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Abstract

Background: An understanding of the factors driving the distribution of pathogens is useful in preventing disease. Often we
achieve this understanding at a local microhabitat scale; however the larger scale processes are often neglected. This can
result in misleading inferences about the distribution of the pathogen, inhibiting our ability to manage the disease. One
such disease is Buruli ulcer, an emerging neglected tropical disease afflicting many thousands in Africa, caused by the
environmental pathogen Mycobacterium ulcerans. Herein, we aim to describe the larger scale landscape process describing
the distribution of M. ulcerans.

Methodology: Following extensive sampling of the community of aquatic macroinvertebrates in Cameroon, we select the 5
dominant insect Orders, and conduct an ecological niche model to describe how the distribution of M. ulcerans positive
insects changes according to land cover and topography. We then explore the generalizability of the results by testing them
against an independent dataset collected in a second endemic region, French Guiana.

Principal Findings: We find that the distribution of the bacterium in Cameroon is accurately described by the land cover
and topography of the watershed, that there are notable seasonal differences in distribution, and that the Cameroon model
does not predict the distribution of M. ulcerans in French Guiana.

Conclusions/Significance: Future studies of M. ulcerans would benefit from consideration of local structure of the local
stream network in future sampling, and further work is needed on the reasons for notable differences in the distribution of
this species from one region to another. This work represents a first step in the identification of large-scale environmental
drivers of this species, for the purposes of disease risk mapping.
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Introduction

Knowledge of the spatial distribution of an environmentally

persistent pathogen is often key in creation of environmental

hazard maps for disease control. Yet, despite the importance of

this spatial information, only 4% of such pathogens have been

mapped [1]. The reason for this gap in our knowledge is practical.

It is often difficult to produce large maps of the distribution of

these microbial pathogens as they are difficult to detect in nature.

A solution to this is to describe the distribution of the pathogens

suitable habitat. For example, an environmentally persistent

pathogenic bacterium may have a certain pH range within which

it can survive, a specific range of microaerobic oxygen concen-

trations [2], and survive preferentially on certain algae [3]. In cases

where we have a suitable range of pH, a suitable range of oxygen,

and suitable algae, we expect to find the bacterium. Herein, this

suitable range of microhabitat is termed the ecological niche of the

species. Every species in nature, including vectors such as

mosquitoes, and pathogens such as Plasmodium protozoans, has

a unique ecological niche [4,5].

Knowledge of the distribution of suitable habitats would allow

us to predict the expected distribution of the pathogen. This

approach has been successfully applied to the vectors of diseases

such as malaria, plague and dengue [6,7,8], but it is rarely applied

to environmentally persistent pathogenic microbes. The range of

suitable habitat is, practically, much easier to describe for insect

vectors than for microbes. For example, the suitable habitat of

mosquitos is driven by factors such as rainfall, which is much easier

to describe on a large scale. To describe pH in the environment we

must visit each site and use a probe at each location. This quickly

becomes expensive and time consuming when we consider

multiple variables, or if we wish to describe the distribution of a

pathogen over large extents.

We hypothesised that these microhabitat variables could be

indirectly inferred from large scale macroecological patterns. The

distribution of swamp and forested environment, the shape and

structure of the landscape, should predict the distribution of these

microhabitats. For example, while the suitable habitat of a

bacterium may be driven by the suitable combination of pH,

oxygen, and algae, and other factors, the distribution of these

conditions is in turn driven by the landscape. For example, the pH

and oxygen content of water in swamps is lower, on average, than

of water in savannahs. We can use the landscape, which is more

easily described, as a proxy to describe the spatial distribution of

this suitable microhabitat. Though this approach is limited in

lacking a physiological understanding of direct influences on the

pathogen, it has the great benefit of inferring the potential

distribution of the pathogen, opening new opportunities to disease

control.

We undertook ecological niche modelling of Mycobacterium
ulcerans, an environmentally acquired pathogenic bacterium, and

causative agent of Buruli ulcer. The ecological niche refers to this

range of conditions within which a species can survive and

maintain a population. We infer that, if a species has a large

population, it presumably is able to maintain that population, and

is in a suitable environment. By understanding the environmental

parameters that describe population size, we can predict the

distribution of the pathogen. Maps of the distribution of pathogens

are often a key step in control of disease, producing environmental

hazard maps.

The pathogen of our study, Mycobacterium ulcerans, infects up

to 10,000 people per year in more than 30 countries around the

world [9,10]. Infection leads to the Buruli ulcer, an emerging

neglected tropical disease [10] which results in a necrotizing

infection of the skin and can lead to crippling deformity [9]. The

transmission route of M. ulcerans remains unknown, and though

several competing hypotheses exist [11,12] our work herein does

not address transmission, but focuses on the distribution of the

pathogen.

Identification of the landscape variants that indicate suitable

habitat for this particular pathogen has proven remarkably

difficult, despite decades of research (see [13] for a review).

