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Abstract: Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Au-
tophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally
occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be
involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities.
Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour
activities. The current study aims to examine the protective action of C3G against hepatocellular
carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its
related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous
lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats
were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function
tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression
were examined. Liver sections were examined by histological and immunohistochemical approaches.
The current study’s findings indicated that C3G administration protects against the negative effects
of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a
potential prophylactic agent against HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is considered a major cause of death in cancer suf-
fering patients globally. Although there have been massive advances in diagnosis and
treatment techniques in the last few years, the incidence and mortality of HCC are still
rising [1]. Many factors have been attributed to HCC, with hepatitis C and B at the top of
the list [2]. In Egypt, a country with a high prevalence of hepatitis C virus, the occurrence
of HCC increased from 1.4 to 6.2 per 100,000 individuals in the last 30 years [3]. Resistance
to chemotherapy is a crucial aspect to take into consideration while treating HCC cases.
The principal resistance mechanisms against traditional anti-tumour medicines included
several factors, such as decreased drug absorption, increased efflux rate, and altering cell
survival signalling, as well as suppression of the apoptotic machinery [4].

Since ancient history, Morus alba L. fruits (mulberry) have been recognised as a health-
ful food and commonly consumed in Asian and European countries, such as Korea, China,
Serbia, and Japan. Recent studies have suggested that cyanidin-3-glucoside (C3G), an
anthocyanin flavonoid isolated from mulberry fruit, has been demonstrated to significantly
reduce oxidative stress [5], enhance the lipid profile [6], and have ameliorative impacts
in animal models of different disorders [7]. Standardised anthocyanins contain a very
large amount of polyphenols and exhibit comparable benefits [8]. Current research has
established the critical role of anthocyanins as a dietary antioxidant in preventing oxidative
damage, inhibiting cancer cell proliferation, and modulating cell development in vitro [9].
However, the molecular mechanisms underlying mulberry cyanidin-3-glucoside’s anti-
cancer effects remain controversial.

In cancer research, C3G was studied against several cancer models. It inhibits ethanol-
induced invasion of breast cancer [10] and migration of lung cancer [11], induces apoptosis,
and suppresses tumour growth [12]. Moreover, C3G can protect against ultraviolet-induced
injury through up-regulating autophagy [13].

Autophagy is a vital process done regularly by normal cells through lysosomal degra-
dation to maintain cellular homeostasis under basal and stressed states [14]. It runs on
consecutive stages from initiation to elongation and finally the maturation stage, where
several cellular components are incorporated in this process [15]. Regarding tumour pro-
gression, specifically for HCC, autophagy was largely examined for its role in fighting
malignant cells by promoting apoptosis [16]. Understandably, autophagy deficiency in-
creases the damaged mitochondria, resulting in oxidative stress that suppresses DNA repair
and increases the mutation rate, the key factor for tumorigenesis [17].

Circular RNAs (circRNAs) are a specialised class of RNA due to the high stability
of their covalently closed structures [18]. These non-coding RNA molecules have been
studied for their diverse roles in several cellular processes [19]. Micro RNAs (miRNAs)
are short non-coding RNA that have a vital role in the post-transcriptional regulation of
gene expression [20]. About twenty years ago, the connection between cancer and miRNA
was first discovered [21], and since then, miRNA molecules have been extensively studied
under cancer development and diagnosis. Connections between circRNA and miRNA
were investigated as the following: circRNAs can act as a microRNA sponge resulting in
a regulation of specific gene expression. Consequently, tumour inhibition or activation
would be anticipated.

In this study, we aim to examine the potential role of C3G as a prophylactic or pro-
tective agent against HCC through an in vivo study. The anti-tumour action of C3G was
investigated by employing the liver function tests, immunopathological procedures, and es-
timation of a novel RNA axis that was selected to assess the improvement of the autophagy
process following C3G administration.
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2. Materials and Methods
2.1. Chemicals

Diethylnitrosamine (DEN) with a purity ≥99.0% and acetamidofluorene (2-AAF)
with a purity ≥ 98% were obtained from Sigma Aldrich (St. Louis, MO, USA). C3G was
purchased from Earth Natural Supplements-Colorado Spring-USA.

2.2. Experimental Animals

Forty male Wistar rats weighing 200–250 g were selected for the current study. The
rats were housed under conditions of 22–24 ◦C, 12 h light–dark cycles, and fed on standard
rat chow and tap water. A week adaptation period was provided before the start of the
experimental procedures. The weight of each rat was measured to calculate the exact
dosage of DEN and 2-AAF.

