn)g /Ra(Tn) (16)  

where Sar (Tn) is the ordinate of the reduced acceleration spectrum for the nth natural vibration mode, Sae (Tn) is the elastic spectral 
acceleration for this mode, g is the gravitational acceleration, and Ra (Tn) is the seismic load reduction coefficient for the nth natural 
vibration mode. 

The optimal number of vibration modes Y to be included in the calculation shall be calculated based on the following rule: the total 
of the effective masses computed for each mode in the two vertical and horizontal seismic directions considered must always exceed 
90% of the total mass of the building. 

∑Y

n=1
Mxn =

∑Y

n=1

L2
xn

Mn
≥ 0.90

∑N

i=1
mi (17)  

∑Y

n=1
Mmn =

∑Y

n=1

L2
yn

Mn
≥ 0.90

∑N

i=1
mi (18)  

where Lxn, Lyn, and modal mass Mn in Eqs. (17) and (18) are calculated by Eqs. (19)–(21), as shown below. 

Lxn =
∑N

i=1
miΦxin (19)  

Lyn =
∑N

i=1
miΦyin (20)  
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Mn =
∑N

i=1

(
miΦ2

xin +miΦ2
yin +mθiΦ2

θin

)
(21)  

where Φ is the modal matrix, and mi is the mass of the ith story. 
When combining mode contributions, each vibration mode calculation needs to statistically combine rules for the maximum non- 

simultaneous contributions of total seismic forces, internal force components, inter-story shear forces, displacements, and relative 
inter-story drift. These rules are: If the natural period of any two considered vibration modes always satisfies the condition Tm/Tn <

0.80 (where Tm < Tn), the square root rule (SRSS) can be applied to combine the maximum mode contributions. If this condition is not 
satisfied, the full quadratic combination rule will be applied to combine the maximum mode contributions. For the calculation of the 
cross-correlation coefficient applying this rule, the modal damping ratio of all vibration modes should be taken as 5%. 

In the considered seismic direction, if the ratio of the total seismic load VtB of the building found through the combined mode 
contribution to the total seismic load Vt of the building calculated through the equivalent seismic load method is less than the defined 
value β (VtB < βVt), the magnitude of all internal forces and displacements found according to the combined mode method should be 
increased according to Eq. (22). 

BD =(βVt /VtB)BB (22)  

4.3.3. Limitation of effective relative floor drift 
The decreased relevant story drift, Δi, which represents the difference in displacement between two subsequent stories in any 

column (Fig. 3), shall be obtained by Eq. (23). 

Δi = di − di− 1 (23)  

where di and di-1 show the horizontal displacements at the ends of the columns by calculating them on the ith and (i - 1)th floors of the 
structure. 

The reduced relative inter-story drift is obtained by multiplying the relative inter-story drift by the behavior factor of the structural 
system. For a column at any ith floor of the structure in each seismic direction, the maximum value of the relative story drift (Δi)max 
calculated by Eq. (23) within that floor shall satisfy one of the unfavorable conditions given in Eq. (24). According to the conditions of 
Eq. (25), at any floor of the structure, the rigidity of the structural system must be enhanced, and the seismic calculations shall be 
redone. 

δi =RΔi (24)  

(δi)mak

/
hi ≤ 0.02 (25)  

5. Application of ANN-PSO to torsional irregularity 

This section outlines the optimization problem, establishes an objective function to minimize the relative displacement between 
floors, and introduces the design variables and constraints according to the ACI 318–2019 Building Code. Next, it presents numerical 
examples illustrating the optimization of a 3D reinforced concrete building with façade irregularities. The goal of this part is to reveal 
the successful application of the suggested computational approach to optimizing building designs to reduce torsional irregularities 
and enhance seismic performance. 

Fig. 3. Diagram of the relative displacement calculation between floors.  
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5.1. Objective function 

Eq. (26) gives the objective function for the optimization issue of calculating the relative displacement between floors. In addition, 
Eqs. (27) and (28) determine the constraints of the problem. 

Objective(minimize)drift=
(
Drift(X)

2
+ Drfit(Y)

2)0.5
(26)  

Restriction gj(x)≤ 0 j = 1, 2,…,m (27)  

xiL ≤ x ≤ xiU i = 1, 2, ..., n (28)  

where Drift(X)
2 and Drfit(Y)

2 are the relative interlayer drifts in the x and y seismic directions, respectively, the g(x) inequality and the 
constraint return a vector of length n. xiL, xiu constitute the minimum and maximum boundaries of the dimensional design variables 
determined by the design code. 