Previous research on M. ulcerans has found several apparently

contradictory facts about the bacterium, making it difficult to

establish a generalised picture of its ecology. In 2007 the genome

of M. ulcerans was sequenced, and analysis revealed extensive

evidence for reductive evolution, with massive gene loss. M.
ulcerans evolved from M. marinum, and appears to have

undergone a bottleneck event in the process, losing many of the

genes M. marinum uses to sustain itself in free living environments,

apparently now favouring protected environments with low

sunlight [14]. This is suggestive of a highly specialised ecological

niche, implying that the bacterium cannot survive in a large range

of environmental conditions. Detection of the bacterium in the

environment is normally via PCR; M. ulcerans is very slow

growing and extremely difficult to culture from the wild [15], and

most attempts at culture result in M. ulcerans being overgrown by

other bacteria which are ubiquitous in the environment.

However, the implication that the microbe is a specialist has

been (apparently) contradicted by recent detection of the

bacterium in the environment. M. ulcerans DNA has been

detected in a bewildering variety of environmental samples,

including aquatic insects, biofilms, crustaceans, detritus, fish, frogs,

possums and various small mammals, soil, snails, water and worms

[3,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. This large

range of suitable conditions is odd, in light of the bacterium’s

apparent status as a specialist with a small niche.

The many different species that M. ulcerans infects in the local

community may become infected due to differences in their

feeding habits, position in the trophic web, or relative abundance

[13,30,31]. Herein, we use samples of the five dominant Orders of

the aquatic insect community, which have been tested for M.
ulcerans positivity rates, and correlate changes in M. ulcerans
positivity in these 5 Orders to changes in the environmental

conditions of land cover and topography. These 5 Orders may not

Author Summary

Many pathogens persist in the environment, and an
understanding of where they are can assist in disease
control, allowing us to identify areas of risk to local human
populations. Herein, we use general linear models to
describe the distribution of a particular environmental
pathogen, Mycobacterium ulcerans, describing the land-
scape conditions correlated with the presence of this
pathogen in local biota, and mapping the distribution of
these habitats in a region of Cameroon, Africa. Our
findings identify the importance of the watershed as a
factor determining the distribution of the bacterium,
where landscape conditions upstream of the sample site
can influence the abundance of the bacterium in down-
stream sites. We find that the bacterium has notable
seasonal changes in its distribution, between the wet and
dry seasons, which may have implications for human
health. We also discuss sensitivity of these models to
extrapolation, finding that they work well in the African
region and underperforming when extrapolated to anoth-
er region in South America.
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be the primary habitat of M. ulcerans in the wild, as the full biotic

extent of M. ulcerans distribution is still unknown, but they are

commonly found to be persistently infected and appear to be

important hosts [32]. Previous work has found that M. ulcerans
abundance does respond to water body type, being more

commonly detected in swamps (still lentic systems) than rivers

(flowing lotic systems) in Ghana [33,34]. The pathogen is

associated with lowland, flat, swampy areas in contact with

stagnant water [35], is known to have complex seasonal dynamics

[32], and appears to be present at low levels throughout the entire

local biotic community along the year [29]. The distribution of the

disease may also inform us on the distribution of the pathogen; the

distribution of Buruli ulcer is known to be more spatially restricted

than the distribution of M. ulcerans [36], and is known to respond

to low elevation, forested land cover, and previous rainfall [37,38],

which would suggest that perhaps these factors are also important

in the distribution of M. ulcerans. Taken together, these facts

suggested that changes in the biotic distribution of the pathogen

could be mapped using landscape variables. Often, sampling of

river systems results in the unexpected presence of M. ulcerans; if

factors at the larger watershed scale add substantial information on

the distribution of M. ulcerans a description of the upstream

region of the river may help to explain this unexpected presence.

We describe the condition of the landscape using land cover, such

as forest and savannah, and topography, such as elevation and

slope. These landscape scale factors are expected to indirectly

influence M. ulcerans abundance via their influence on the

microhabitat the bacterium inhabits, for example affecting the pH,

dissolved oxygen content, and composition of the aquatic insect

community, which are known to influence M. ulcerans distribu-

tion [12,29].

To address our questions we describe landscape variables

correlated to the presence of the bacterium in aquatic macroin-

vertebrates in Cameroon, Central Africa. We then test our model

against data collected in French Guiana to explore the general-

izability of our findings. This will contribute to an understanding

of the spatial distribution of this environmental pathogen, and

further our ability to control Buruli ulcer disease.

Materials and Methods

A model was constructed on the dataset from Akonolinga,

Cameroon, and predicted into French Guiana, South America.

This enabled us to describe the niche of M. ulcerans, and examine

how well these models transferred to other areas.