2.3. Experimental Protocol

The overall time of the experiment was 112 days (16 weeks). Rats were divided into
five groups. Group 1 (six rats), which was injected with [0.9% (w/v) NaCl intraperitoneally;
DEN vehicle], represented the normal control group. The remaining four groups were
induced with precancerous lesions (PCL) by intraperitoneal injection (i.p.) of DEN + 2AAF.
Regarding DEN, it was injected as 100 mg/kg once weekly for three consecutive weeks
followed by a 1-week rest period. Following that, 2AAF was injected, i.p. with a dose of
300 mg/kg for one time. Group 2 was the PCL group (10 rats); rats orally received NaCl
which was the vehicle for C3G, and was administered with the same protocol as C3G.
Groups 3, 4, and 5 (T1, T2, and T3, respectively; 8 rats/group) were treated orally from the
first day of the experiment with C3G four times weekly for 112 days (16 weeks) in doses
10 mg/kg, 15 mg/kg, and 20 mg/kg, respectively [22].

2.4. Collection of Blood and Liver Tissue

In order to collect the blood and liver tissue for analysis, rats were anesthetised with
urethane (1.2 g/kg; i.p.) dissolved in distilled water, and retro-orbital blood samples
were taken. Rats were sacrificed to collect the liver samples for histopathological and
immunohistochemical studies. A portion of the liver was immediately fixed in buffered
formalin (10% v/v) for 24 h for this purpose, and the other portion was kept at −80 ◦C for
RNA extraction. Blood samples were centrifuged at 7000 rpm for 15 min to collect serum
samples for liver function tests and stored at −20 ◦C.

2.5. Alfa Fetoprotein and Liver Function Tests

Alfa fetoprotein (AFP) was analysed by ELISA kit (AbCam cat no [ab108838], Cam-
bridge, MA, USA). Alanine transaminase (ALT), albumin, total bilirubin (T bilirubin), and
direct bilirubin (D bilirubin) were analysed with Beckman Coulter AU analysers (Krarmer
Blvd, Brea, CA, USA).

2.6. In Silico Selection of Targeted circRNA-miRNA and Liver RNA Axis Analysis
through RT-PCR

Human autophagy gene ATG16L1 was essential for the cellular autophagy process [23].
The circRNA-miRNA network related to ATG16L1 expression was identified from the circ2
trait database [24]. Pathway enrichment analysis was performed to ensure that the selected
miRNA is linked to carcinogenesis via the Diana Tools database [25].

The extraction of liver tissue total RNA was performed with a Qiagen miRNeasy Mini
Kit, and the concentration of the extracted RNA was detected by measuring absorbance
using an Ultraspec 1000 (UV/visible spectrophotometer) where the ratio A260/A280
was detected. It was found to be from 1.8 to 2. Afterwards, reverse transcription to
complementary DNA (cDNA) was performed with miScript II RT Kit and oligo-dT primers.
RT reactions were carried out at 37 ◦C for an hour, then inactivated at 95 ◦C for 5 min. The
reactions were adjusted to the volume of 10 µL and consisted of 2 µL 5×miScript Hiflex
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buffer, 1 µL 10× miScript nucleic mix, 1 µL RNase-free water, one µL miScript reverse
transcriptase mix, and 5 µL RNA (70 µg/mL).

Quantitative PCR was performed with the Hs_miR-106b_1 miScript primer assay
(cat no: 218300, ID: MS00003402) and the miScript SYBR Green PCR Kit, cat no: 218073;
(Qiagen, Hilden, Germany). The reaction consisted of 10 µL; 5 µL miScript SYBR Green
PCR master mix, 1 µL 10× miScript primer assay, 1 µL 10× miScript Universal primer,
2.5 µL RNase-free water, and 0.5 µL cDNA. Gene expression was normalised to the U6 gene,
using the Hs_RNU6-2_11 miScript Primer Assay. The CircInteractome database was used
to obtain the junction sequence of the targeted circRNA [26], and it was amplified with a
custom design primer assay obtained from the primer-blast database [27]. ATG16L1 mRNA
expression was measured with a QuantiTect Primer Assay and QuantiTect SYBR Green
PCR Kit. QT-PCR reactions were carried out to the final volume of 10 µL, the volumes of
added components were 5 µL, 0.5 µL, 0.5 µL, 3.5 µL, and 0.5 µL of QuantiTect SYBR Green
PCR master mix, 10× primer A, 10× primer B, RNase-free water, and cDNA, respectively.
Gene expression was normalised to the ACTB gene. RT- PCR was run with the cycling
conditions of 95 ◦C for 15 min, 40 cycles of 94 ◦C for 15 s, 55 ◦C for 30 s, and 70 ◦C for 30 s.
The comparative cycle threshold (∆Ct) method was applied to estimate miRNA expression
where the mean Ct values were detected for the samples, then Ct values of the endogenous
control were subtracted from Ct values of the target miRNA to obtain the ∆Ct value. The
standard 2−∆∆Ct method was applied to assess the relative expression of miRNA [28]. Data
are presented as fold change in competing endogenous RNAs (ceRNA) expression [29].