5.2. Design variables 

The variables are the number and dimensions of the columns and beam elements. The minimum and maximum quantities and 
dimensions are determined according to ACI 318–2019 Building Code Requirements for Structural Concrete. In practice, the column 
length is fixed, and only the thickness is a design variable. 

5.3. Design constraints 

Dimensional limitations: The minimum dimensions of rectangular columns permitted in ACI 318–2019 should be more than or 
equal to 250 × 300 mm, and the cross-sectional area should be more than or equal to 75000 mm2. The columns’ cross-sectional area 
should satisfy the condition that the axial compression force computed subjected to the combined Nd vertical load and seismic load 
should be maximum. 

Ac ≥
∑

(Nd / 0.5Fck) (29)  

where Nd is the designed axial force, AC is the entire cross-sectional concrete area in the column, and Fck refers to the concrete’s 
compressive strength. 

Geometric constraints: According to Eq. (29), the columns can have a square or rectangular shape. The column’s width (bc) and 
depth (hc) should not be smaller than the minimum dimensional limits. According to Eq. (30) and (31), the dimensions of the column 
are constrained to be within the following limits: 

(
bmin,i

/
bi
)
− 1≤ 0 i= 1, 2,…, n (30)  

(
hmin,i

/
hi
)
− 1≤ 0 i= 1, 2,…, n (31)  

The variable " i " represents the index of the columns, whereas " n " represents the entire amount of columns. 
Each problem should have distinct definitions for the minimal width (bmin) and height (hmin) based on the design constraints. 
Compatibility constraint: The compatibility constraint ensures that the width of the column (bc) at a given floor is not less than the 

width of the corresponding beam (bw) and that the reinforcement of the beam continues along the column. During an earthquake in a 
building, seismic forces are generated in the junction zone, where the masses are gathered. For this reason, the column-beam joint area 
is an important location where its strength becomes critical. In the normalized form, this constraint can be written in the normalized 
form of Eq. (32). 

1 − (bc / bw) ≤ 0 (32)  

5.4. Numerical examples 

In the numerical example, the optimal design of relative inter-story displacements is achieved for a three-dimensional reinforced 
concrete building with a floor slab having discontinuous irregularities in the plane. In ACI 318–2019, it should be avoided that the 
space on the floor is larger than 1/3 of the total floor area. The building model analyzed in this paper is a 3-dimensional, 6-story frame 
and frame beam structural system. The total floor area is A = 17 × 14 = 238 m2. The area of space on the floor is Ab = 10 × 8 = 80 m2. 
According to Eq. (33), there are floor discontinuities existing in the building structure. 

Ab

A
= 0.3361 >

1
3
= 0.333 (33) 

During the analysis of the building, 65 different load combinations were used in the ETABS software package to analyze the effects 
of static and dynamic loads. From these load combinations, torsional irregularities under certain selected loads were analyzed. For 
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simplicity, anchored bearings were used in all directions. The vertical structural part of each building model was presumed to remain 
consistent across the vertical extent of the building. Walls are not considered as load-bearing elements in the system, and the masses of 
the walls are considered to be collected at the nodes of the computational model. In determining these masses, a splitting process will 
be applied at the center of the layer so that the upper part of the layer will be added to the mass of the upper layer, and the lower part 
will be added to the mass of the lower layer. The slab load consists of a dead load and a 30% live load. All internal forces and dis-
placements obtained from the mode coupling method are scaled up according to the requirements of the lower limit values of load 
magnitude in ACI 318–2019. The seismic analysis was performed at ±5% eccentricity in both seismic directions. In the considered 
models, the floor slabs were analyzed as flexible and rigid diaphragms, respectively, and the results were compared. Since the results 
obtained by the two methods showed significant differences, it was decided to accept the flexible diaphragm. In order to eliminate the 
torsional irregularities, an ANN-PSO algorithm was used for the optimal dimensioning of the relative inter-story drift. The structural 
information and characteristics of the building structure are listed in Table 1. 

ANN-PSO is used to minimize a nonlinear function with real-number constraints. The number of independent variables is equal to 
the number of members, e.g., the thickness of the columns and the height of the beams. The independent variables are used as input 
layer nodes, and the relative displacements between layers are used as output layer nodes. The data obtained from the simulation is 
used to train the ANN. The ANN model is trained using the Levenberg-Marquardt (LM) algorithm, and the transfer functions of the 
implicit layer and the output layer are the tansig function and the purelin function, respectively, with the implicit layer set to 1 layer 
and its number of neurons being 11. It is mentioned that LM is the most efficient and robust training algorithm for ANN training based 
on findings from previous research [87–89]. 