Study sites, sampling methodology and response
variable

The Cameroon dataset is a subset of that published in [29],

which comprises 16 sites in Akonolinga, sampled every month for

12 months (Figure 1). Identical methods were carried out by the

same investigators for all sites throughout the study. In brief, at

each site, 4 locations were chosen in areas of slow water flow and

among the dominant aquatic vegetation and at each location, 5

sweeps with a dip net within a surface of 1 m2 were done to sample

the aquatic community. Aquatic organisms were classified down to

the Family level whenever possible and stored separately in 70%

ethanol. Individuals belonging to the same taxonomic group were

pooled together for detection of M. ulcerans DNA by quantitative

PCR. Among these, the 5 most abundant Orders (Diptera,

Hemiptera, Coleoptera, Odonata and Ephemeroptera) were

consistently analysed for all sites and months. Pooled individuals

were all ground together and homogenized and DNA from tissue

homogenates was purified using QIAquick 96 PCR Purification

Kit (QIAGEN). Finally, amplification and detection of MU DNA

were performed through quantitative PCR by targeting the

ketoreductase B domain (KR) of the mycolactone polyketide

synthase and IS2404 sequence from MU genome. This resulted in

5 analyzed samples (each Order) per month, per site, which we use

to infer M.ulcerans presence or absence. Summary statistics are

described in Table 1. Sampling effort varied from month to

month, as is discussed in [29], however we have used a subset of

that data in order to gain the most consistent representation of the

biotic community possible.

A data set following the same methodology was independently

collected in French Guiana, South America [28]. DNA extraction

was carried out with the same two primer pairs and methodology

as above. In French Guiana eighteen sites were sampled twice

during the wet season, which lasts from December to July. The

entire biotic community was sampled, and for consistency the

same 5 taxonomic Orders as in Akonolinga (Table 2) were

compared.

Seasonal effects on M. ulcerans distribution
M. ulcerans has previously been found to respond to variables

that are influenced by rainfall [35,38]. To explore differences in

the seasonal distribution of the bacterium, the wet season months

and the dry season months were analysed separately. In

Cameroon wet season months are April, May, June, August,

September and October. The dry season is January, February,

March, July, November and December. For each site, the

proportion of positive samples at a site in a season was determined

by summing the number of positive samples in that season, then

dividing by the total number of samples sampled in that season

(which is 5 multiplied by the number of sampled months). This

resulted in two response variables, Ywet and Ydry, which we use to

describe the proportion of M. ulcerans positive samples in the 5

dominant insect Orders in the wet and dry seasons respectively.

This resulted in a general, standardised view of the mycobacte-

rium distribution in both the dry and wet seasons. The habitat

suitability is determined by the proportion of samples of the biotic

community that are M. ulcerans positive.

Land cover and topography
Land cover in Akonolinga was described using several multispec-

tral satellite images; SPOT 2.5 meter resolution images (references:

50833380811220923092V0 and 50833371012210937422V0), and

a Landsat image (reference L72186056_05620021107). The study

area was categorised into the following classes; Agriculture, Forest,

Flood plain, Road, Savannah, Swamp and Urban (Table S1).

Classification was conducted in the Object Orientated Image

Analysis software eCognition [39]. The resulting maps were

validated and corrected where needed following onsite visits in

November 2012. Topography was described using the Shuttle

Radar Topography Mission (SRTM) digital elevation model [40],

which has a spatial resolution of 90 meters. All topographical

variables were derived using the Spatial Analyst extension of the

software ArcMap 10.1 [41]. For each site we described the mean,

standard deviation, minimum, maximum and variety of elevation, in

meters above sea level, using SRTM (Table S1). From the SRTM

we calculated the mean, standard deviation, minimum, maximum

and variety of the topological slope, in degrees. Flow accumulation is

the accumulated number of upstream cells flowing into a point, and

ecologically represents the topographical potential for water to

accumulate. We derived the mean, standard deviation, maximum

and variety of the flow accumulation. We also calculated mean,

standard deviation, maximum depth, variety, and proportion of

buffer surface area covered by basins. Basins are depressions in the

Watersheds and M. ulcerans
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landscape where water is expected to accumulate and, potentially,

stagnate, and were detected using the Fill function in Spatial Analyst

extension in Arc Map. Stream order indicates the distance from the

source of the river, and is a simple index of the type of stream (1st

order being small streams, larger orders being big rivers). Proportion

of 1st to 8th order streams, defined by Strahler method [42], was

recorded in each buffer. Finally, wetness index is the topographic

potential for water to accumulate. It was derived from the flow

accumulation and the slope, according to the Equation 1, where WI

is the wetness index [43], FA is flow accumulation and S is the

topographic slope in degrees. We derived the mean, standard

deviation, maximum, and variety of wetness index values, and the

proportion of buffer surface area covered by wetness index values

which are positive (relatively wet areas) and negative (relatively dry

areas).

WI~ln
FA

tan(S)

� �
ð1Þ

Importance of local effects compared to regional effects
in M. ulcerans distribution

The topography and land cover of the sample sites were

described within two different buffers (Figure 2). These buffers

corresponded to local and regional conditions. The first buffer was

a 5 km radius circle around the sample site, which was chosen to

represent the local conditions. 5 km is, approximately, the flight

range of the 5 insect orders sampled [44,45,46,47]. The insects

should be able to move throughout this region, be exposed to M.
ulcerans, before being captured at the sample site. We describe the

land cover and topography within this 5 km buffer and correlate

the condition of this region to the proportion of M. ulcerans
positive pools in each season.

The second buffer was defined using the watershed of the

sample site (Figure 2). The watershed is the upstream catchment

area. In principle, all water within this region, and any detritus

floating in the water, will eventually flow through the sample site.