2.7. Histopathological and Immunohistochemical Studies

After fixation, liver slices (3–4 mm) were dehydrated and embedded in paraffin
blocks. At least four cross-sections (5-µm thick) were taken from each and stained with
hematoxylin and eosin (Hx & E). Microphotographs were taken with an Olympus BX50
microscope. For immunohistochemistry, tissues were dewaxed with xylene and hydrated by
a graded ethanol series. Sections were incubated with 3% (v/v) H2O2 for 15 min to suppress
endogenous peroxidase activity. Following that, the sections were gently washed with tap
water, then rinsed with PBS (pH 7.3) and incubated with glutathione S-transferase P (GST-P)
antibodies (0.5–1 µg/mg) overnight at 4 ◦C. Sections were rinsed with PBS and incubated
with rabbit polyclonal antibody against GST-P diluted 1/250 overnight at 4 ◦C [30]. Then
the sections were incubated with biotinylated 2ryAb for 30 min. GST-P was purchased
from Abcam (San Francisco, CA, USA). The peroxidase activity was developed with
3,3′-Diaminobenzidine (DAB) solution. The protein of interest was targeted by an antibody
that reacts with peroxidase in the presence of hydrogen peroxide; DAB is converted to
its oxidised form, forming a brown precipitate. Counterstaining was performed with
hematoxylin. All rats’ liver tissues in each group were examined by light microscope in
five random fields.

2.8. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Differences in the relative
expression of circRNA associated ceRNA were analysed by the one-way analysis of variance
test (ANOVA). A p-value < 0.05 was considered statistically significant. Data were processed
using the SPSS 20.0 software package.

3. Results

The death rate in the PCL group was 40%, while in the C3G treated group, it was 25%,
25%, and 12.5% in T1, T2, T3, respectively, with a 0% death rate in the normal control group.

3.1. AFP Measurement and Liver Function Test Results

Generally, the administration of C3G protects against the deterioration of the liver
function tests. Serum ALT, T bilirubin, and D bilirubin showed a significant increase in the
PCL group compared to the normal control group. It decreased significantly in rats treated
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with C3G in a dose-dependent manner compared to the PCL group (Table 1). Furthermore,
serum albumin, significantly decreased by DEN + 2AAF injection compared to the normal
control group, exhibited a significant increase in groups treated with C3G compared to the
PCL group (Table 1). AFP level was increased significantly in the PCL group compared
to the healthy normal control group. In contrast, groups treated with C3G showed a
significant decrease in AFP levels compared to the same PCL group (Table 1).

Table 1. Liver functions and alfa fetoprotein (AFP)among the investigated groups of rats.

Groups ALT (U/L) Albumin (g/dL) T Bilirubin (mg/dL) D Bilirubin (mg/dL) AFP (ng/mL)

Normal control 34 ± 2.52 3.67 ± 0.37 1.2 ± 0.11 0.66 ± 0.03 61.33 ± 13.93
PCL 224.1 ± 27.33 a 1.76 ± 0.03 a 3.43 ± 0.12 a 2.83 ± 0.14 a 2135.16 ± 588.08 a

T1 107.5 ± 9.62 b 2.7 ± 0.07 b 2.35 ± 0.13 b 1.60 ± 0.11 b 266.21 ± 42.80 b

T2 65.5 ± 5.4 b c 2.81 ± 0.08 b 1.72 ± 0.07 b,c 1.20 ± 0.23 b 160.16 ± 18.01 b

T3 45.83 ± 1.66 b,c 3.11 ± 0.15 b 1.3 ± 0.09 b,c 0.77 ± 0.06 b,c 95.83 ± 11.36 b

ALT, Alanine aminotransferase; T bilirubin, total bilirubin; D bilirubin, direct bilirubin; AFP, Alpha-fetoprotein;
PCL, precancerous lesion group; T1, group treated with 10 mg/kg C3G; T2, group treated with 15 mg/kg C3G;
and T3, group treated with 20 mg/kg C3G. Data were expressed as mean ± SD. The number of rats equals six for
each group. a Significantly different from the normal control group, b Significantly different from the PCL group,
c Significantly different from the T1 group. Specimen, serum.