After the training, the ANN model is used as the fitness function of PSO, the number of populations is set to 30, and the number of 
dropping points is set to 100, so that the particle flight speed and particle flight boundary are limited to laboratory factors. The frame 
was solved three times, and among the solutions obtained in each group, the optimal solution was used as the best design. Table 2 
shows the parameter set of PSO. 

5.4.1. Load combinations used in the design 
The assumed dead and live loads on each floor slab are 1.56 kN/m2 and 2 kN/m2, respectively. According to ACU, the following 

load combinations (Eq. (34) to (36)) are used when using the ETABS procedure in the design: 

Fd = 1.4G + 1.6Q (34)  

Fd =G + Q ± E (35)  

Fd = 0.9G ± E (36)  

where G, Q, and E represent the dead load, the live load, and the horizontal load, respectively. 

5.4.2. Prepared computer program 
The ETABS structural analysis software was used to perform static and dynamic analysis of 3D reinforced concrete structures and to 

investigate irregularities. The application of the ANN-PSO algorithm was used for optimal sizing by connecting MATLAB and ETABS 
programs through an application programming interface (API). The computer used to optimize the structural dimensions has standard 
specifications (ASUS i5-8250U CPU, 1.80 GHz, 8 GB RAM, 64-bit SSD, Windows 10), and the computation time for one instance is 
about 1.5 h. 

5.4.3. Example of calculation 
Since the columns in the plan layout are the same for all floors, there is only one-floor group, and the variables are divided into 24 

column groups. There are a total of 48 variables in each column group. In this program, there are 144 variables for the columns, for a 
total of 288 design variables. The upper and lower bounds for the length and width of the columns are set to 300 mm and 600 mm, 
respectively. In this model, all the cross-sectional dimensions of the beams are calculated in 300 mm × 500 mm dimensions, and all the 
columns are calculated in 500 × 500 mm pre-defined dimensions. A typical plan view of the model used for the optimization procedure 

Table 1 
Features and parameters of the selected building structure.  

Indicators Value Indicators Value 

Floor height 3.0 m Wall unit weight 4.2 kN/m2 

Laying thickness 15 cm Seismic rating Grade 1 
Concrete grade C25 Floor level Z2 
Concrete density 2500 kg/m3 Spectral characteristic period TA = 0.15; TB = 0.40 
Modulus of elasticity E = 30 GPa Effective ground acceleration A0 = 0.4 
Type of reinforcement S420 Building importance factor I = 1.0 
Yield strength of reinforcement fy = 420 MPa Damping rate 5% 
Tensile strength of reinforcing bar fsu = 500 MPa Ductility class High 
Moving load q = 2 kN/m2 Moving Load Factor n = 0.3 
Wall Full brick wall    
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and a 3D view of the frame model are given in Fig. 4. 
It is clear from Fig. 5 that after inputting the initial data, the optimal solution was obtained by 4000 function evaluations after 20 

iterations defined as a criterion for ending and with approximately the amount of time the CPU takes to complete a task 30 h. When 
Table 3 is analyzed, it can be seen that the torsional inequality rule coefficient in the optimal solution is very close to the limiting value. 
In Table 4, the sizes of the columns are shown as length and width, in accordance with the x and y axes, respectively. As a result of the 
ANN-PSO algorithm solution (Table 4), the dimensions and orientation of the optimized columns differ somewhat from the pre- 
optimized solution. Table 3 shows that in the optimized solution, the torsional irregularity coefficient in the y-direction does not 
exceed the limit value, and therefore, no torsional irregularity is generated. 

6. Discussions 

This section analyzes and interprets the results and examines the impact of dimensional optimization on a structure by comparing 
torsional irregularity coefficients before and after optimization. In addition, it discusses the advantages and potential limitations of the 
research in addressing the challenges of irregularly reinforced concrete structures. 

The torsional irregularity coefficients of all floors in the structure were compared before and after the application of dimensional 
optimization, and the results obtained are summarized in Fig. 6; the "optimal solution" and the "initial solution" of the models are 
compared in the Y-direction. It can be seen that, as a result of the dimensional optimization, the torsional irregularity of each floor of 
the model does not exceed the limits specified by ACI 318–2019. In addition, the torsional irregularity coefficients in both directions do 
not exceed the limit values in the optimized solution for each floor and do not cause torsional irregularities. 