Watersheds can vary greatly in size, easily being several kilometres

long, and detritus from very distant locations can flow quite large

distances. M. ulcerans is known to attach to such detritus [24].

This watershed buffer is created using the Watershed tool in

ArcMap10.1, Spatial Analyst extension [42].

Principal component analysis
The 42 variables estimated to describe the landscape were

reduced to permit modelling. Principal component analysis (PCA)

was performed on the landscape variables centred at the mean

(ln(x)2ln(xmean)) to summarize the data in the watershed and the

5 km buffer. PCAs were performed with the PCA function in the

FactoMineR library in R [48]. This generated two PCAs; a PCA

of the 42 environmental variables in the watershed buffer, PCAws,

and a PCA of the 42 environmental variables in the 5 km buffer,

PCA5 km. In each PCA we examined the orthogonal axes that

explained 95% of the variance in the 42 topography and land

cover variables.

Firstly, 9 principal components explained 95% of the variance

in the watershed of the sample site (PCAws). The magnitude and

direction of each correlation is given in the supplementary

materials (Tables S1 and S2). We describe PCAws1 as ‘‘large

watersheds that drain flood plains’’, given its strongly positive

correlations to watershed surface area and floodplains; PCAws2 as

‘‘large watersheds that drain highland agriculture’’; PCAws3 as

‘‘large watersheds that drain lowland agriculture’’; PCAws4 as

‘‘small watersheds that drain swamp and forest at flat intermediate

elevations’’; PCAws5 as ‘‘small watersheds that drain highland

urban and savannah’’; PCAws6 as ‘‘small watersheds that drain

highland urban and forest’’; PCAws7 as ‘‘large watersheds that

Figure 1. Location of sample sites in Cameroon, as in [30]. Within Cameroon, Akonolinga is almost entirely rainforest. This region is dominated
by the Nyong river and has fewer highland areas. Red dots are sample sites in Akonolinga.
doi:10.1371/journal.pntd.0003298.g001
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drain lowland forest, savannah and swamp’’; PCAws8 as ‘‘small

watersheds that drain urban and agricultural environments in hilly

lowlands’’; and PCAws9 as ‘‘small watersheds that drain wet swamps

in areas that reach from low to high elevations’’ (Table S1).

Secondly, for the local 5 km circular buffer, 6 principal

components (PCA5 km) explained 95% of the variance in the data

as described in SM2. Translating these to ecologically meaningful

terms, we describe PCA5 km1 as representing ‘‘sites surrounded by

flat lowland areas with urban, agriculture and the flood plains of

large rivers’’; PCA5 km2 as representing ‘‘sites surrounded by

sloped highland areas with urban, agriculture and small rivers’’;

PCA5 km3 as representing ‘‘sites surrounded by sloped highland

areas with savannah and large swampy rivers’’; PCA5 km4 as

representing ‘‘sites surrounded by flat lowland areas with savannah

and small rivers’’; PCA5 km5 as representing ‘‘sites surrounded by

flat highlands with urban, agriculture and large rivers’’, and

PCA5 km6 as representing ‘‘sites surrounded by lowland hills, with

small rivers and many small basins, in unforested environment’’,

(Table S2).

Model fitting and evaluation
We allow model selection to choose which of these principal

components are most informative in the species distribution, Ywet

and Ydry. The dry season general linear models (GLMs) and wet

season GLMs were fitted separately with glmulti in the glmulti

library in R. Glmulti finds the best set of GLMs among all possible

combinations of explanatory variables; so for example all possible

Ydry,PCA5 km models were fitted, and each was evaluated with

the Akaike information criterion corrected for small sample sizes

(AICc). Low AICc scores indicate good performance and reduced

overfitting [49]. The best set of these binomial GLMs (within 2

AICc scores of the best model) are selected, and the model within

this range with the lowest sum of absolute residuals (best

performance) is selected as the final model (Figure S1).

The response variable changed seasonally, resulting in two

response variables, Ydry and Ywet. Along with the PCA5 km and

PCAws inputs this resulted in four models; Ydry,PCA5 km and

Ydry,PCAws in the dry season, and Ywet,PCA5 km and

Ywet,PCAws in the wet season. This reduces our variables by

retaining those that are important. Then, to compare the

importance of PCA5 km (local) and PCAws (regional watershed)

in the distribution of the response variable, M. ulcerans
abundance, the components retained in these models were

included in the final models, Ydry,PCA5 km+PCAws in the dry

season, and Ywet,PCA5 km+PCAws in the wet season. In this way,

by allowing glmulti to retain or drop these variables we can

compare the importance of the watershed and local 5 km area

variables in the distribution of M. ulcerans.
Potential effects of multicolinearity were explored but were deemed

minimal, as all pairwise Pearson correlation coefficient R values in the

principal components were below 0.75 (Tables S3 and S4).

In the initial screen of variables, Ydry,PCA5 km and Ydry,P-

CAws retained PCAws4, ‘‘small watersheds that drain swamp and

forest at flat intermediate elevations’’, PCAws9, ‘‘small watersheds

that drain wet swamps in areas that reach from low to high

elevations’’ and PCA5 km2, ‘‘sites surrounded by sloped highland

areas with urban, agriculture and small rivers’’. These were

included in the model of interest, Ydry,PCA5 km+PCAws.