3.2. Effect of Cyanidin-3-Glucoside on the Expression of
(hsa_circ_0001345/miRNA106b/ATG16L1) Axis

The in silico analysis predicted ATG16L1 mRNA as a target of miRNA-106b through the
Diana database analysis. Moreover, circRNA0001345/miRNA106b/ATG16L1 was estimated
to be the main RNA axis for assessing C3G action on HCC. CircRNA0001345 was amplified
with a custom design primer assay (forward primer 5′-TGTATCTCTACCCAAGCCCCA-3′

and reverse primer 5′-TCCCAAGCACATCTACGCAA-3′), obtained from the primer-blast
database. circRNA0001345/miRNA106b/ATG16L1 expressions were estimated in liver
tissues of the five groups.

CircularRNA0001345 expression was up-regulated in rats treated with C3G with the
highest fold change value (23.37) in the T3 group compared to the PCL group (Table 2)
while miRNA-106b expression was up-regulated in the PCL group (22.34 RQ) and did
not show upregulation in treatment with different doses of C3G (RQs: 0.6, 0.23 and 0.21)
respectively (Table 2). Expression of ATG16L1 was up-regulated in treated groups in a
dose-dependent manner compared to the PCL group (Table 2).

Table 2. Expression levels (relative quantification, RQ) of circRNA 0001345, miRNA 106b, and mRNA
ATG16L1 among the investigated groups of rats.

Groups
CircRNA 0001345 miRNA 106b mRNA ATG16L1

Fold Change Levels

Normal control 0.91 ± 0.15 1.05 ± 0.20 1.46 ± 0.24
PCL 0.5 ± 0.11 22.34 ± 2.13 a 0.08 ± 0.01
T1 2.67 ± 0.30 0.6 ± 0.08 b 3.84 ± 0.42
T2 5.82 ± 0.61 b 0.23 ± 0.06 b 12.64 ± 1.76 b,c

T3 23.37 ± 2.51 b,c,d 0.21 ± 0.03 b 19.66 ± 1.81 b,c,d

PCL, precancerous lesion group; T1, group treated with 10 mg/kg C3G; T2, group treated with 15 mg/kg C3G;
and T3, group treated with 20 mg/kg C3G. Data were expressed as mean ± SD. The number of rats equals six for
each group. a significant difference from the normal control group, b significant difference from the PCL group,
c significant difference from the T1 group, d a significant difference from the T2 group. Specimen, liver tissue.

3.3. Investigated RNA Axis in Liver Tissues

Analysis of the current study axis of interest exhibited a significant positive correlation
between circ-RNA0001345 and ATG16L1. In addition to that, there was a significant
negative correlation between miRNA-106b and ATG16L1 (Table 3). This axis was predicted
as a potential pathway for the anticancer effect of C3G on HCC (Figure 1).
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Table 3. Correlation between competing endogenous RNAs (CircRNA 001345, miRNA 106b, and
mRNA ATG16L1).

CircRNA 001345 miRNA 106b mRNA ATG16L1

r p Value r p Value r p Value

CircRNA 001345 −0.326 0.12 0.767 <0.001 *
miRNA 106b −0.326 0.12 −0.455 0.026 *

* Significantly correlated (correlation is significant at the 0.05 level).

Figure 1. A schematic representation of the proposed pathway for the anticancer effect of C3G on
modulating (circRNA0001345/miRNA106b/ATG16L1) axis.