The proposed approach eventually leads to economic design optimization of seismic-RC 3D buildings. The advantages of this 
approach include its robustness and effectiveness in its ability to determine the best solution for the economical and safe design of RC 
structures. Furthermore, the proposed approach illustrates the use of MATLAB and ETABS through an application programming 
interface (API), highlighting the integration capabilities with software tools. In the following, an overview of the advantages and 
limitations of the introduced method is discussed. The proposed method offers several advantages. This study provided a systematic 
and efficient technique for finding the best design solution, considering constraints related to torsional irregularity, and leading to 
optimized RC frames that meet the requirements of torsional irregularity coefficients. The use of the ANN-PSO algorithm implemented 
in the MATLAB program and the finite element method conducted in ETABS software generated an efficient optimization method for 

Table 2 
The setting parameter of PSO.  

Parameter Value 

Number of particles in the swarm 30 
Individual learning factor 1.5 
Social learning factor 1.7 
Maximum number of iterations/times 100 
Initial weights 0.9 
Final weights 0.5 
Variation probability constant 3 
Optimization range of the regularization parameter 2− 8~28 

Optimization range of the kernel function parameter 2− 8~28  

Fig. 4. View of the frame model, a) 2D and b) 3D.  
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Fig. 5. ANN-PSO algorithm convergence trend.  

Table 3 
Initial and optimal torsion coefficients.  

Number of floors X - earthquake direction Y - earthquake direction 

Initial coefficients Optimal torsion coefficients Initial coefficients Optimal torsion coefficients 

1 1.08 1.03 1.30 1.20 
2 1.09 1.04 1.17 1.09 
3 1.09 1.05 1.13 1.08 
4 1.10 1.05 1.11 1.09 
5 1.11 1.05 1.10 1.08 
6 1.11 1.06 1.12 1.13  

Table 4 
The initial and optimal column sizes.  

Column number bc hc 

Initial size (mm) Optimal Size (mm) Initial size (mm) Optimal Size (mm) 

1 500 557 500 346 
2 500 472 500 387 
3 500 514 500 409 
4 500 563 500 401 
5 500 594 500 312 
6 500 502 500 382 
7 500 462 500 409 
8 500 549 500 345 
9 500 589 500 402 
10 500 573 500 415 
11 500 562 500 360 
12 500 591 500 350 
13 500 451 500 400 
14 500 494 500 394 
15 500 528 500 345 
16 500 592 500 340 
17 500 591 500 410 
18 500 575 500 360 
19 500 523 500 354 
20 500 457 500 400 
21 500 591 500 315 
22 500 594 500 305 
23 500 509 500 390 
24 500 498 500 350  
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economic design optimization of seismic reinforced concrete 3D structures. 
Stability analysis involves the evaluation of the structural response and behavior, which includes reducing inter-story displace-

ment, preventing torsional irregularities, and enhancing the seismic performance of the structures. Stability analysis is crucial to 
ensuring that the optimized design solutions satisfy the criteria of structural stability, safety, and performance under seismic loading 
conditions. It involves the assessment of various factors such as inter-story drift, torsional irregularity coefficients, and the overall 
structural response to external forces, specifically seismic forces. The proposed method aims to improve the seismic performance of the 
structures, reduce inter-story displacement, and enhance stability and safety under external forces such as earthquakes. 

The present study suggests an innovative method that involves modeling the RC frames using the finite element method and 
subjecting them to static and dynamic loads. Subsequently, the cross-sections of columns are optimized to restrict the torsional ir-
regularity coefficient of the structures to a certain limit. The study also considered the limitations and constraints associated with the 
design process, such as the minimum dimensions of columns allowed based on the ACI 318–2019 Building Code Requirements for 
structural concrete. Nevertheless, the potential limitations of optimization problems related to the convergence speed of the evolu-
tionary algorithm can be influenced by the complexity and large-scale RC structures. In large-scale structures, the optimization al-
gorithm may need more iterations to converge on an optimal solution. Moreover, fine-tuning of the internal parameters of PSO may be 
necessary to achieve optimal results. 

7. Conclusions 

The conclusion section summarizes the key findings of the study and their implications. In addition, this section provides rec-
ommendations for future studies or practical applications based on the research outcomes. Torsion behavior is critical to consider in 
irregular RC structures, as excessive torsional effects might result in structural failure. Torsional irregularity coefficients play a crucial 
role in reducing torsional damage caused by earthquakes and ensuring the safety of structures. It effectively addressed torsional ir-
regularities in reinforced concrete buildings. The purpose of this study is to investigate the torsional irregularities of irregular three- 
dimensional frame-reinforced concrete structures under static and dynamic loads and to eliminate the torsional irregularities by using 
the ANN-PSO algorithm implemented in the MATLAB program and the finite element method conducted via ETABS software for 
optimizing the RC structure. The availability of the ANN-PSO algorithm and MATLAB for optimal sizing of structures is demonstrated 
by connecting MATLAB and ETABS through an application programming interface (API). The ANN-PSO algorithm type is a robust and 
effective tool suitable for solving civil engineering problems, and the best solution for economic design optimization of seismic 
reinforced concrete 3D structures is determined using this algorithm. 