For the wet season Ywet,PCA5 km and Ywet,PCAws retained

PCAws1, ‘‘large watersheds that drain flood plains’’, PCAws 5,

Table 2. M. ulcerans distribution at sample sites in French Guiana, South America.

Wet season

Site Code Latitude Longitude
Relative abundance of 5
Orders (%)

PCR positive samples of the 5 Orders,%
(positive/samples)

FG10 N4 44.170 W-52 19.618 58.62 44.12% (15/34)

FG11 N4 50.284 W-52 21.195 52.54 32.26% (10/31)

FG19 N5 17.773 W-53 03.085 62.50 10.00% (1/10)

FG2 N5 37.888 W-53 42.433 70.83 11.76% (6/51)

FG23 N5 21.724 W-53 2.0200 29.27 16.67% (2/12)

FG28 N5 36.328 W-53 49.660 56.60 20.00% (6/30)

FG34 N4 50.068 W-52 18.126 85.00 32.35% (11/34)

FG38 N5 23.646 W-52 59.521 73.74 13.70% (10/73)

FG41 N5 25.725 W-53 05.326 41.07 8.70% (2/23)

FG43 N5 22.632 W-52 57.232 75.47 2.50% (1/40)

FG44 N4 20.052 W-52 09.148 25.42 0.00% (0/15)

FG45 N4 18.025 W-52 07.397 61.95 2.86% (2/70)

FG46 N5 02.121 W-52 30.989 74.24 2.04% (1/49)

FG47 N4 55.744 W-52 24.229 65.00 0.00% (0/26)

FG48 N4 51.616 W-52 16.518 16.67 0.00% (0/1)

FG49 N5 39.996 W-53 46.794 36.54 0.00% (0/19)

FG53 N5 36.136 W-53 50.182 67.86 0.00% (0/57)

FG7 N4 51.648 W-52 15.405 29.41 0.00% (0/10)

18 sites were sampled in the wet season. The dominant members of the aquatic biota were Diptera, Hemiptera, Coleoptera, Odonata and Ephemeroptera, as in
Akonolinga. These made up the majority of the community, the percentage of the biotic sampled community composed of these five groups is reported as Relative
abundance of the 5 Orders. These communities were normally positive of M. ulcerans, the percentage of positive samples (number of positive samples/total samples for
the 5 Orders from that site in that season) describes the PCR positive samples of the 5 Orders. This table is a summary of a subset of the data presented in [28].
doi:10.1371/journal.pntd.0003298.t002
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‘‘small watersheds that drain highland urban and savannah’’,

PCAws 6, ‘‘small watersheds that drain highland urban and

forest’’, PCAws 8, ‘‘small watersheds that drain urban and

agricultural environments in hilly lowlands’’, PCA5 km2, ‘‘sites

surrounded by sloped highland areas with urban, agriculture and

small rivers’’ and PCA5 km4, ‘‘sites surrounded by flat lowland

areas with savannah and small rivers’’, which were included in

Ywet,PCA5 km+PCAws.

Predicting the spatial distribution of suitable habitat for
M. ulcerans in the model training region, Akonolinga

We interpolate the Akonolinga model within the region of

Akonolinga to predict the distribution of suitable habitat, the

reservoir, of M. ulcerans. To achieve this, points where streams

(defined using STRM) flow under or across roads (defined using

satellite images) were selected. These were termed ‘pour points’ in

this article. Selection of the point where streams cross roads was

based on the hypothesis that these environments, where contact

between humans and the aquatic environment will be high, may

be important in infection. This does not mean that infection does

not occur in other locations, nor do we speculate on the

importance of relative routes of transmission. This will not

characterise all the environmental reservoir of the bacterium,

but will describe an important part of it. The topography and land

cover of the watershed and 5 km buffer of these pour points was

characterised, transformed into PCA5 km and PCAws format, and

the GLM was predicted. As a summary to describe this

distribution, we use Morans Index of spatial autocorrelation,

which describes the extent to which the distribution is random,

and is here used to describe the distribution of suitable sites. This is

implemented using the tool Spatial Autocorrelation Global

Moran’s I in ArcMap10.1 [41].

Predicting the spatial distribution of suitable habitat for
M. ulcerans in a new region, French Guiana

We extrapolate the Akonolinga wet season model to French

Guiana, to understand how the suitable habitat in one region is

similar to that in another. For comparability, the wet season

model, constructed in Cameroon, was used to predict the positive

sites among the 18 sampled sites in French Guiana. Values of

PCA5 km and PCAws in French Guiana were generated using the

ind.sup option in the PCA function. The Akonolinga wet season

model was then predicted into French Guiana using the land cover

data provided by the French Ministère de l’Écologie, du
Développement Durable et de l’Énergie [50], and topography

derived from SRTM.