3.4. Histopathological and Immunohistochemical Studies

Livers of the normal control group had normal architecture; localised lesions, al-
ternating pre-neoplastic foci, and dysplastic nodules were not observed (Figure 2A–C).
Classic polygonal hepatocytes with central rounded vesicular nuclei and acidophilic gran-
ular cytoplasm were also observed. Portal triads were formed of a branch of the portal
vein, bile ductile, and branch of the hepatic artery (Figure 2B). Livers of rats that received
DEN + 2AAF showed the development of multiple aggregations of hepatocellular pre-
neoplastic lesions. The lesions were large, less differentiated, and multiple dysplastic
nodules appeared scattered and occupied most of the examined fields (Figure 2D–F). Nod-
ules were formed of alternating hepatocytes showing dark hyper-chromatic nuclei and
increased nuclear:cytoplasmic ratio (Figure 2E). Livers of rats treated with C3G (10, 15,
and 20 mg/kg) had decreased number and size of lesions (Figure 2G–I). The effect was
dose-dependent. The livers of rats treated with 10 mg/kg C3G showed small dysplastic
nodules with no compression of the surrounding hepatic parenchyma. The livers of rats
treated with 15 mg/kg and 20 mg/kg C3G had localised lesions in the form of alternating
foci merging imperceptibly with hepatic tissue with no or minimal disruption of lobular
architecture. Immunohistochemical staining with antibodies against GST-P was used to
detect hepatic preneoplasia. Rats that received DEN + 2AAF had more positive GST-P
nodules (Figure 2F). Injected groups with different C3G doses (10, 15, 20 mg/kg) exhibited
a diminished number and size of the developed nodules (Figure 2J–L).
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Figure 2. Photomicrographs of liver tissues after 112 days. (A) Normal control group with H & E stain
showing normal hepatic architecture. (B) Normal control group with H & E stain showing polygonal
hepatocytes (arrows) with central rounded vesicular nuclei, and a portal triad formed of a branch
of the portal vein (V), bile ductile (D), and branch of the hepatic artery (A). (C) Normal control
group with the immuno-histochemical stained section with Anti GST-P showing a negative reac-
tion. (A) ×100 Hx & E stain, (B) ×400 Hx & E stain, (C) ×100 anti GST-P immuno-histochemical
stain. (D) Group 2 treated with DEN and 2-AAF stained with H & E. Liver section showing larger,
less discriminated dysplastic nodules compressing the surrounding liver tissue with disruption
of normal hepatic lobular architecture (dotted shapes). (E) Group 2 treated with DEN and 2-AAF
stained with H & E showing dysplastic alternating hepatocytes and dark hyper-chromatic nuclei
and increased nuclear-cytoplasmic ratio (arrows). (F) Group 2 treated with DEN and 2-AAF with
immuno-histochemical stained sections with GST-P antibody showing large multiple GST-P-positive
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hepatic nodules (brown stained) scattered in-between negatively stained hepatic parenchyma.
(D) ×40 Hx & E stain, (E) ×400 Hx & E stain, (F) ×40 anti GST-P immuno-histochemical stain.
(G) Treated group with C3G (10 mg/kg) stained with H & E, showing small and less discriminated
dysplastic nodules (doted shapes). (H) Treated group with C3G (15 mg/kg) stained with H&E show-
ing small and less discriminated dysplastic nodules (doted shapes). (I) Treated group with C3G (20
mg/kg) stained with H & E showing smaller and less discriminated dysplastic nodules (doted shapes)
and the presence of autophagic vacuole (dotted arrows). (J) Treated group with C3G (10 mg/kg) with
immuno-histochemical stained sections with GST-P antibody showing GST-P positive small hepatic
foci (brown stain). (K) Treated group with C3G (15 mg/kg) with immuno-histochemical stained
sections with GST-P antibody showing smaller GST-P positive hepatic foci (brown stain). (L) Treated
group with C3G (20 mg/kg) with immuno-histochemical stained sections with GST-P antibody
showing smaller GST-P positive hepatic foci (brown stain) and appearance of the autophagic vacuole
(dotted arrows). (G–I) Hx & E stain and (J–L) anti-GST-P immuno-histochemical stain, magnification
×40. The number of rats per group equals six.

4. Discussion

HCC was estimated to be the second most prevalent form of cancer in Egypt after
breast cancer [31]. In addition to that, HCC patients always suffer from recurrence and
resistance against conventional chemotherapeutic agents [32]. Due to these reasons, the
investigation of novel therapies or prophylactic agents for HCC is a major health priority.
Most importantly, C3G showed promising, chemo-preventive activities against skin and
lung cancer when it was tested on animal models [33]. C3G also showed anti-tumour action
on ovarian cancer; this effect was attributed to the down-regulation of Mucin-4 protein [34].