The results indicated that the ANN-PSO technique efficiently optimizes the dimensions of columns and achieves values of the 
torsional irregularity coefficients that are very close to the minimum. The study’s insights into the optimization problem, size opti-
mization, and numerical examples make significant contributions to the ongoing efforts to enhance the structural performance of 
structures under seismic forces. The findings demonstrated that the approach was highly efficient in optimizing the dimensions of 
columns to match the criteria for torsional inequality coefficients, thereby preventing any occurrence of torsional irregularities. The 
study also highlighted the use of the ANN-PSO algorithm for optimal design analysis of irregular frame structures. The results showed 
that the torsional irregularity coefficients did not exceed the limit values in the optimized solution, effectively eliminating torsional 
irregularities. The cross-sectional dimensions of columns play a crucial role in determining the structural behavior and load-carrying 
capacity of the RC frames. Optimizing these dimensions can lead to more efficient and cost-effective designs. The design constraints 
ensure that the dimensions of the columns in the irregular RC structures meet the necessary requirements for structural stability, safety, 
and process to ensure practical and feasible solutions. 

The present study proposes a novel method to improve the performance, efficiency, and safety of structural RC by facilitating the 
systematic exploration and optimization of design variables. This method allows designers to consider a wide range of design options 
to find the most efficient and effective solutions within the constraints of stability and safety criteria. The suggested method can be 

Fig. 6. Comparing the initial and best solutions of torsional irregularity coefficients.  
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employed to address complex design problems and find solutions that may not be easily achievable through manual design procedures, 
thereby leading to time and resource savings and cost-effectiveness in the design and Construction of RC frames. This method can 
improve the seismic performance of RC structures by optimizing design variables, such as the cross-sectional area of columns, while 
considering design constraints. 

For future studies, the suggested method in the present study can consider multiple objective functions for solving irregularity 
torsion. In addition, it may be necessary to evaluate the findings of the research through further investigations and testing to ensure the 
effectiveness and practicality of the proposed method in real-world applications. Moreover, it is interesting that the suggested method 
is conducted on different types of frames, such as steel or timber frames. It is worth mentioning that although the earlier studies and 
results obtained indicated the efficiency and robustness of the PSO algorithm for solving complex problems, it is useful to conduct 
comparative studies between the proposed method and other evolutionary algorithms to assess the performance and effectiveness of 
the ANN-PSO method for optimization of RC frames. 

In summary, the findings of the study have significant implications for the development of more efficient and reliable design and 
optimization approaches in structural engineering. This has the potential to enhance the safety and resilience of RC structures. 
Moreover, the successful application of the suggested method for seismic design optimization of irregular RC buildings highlights the 
importance of advanced computational approaches in improving structural stability and safety against external forces such as 
earthquakes. 
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involving fractional calculus, The European Physical Journal Special Topics 231 (10) (2022) 2059–2095, https://doi.org/10.1140/epjs/s11734-022-00455-3. 

[61] T. Liu, Z. Ren, C. Xiong, W. Peng, J. Wu, S. Huang, G. Liang, B. Sun, Optoacoustic classification of diabetes mellitus with the synthetic impacts via optimized 
neural networks, Heliyon 9 (10) (2023) e20796, https://doi.org/10.1016/j.heliyon.2023.e20796. 
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[76] G. Minafò, G. Camarda, An open-source GA framework for optimizing the seismic upgrading design of RC frames through BRBs, Eng. Struct. 251 (2022) 113508, 
https://doi.org/10.1016/j.engstruct.2021.113508. 

[77] M. Mangal, M. Li, V.J. Gan, J.C. Cheng, Automated clash-free optimization of steel reinforcement in RC frame structures using building information modeling 
and two-stage genetic algorithm, Autom. ConStruct. 126 (2021) 103676, https://doi.org/10.1016/j.autcon.2021.103676. 

[78] M.H. Gao, X. Xie, T. Huang, N. Zhang, Y. Wang, Glutaraldehyde-assisted crosslinking in regenerated cellulose films toward high dielectric and mechanical 
properties, Cellulose 29 (15) (2022) 8177–8194, https://doi.org/10.1007/s10570-022-04785-2. 

[79] A. Katkhoda, Optimization in the selection of structural systems for the design of reinforced concrete high-rise buildings in resisting seismic forces, Energy Proc. 
19 (2012) 269–275, https://doi.org/10.1016/j.egypro.2012.05.206. 
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