As discussed above, the choice of error structure is important in

the performance of a GLM. We aim to describe the distribution of

the bacterium, so preference is given to the model with the lowest

residual values in the model, which in this case is Gaussian rather

than Binomial error structure. Residuals were much lower in a

Gaussian model, as shown in Figures S2 and S3 (see the observed

response versus predicted response for Gaussian and Binomial

models and QQ plots for the Gaussian and Binomial models,

respectively). This difference is an order of magnitude. This was a

practical decision – using Gaussian models in this case was based

entirely on the desire to clearly predict where this pathogenic

bacterium is more likely to occur, in such a case errors of residuals

have a greater cost.

The wet and dry season watershed Gaussian models were

predicted on the pour point data using the predict.glm function in

R. The model predictions of habitat suitability at these pour points

were then interpolated using Inverse Distance Weighting in the

IDW tool of ArcMap 10 [41].

Results

Relative importance of local and regional effects on the
distribution of M. ulcerans in wet season

The final fitted wet season Binomial logit GLM, after stepwise

AICc selection, was

Ywet*1zPCAws9zPCA5 km2

The final GLM suggested that both local and regional effects are

substantially correlated to M. ulcerans distribution. Regional

effects were represented by PCAws9, ‘‘small watersheds that drain

wet swamps in areas that reach from low to high elevations’’, and

was negatively correlated to M. ulcerans abundance (correlation

coefficient 20.37, p = 0.007). This means we expect less M.
ulcerans in small watersheds that drain swamps near highlands.

The second part of the above equation corresponds to local effects;

PCA5 km2 represents ‘‘sites surrounded by sloped highland areas

with urban, agriculture and small rivers’’. This was also negatively

correlated to M. ulcerans abundance (correlation coefficient 2

0.16, p = 0.00214), so we expect less M. ulcerans when the area

around the sample site is highland areas with urban and

agricultural areas.

The spatial distribution of M. ulcerans suitable habitat in the

wet season predicted at the pour points was non-random, based on

Moran’s I spatial autocorrelation (Moran’s Index: 0.21, z-score:

9.1, p,0.00001), positive sites tend to cluster together (Figure 3).

Relative importance of local and regional effects on the
distribution of M. ulcerans in dry season

The final fitted dry season binomial logit GLM, after stepwise

AICc selection, is

Ydry*1zPCAws1zPCA5 km2zPCA5 km4

The final models on the dry season found that both regional and

local effects were substantially correlated to presence of M.
ulcerans. Regional effects were represented by PCAws1, ‘‘large

watersheds that drain flood plains’’, which was marginally

negatively correlated to M. ulcerans abundance (correlation

coefficient 20.26, p = 0.05210). PCA5 km2, ‘‘sites surrounded by

areas with urban, agriculture and small rivers’’ was positively

correlated to M. ulcerans abundance (correlation coefficient 0.09,

p = 0.18709) though the p value suggests this is not significant, and

finally PCA5 km4, ‘‘sites surrounded by areas with savannah and

small rivers’’, was positively correlated to M. ulcerans abundance,

(correlation coefficient 0.38, p = 0.007).

The spatial distribution of M. ulcerans suitable habitat in the

dry season predicted at the pour points is non-random, based on

Figure 2. An example of the two buffer types used in this examination, sites A4 and A5 in Akonolinga. This is in the north of
Akonolinga, near the village of Emvong. The upper panel is a 5 km buffer around the sites, within this region we describe the topography and land
cover, and its association with M. ulcerans abundance. We compare this to the watershed buffer (lower panel). The watershed is the drainage area for
each site, in principle all water that falls within this region will eventually pass through the sample site.
doi:10.1371/journal.pntd.0003298.g002
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Moran’s I spatial autocorrelation (Moran’s Index: 0.33, z-score:

14.32, p,0.00001) positive sites tend to cluster together (Figure 3).

Model performance when interpolated in Akonolinga
Spatial autocorrelation of model residuals can be an issue in GLMs,

but this was explored, and it was not the case here. Model residuals

were not significantly spatially autocorrelated in the wet season

(Moran’s Index: 20.285386, z-score: 21.045844, p = 0.295633) nor

in the dry season (Moran’s Index: 0.071225, z-score: 0.655435,

p = 0.512187).

The AICc of the final dry season Binomial model was 49.6, the

absolute sum of the residuals was 11.03. The AICc of the final wet

season Binomial model was 67.8, the absolute sum of the residuals

was 11.95.

We note that Gaussian models had significantly better

performance. The AICc of the final dry season Gaussian model

Figure 3. Spatial distribution of habitat suitable for M. ulcerans in Akonolinga, Cameroon. Units of habitat suitability are the proportion of
qPCR pools predicted to be positive, based on the field work of [30]. Negative values are a result of the normal distribution of the residuals (Figures S4
and S5). The Gaussian wet and dry season models, based on the original 16 sites, are predicted into each of the pour points (where a stream crosses a
road) in the region (top row), resulting in the predicted habitat suitability at each point. The pour points are interpolated (bottom row) using IDW
fixed distance 0.05 decimal degrees interpolation (ArcMap10.1) resulting in the first map of spatial distribution of M. ulcerans encounter risk.
doi:10.1371/journal.pntd.0003298.g003
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was 239.8, the absolute sum of the residuals was 0.53. The AICc

of the final wet season Gaussian model was 265.5, the absolute

sum of the residuals was 0.24. Model performance is presented in

Figure S2, model residuals were normally distributed (Figure S3).