Novel investigations recommended that activation of autophagy can promote pro-
grammed cell death in malignant tissue [35] and, consequently, suppress the tumour [36].
Consequently, the manipulation of autophagic signalling is an approach for the develop-
ment of protective agents against resistant cancerous cells [37]. Delphinidin, a member
of the anthocyanin group, induced growth retardation in HCC by promoting cellular vac-
uolisation [38]. In the current study, there was an improvement of the liver functions and
histopathological profile in rats with precancerous lesions upon administration of C3G and
an upregulation of the autophagy-related gene, ATG16L1.

ATG16L1, the current study target protein for expression analysis, is a member of
the autophagy-related protein family with an activating role in the autophagy pathway;
thus, it has a tumour-inhibitory role [39]. A study on breast cancer cells reported a high
level of miRNA-20a that increase the reactive oxygen species and increase DNA damage
by targeting autophagy activating proteins, including ATG16L1. This finding was consis-
tent with the generated data of the current study, which also revealed that there was a
significant negative correlation between miRNA-106b and ATG16L1. Here, in this study,
administration of C3G had a chemoprotective effect on HCC with the upregulation of
ATG16L1 and downregulation of miRNA106b.

To examine the relation between HCC and autophagy deficiency, P62 protein, which
acts as a substrate and gets degraded in the autophagy process, was accumulated in HCC
cells. At the same time, the adjacent non-tumour areas were negative for it [40]. Another
study concerned with ATG genes, which are essential for the activation of autophagy,
reported that mice with ATG7 knockout experienced the development of liver tumours [17].
ATG16L1 is a member of the autophagy-related protein family with an activating role in
the autophagy pathway. It interacts with the complex molecular ATG12-ATG5 to form
autophagosomes, fusing with lysosomes producing autolysosomes [41]. This protein was
found to have a crucial defence role against invasive bacteria. At the site of bacterial entry,
ATG16L1 was recruited to the plasma membrane through the effect of the intracellular
sensors Nod1 and Nod2 [42].

Several tumours activating circRNAs have been reported. circRNA SMARCA5 regu-
lates the progression of cervical cancer through inhibiting miRNA-432 [43], circRNA_0067934
promotes invasion of HCC through modulating the axis of miR-1324/FZD5/Wnt/
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β-catenin [44], circRNA LPAR3 sponges miRNA-198 causing upregulation of MET gene
expression, which facilitates oesophagal cancer invasion [45], circRNA PRKCI inhibits
miRNA-545 and induces glioma cell progression [46], and circRNA ZNF609 reduces
miR-186-5p levels leading to induction of YAP1 and AMPK pathways and prostate cancer
growth [47]. Inhibitory circRNAs include hsa_circ_0007059, which inactivates Wnt/β-catenin
and ERK1/2 pathways due to inhibition of microRNA-378 leading to lung cancer
suppression [48], circRNA C3P1 that inhibits HCC growth and metastasis through modulat-
ing miR-4641/PCK1 axis [49], circRNA MTO1 that up-regulates p21 expression and inhibits
HCC invasion through sponging oncogenic miR-9 [50], and circRNA TRIM33-12 that also
suppresses HCC through the inhibitory effect on miRNA-191 [51]. The involvement of
circRNAs in regulatory networks make them potential biomarkers since they are stable,
easily detected, and abundant in blood and saliva [52].

CircRNA acts as a sponge for miRNA on the molecular level [53]; therefore, they can
have roles either as tumour activators or inhibitors according to the effect of miRNA on
various cellular pathways and signalling. In this study, has_circ_0001345 had a tumour
inhibitory role as it sponged miRNA106b. Overexpression of miRNA106b accelerated the
epithelial–mesenchymal transition (EMT) process [54] and disrupted ATG16L1-mediated
autophagy [55]. This is consistent with our results which showed that circRNA sponged
miRNA106b leading to the upregulation of ATG16L1 upon administration with C3G.

Our findings encourage the development of an antimitotic approach that combines
conventional cytotoxic medications with phytochemical extracts to prevent cancer cell
cycle progression. Additional in vitro functional investigations are necessary to eluci-
date the RNA panel’s functional mechanism and to validate its significance as a drug
target biomarker

5. Conclusions

Cyanidin-3-glucoside is a naturally occurring molecule that has the potential to aid
in the future unravelling of the mystery of cytotoxic medicines. It has the potential to be
exploited to develop novel antimitotic agents that specifically target the cell cycle in HCC.
Additionally, our findings revealed that the hsa_circ_0001345/miRNA106b/ATG16L1 axis
has significant promise as a therapeutic target biomarker for further research.
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