Model performance when extrapolated in French Guiana
The Akonolinga wet season model was predicted into 18 sample

sites in French Guiana (Figure 4, 2nd row). The model predicted

sites to be positive or negative, and the results of qPCR

corroborated these predictions (Figure 4). Performance of the

Binomial model was notably poor, all sites were predicted

negative. In contrast, performance of the Gaussian model was

better, but accuracy was still poor at 0.39 (Table S5). Sensitivity

and negative predictive values are high, indicating that the

predictions of presence of the bacterium are likely to be true,

specificity and positive predictive values are low; indicating

predictions of absence of the bacterium are likely to be incorrect.

This is a result of a bias towards Type II errors (false negatives) in

the Gaussian model. Overall, the model predicts M. ulcerans in

Akonolinga, but is sensitive to extrapolation. Extrapolation tends

to result in false negative predictions of presence.

Discussion

Here, we have demonstrated that in addition to local variables

around the sample site, the distribution of M. ulcerans correlates to

regional variables, i.e. the topography and land cover of the

watershed of the sample site. This spatial distribution of suitable

habitat was described, allowing the production of environmental

hazard maps for the distribution of the pathogen. M. ulcerans
presence in the wet season correlates with lowland areas surrounded

by few agricultural or urban areas, particularly if the sample site has

a large watershed. We expect more M. ulcerans in the dry season in

sites surrounded by urban and agricultural areas, with many small

streams, particularly if the sample site has a small watershed.

Many of the findings are in accord with what little we already

understand about this bacterium. M. ulcerans has been previously

associated with flat wetland areas [9,35]. A similar association with

Buruli ulcer has been reported [51], which found that high standard

deviation of the wetness index was a risk factor for Buruli ulcer. These

three variables are normally strongly correlated to each other and

ecologically similar entities. In this study these are negatively correlated

to PCAws9, here termed ‘‘small watersheds that drain wet swamps in

areas that reach from low to high elevations’’ which negatively

correlated to M. ulcerans abundance: these studies appear to be

describing the same ecological entity, but with different variables.

Our study was limited in certain regards, as we focused it on the

prevalence of M. ulcerans in the biotic community, and on how

topography and land cover in the region could influence that

prevalence. We do not consider abiotic conditions testing positive

for M. ulcerans. Potentially the abiotic distribution may respond

differently to these variables, future work will aim to explore this.

However, given that M. ulcerans is commonly detected in the

biotic environment and appears to be at lower prevalence in the

abiotic environment, we believe our results are still applicable to

an understanding of M. ulcerans distribution. We had a relatively

low positivity rate (Table 1). A potential limitation is that low

positivity can bias a model towards false negatives, while this is

possible we are unable to test this further with our current data.

The Akonolinga wet season model was extrapolated into French

Guiana, where sampling was in the wet season. Despite good

performance in Akonolinga, the model performed poorly in French

Guiana, under-predicting the bacterium’s distribution (Figure 4).

There are a number of points to be drawn from this. First, there were

differences in sampling effort between the two sites, as the Akonolinga

sampling regime consisted of 12 time points in the year, while the

French Guiana regime consisted of 2 time points. This would be

consistent with the idea that the bacterium is transiently present in

different regions, and under-prediction would be expected in this

case. Secondly, a potential complication results from differences in

the ability of the SRTM dataset to delineate watersheds due to dense

rainforest canopies in French Guiana [52]. The shape of a watershed

is sensitive to the quality of the elevation data used, errors in the

digital elevation model, or man-made drainage structures, can have

effects not captured by this model. Finally, we cannot rule out that the

differences are a result of differences in M. ulcerans. We used qPCR

to detect M. ulcerans, however the species is known to have multiple

ecovars [53,54] and subspecies, distributed differently throughout the

globe. If it is the case that we are predicting the ecological niche of one

Akonolinga M. ulcerans species into French Guiana, and testing it

against a separate French Guiana species, one would expect the

model to under-predict if the French Guiana subspecies occupies a

larger ecological niche.

Regardless of error structure, selection of both types of models

(Gaussian and Binomial) retained watersheds as important

variables. These findings will impact future research on Buruli

ulcer and M. ulcerans; future sampling regimes would benefit by

consideration of the local hydrology before beginning sampling,

and selecting sample sites along these lines. We also postulate the

importance of watersheds as a barrier to dispersal for the

bacterium. A recent key study found a strong relationship between

M. ulcerans population structure and the greater West African

hydrological watersheds [53], with populations being bound to

watersheds. These are the drainage areas of large rivers such as the

Nyong, Mbam and Ouémé rivers, a much larger scale than our

study. However, given our results herein, it seems the bacteria may

drift downstream. This is inferred by the difference in the effect of

watershed size from dry to wet seasons.

This is consistent with the idea of a ‘flushing’ effect of rainfall in

the wet season, carrying bacteria downstream [38], which will

influence their genetic population structure. This has notable

consequences for the epidemiology of Buruli ulcer. If the

watersheds are barriers to movement for the bacteria it implies

that M. ulcerans may be common in the environment, but in

certain areas hydrological conditions facilitate concentration of the

bacterium, as is the case with anthrax [55].

Conclusion
The distribution of environmental pathogens needs to be

understood to facilitate control. Commonly, local effects in the

microhabitats are considered to describe the ecological niche of a

pathogen. However our study demonstrates that regional effects are

important factors to be considered. Future research on the M.
ulcerans would benefit by considering the watershed of potential

sample sites, particularly as such data is often quite simple to

acquire. The shape, size, and land cover of the watershed correlates

with changes in the distribution of M. ulcerans, and useful

information is lost if watersheds are ignored. The distribution of

Figure 4. Model validation in French Guiana. Sample sites were as in [28]. A wet season Gaussian niche model based on data collected in
Cameroon was predicted into French Guiana (3rd row, left hand side). The model under-predicted, M. ulcerans was present in more sites than
expected (bottom row, model residuals). A similar Binomial model predicted all sites to be negative.
doi:10.1371/journal.pntd.0003298.g004
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swamp in a watershed was found to be an important factor in the

suitability of the site for M. ulcerans; though a sample point in the

field may be at a location normally considered unsuitable for the

bacteria (e.g. a small swift lentic stream), the area upstream may

contain an abundance of lotic swamps and be quite suitable for the

bacterium, which may be ‘washed out’ downstream towards the

sample site. This is an example of the useful information we gain by

placing pathogens in an environmental context, rather than

regarding them solely in an epidemiological sense.

Supporting Information

Figure S1 GLMulti output, for binomial and Gaussian models.

Sum of absolute model residuals are plotted against AICc. Within

the region of 2 AICc scores of the best model (vertical lines) we

select the model with the lowest residuals (highlighted in red).

(DOC)

Figure S2 Observed against predicted values for each model.

Note that Gaussian models have a much better fit.

(DOC)

Figure S3 Quantile-quantile plots of normality. The Gaussian

and Binomial are both similarly normally distributed, though the

Binomial displays a larger variance of residuals.

(DOC)

Table S1 Results of principle component analysis for topograph-

ical and land cover variables in a watershed buffer. 95% of the

variance in the data was described with 9 components, the eigenvalue

of each component is given at the bottom of the table. Each

component correlates differently to different variables, red highlights

negative correlations, blue highlights positive correlations. PCAws1

describes large watersheds that drain flood plains and swamps, with

few urban and agricultural areas. These are high elevation areas with

variable slopes. PCAws2 describes large watersheds that drain

agriculture at flat highland areas. PCAws3 describes large rivers that

drain urban and agriculture areas at flat lowlands with, with little

forest. PCAws4 describes small rivers, with small watersheds that drain

forest and swamp areas, without urban areas. These are at

intermediate elevations, with flat areas. PCAws5 describes small

rivers that drain urban and savannah areas, predominantly in higher

elevation flat lands. PCAws6 corresponds to small low order streams

that drain urban and forest (not agriculture) in high elevation slopes.

PCAws7 is larger watersheds that drain forest, savannah flood plain

and swamp, in areas with flat, wet, lowlands. PCAws8 represents small

watersheds that drain urban & agriculture, flood plain and savannah.

These areas are wet lowlands with lots of small hills. PCAws9

represents small watersheds that drain wet swamps in areas that reach

from low to high elevations.

(DOC)

Table S2 Results of principle component analysis for topo-

graphical and land cover variables in a 5 km buffer around the

sample site. 95% of the variance in the data was described with 6

components. Each component correlates differently to different

variables, red highlights negative highlights, blue indicates positive

correlations. Surface area is constant, at p52 = 79 km2. PCA5 km1

represents sites surrounded by flat lowland areas and urban,

agriculture and the flood plains of large rivers. PCA5 km2

represents sites surrounded by sloped highland areas and urban

and agriculture, and small rivers. PCA5 km3 represents sites

surrounded by sloped highland areas with savannah, and large

swampy rivers. PCA5 km4 represents sites surrounded by flat

lowland areas with savannah and small rivers. PCA5 km5

represents sites surrounded by flat highlands with urban and

agriculture, and large rivers. PCA5 km6 represents sites surrounded

by lowland hills, with small rivers and many small basins, in

unforested environment.

(DOC)

Table S3 Pearson product R correlation coefficients in the wet

season model. Stepwise selection selected 3 components, none of

which were correlated.

(DOC)

Table S4 Pearson product R correlation coefficients in the dry

season model. Stepwise selection selected 6 components, none of

which were correlated.

(DOC)

Table S5 Contingency table describing model performance of

niche models constructed in Cameroon and predicted into French

Guiana. The rows ‘Prediction’ are model predictions, ‘Test’ are

the results from qPCR of the sites in French Guiana. Values in

blue are true positives and true negatives; values in red are false

positives and false negatives.

(DOC)
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30. Marsollier L, Sévérin T, Aubry J, Merritt RW, Saint André JP, et al. (2004).
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