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Ultraviolet radiation (UVR) is a known carcinogen participated for the development of skin

cancers. Solar UVR exposure, particularly ultraviolet B (UVB), is the mostly significant

environmental risk factor for the occurrence and progress of basal cell carcinoma(BCC).

Both cumulative and intermittent high-grade UVR exposure could promote the

uncontrolled replication of skin cells. There are also exsiting other contributing

environmental factors that combine with the UVR exposure to promote the development

of BCC. DNA damage in formation of skin cancers is considered to be a result of UVR

toxicity. It is UVR that could activate a series of oncogenes simultaneously inactivating

tumor suppressor genes and aberrant proliferation and survival of keratinocytes that

repair these damages. Furthermore, mounting evidence demonstrates that inflammatory

responses of immune cells in the tumor microenvironment plays crucial role in the skin

tumorigenesis as well. In this chapter, we will follow the function of UVR in the onset

and development of BCC. We describe the factors that influence BCC induced by UVR,

and also review the recent advances of pathogenesis of BCC induced by UVR from the

genetic and inflammatory aspects.
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INTRODUCTION

Cutaneous cancer is the most common cancer type worldwide, and basal cell carcinoma (BCC)
generally accounts for 75–80% of cases arising from the basal layer of the epidermis and its
appendages (1–3). Most diagnosed patients are between 60 and 79 years old, and men are twice
as likely to develop BCC. However, BCC incidence has tripled over the last 30 years; and recently,
there has been a significant rise in younger individuals and women (4–6). The annual growth rate of
BCC in Europe is approximately 5% over the recent decades. In the United States, the incidence rate
increased by 2% annually, contributing to about 2–5 million patients with BCC receiving treatment
every year (3, 7). Compared with Western countries, BCC incidence in the Asian population is 10-
to 100-fold lower; but recently, there has been an increasing number of cases (8–10). Although,
BCC rarely causes metastatic disease or death as the result of the extremely low mortality, it
can result in significant morbidity because of its destructive local spread (11, 12). Ultraviolet
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radiation (UVR) is a known carcinogen that contributes to
the development of cutaneous cancers containing both non-
melanoma skin cancers (NMSCs) and malignant melanoma
(MM). Solar UVR exposure, in particular ultraviolet B (UVB), is
the most significant environmental risk factor for the occurrence
and progress of BCC. Both cumulative and intermittent
high-grade UVR exposures could promote the uncontrolled
replication of skin cells. Although, other risk factors for skin
carcinogenesis exist, UVR exposure has still been attributed to
the development of nearly 90% of NMSCs, such as squamous
cell carcinoma (SCC) and BCC (13, 14). DNA damage occurring
during skin cancer formation is considered to be a result
of UVR toxicity. UVR could activate a series of oncogenes
while simultaneously inactivating tumor suppressor genes and
aberrant proliferation and survival of keratinocytes that repair
this damage. Furthermore, mounting evidence demonstrates
that inflammatory responses of immune cells in the tumor
microenvironment play a pivotal role in skin tumorigenesis (15).
Therefore, environmental changes contributing to increased UV
transmission have direct implications for human health. The
public should be urged to use sunscreen and wear protective
apparel to decrease BCC incidence.

In this review, we will assess the role of UVR in the
onset and development of BCC. We describe the factors that
influence BCC induced by UVR and review recent advances
in BCC pathogenesis induced by UVR from genetic and
inflammatory aspects. This is also a rare review to discuss
the contributing factors associated with UVR-induced BCC
and its specific pathogenesis. We searched associated studies
using the following databases: Embase, Pubmed, Cochrane
library, and Google Scholar. We conducted the literature by
searching the Mesh terms denoting an exposure of interest (“UV
rays,” “ultraviolet rays,” “UV radiation,” “ultraviolet radiation,”
“UV,” “ultraviolet,” “environments,” “environmental impact,” and
“environmental impacts”) and an outcome of interest (“basal
cell carcinoma/cancer”). All studies included are published until
December 30, 2020 with no language restrictions.

THE FACTORS CONTRIBUTING TO

UVR-INDUCED BCC

The occurrence and development of BCC mainly depend on the
interaction between general characteristics, such as genotypic and
phenotypic features and subsequent environmental risk factor
exposure. Therefore, as a primary risk factor, UVR could be
combined with or influenced by other factors, such as general
characteristics, UVR sources (such as sun exposure, tanning
beds, and ultraviolet phototherapy), and other environmental
factors (such as alcohol consumption, long-term chemical
exposure, and photosensitive agents) to induce the onset
of BCC.

GENERAL CHARACTERISTICS

The primary risk factor associated with BCC onset is directly
related to the sun exposure habits of an individual or

susceptibility to solar UVR (16). The result of a cross-sectional
prevalence survey of white male watermen (n = 808) establishes
the relationship between UVB exposure and BCC, SCC, and
actinic keratosis (AK). It demonstrated that older age, childlike
freckles, and blue eyes significantly enhanced the risk of skin
tumors (17). In a prospective cohort, van Dam et al. (18)
investigated the association of constitutional factors and sun
exposure in BCC onset and development. They identified
individuals with red hair, lightly pigmented eyes, northern
European ancestry, and a predisposition to sunburn as likely to
develop BCC. Another retrospective cohort study also revealed
that multiple BCCs tended to be formed in the elderly and
men. Patients with a history of BCC, type 1 or 2 skin, and
chronic sun exposure (N500 weeks of sun exposure, a high
photoaging score, and the presence of AK) have an increased
risk of BCC (19). Several previous studies have demonstrated
that obesity might decrease the risk of NMSC incidence (20–
22), Chan et al. (23) designed a study to investigate whether the
risk of NMSC of different weight levels is consistent with sun
exposure risk. The results indicated that women with a BMI ≥
25 kg/m2 or a WHR ≥.8 have a lower risk of NMSC. However,
the influence of interactions with sun exposure should also be
considered. This is because compared with the normal-weight
group, hazard rates of the overweight group are higher when
combined with increasing sun exposure time. Although, light
exposure site is a common site for the development of BCC, it
is not primarily associated with UV exposure. The simple theory
that “More UV exposure, More skin cancer” could not perfectly
explain the occurrence pattern of BCC. Heckmann et al. (24)
investigated the correlation between anatomical prominences
with peak UV exposure and frequencies and distinct histologic
features of BCC. They found that the development of facial
BCCs is poorly associated with the accumulative effects of
UVR alone. Additionally, site-specific qualities, such as reduced
tension and dermal thickness, could combine with UV exposure
to promote the development of BCC. Additionally, there is
no correlation between UV-exposed carcinoma and particular
histologic features.

SOURCES OF UVR

Undoubtedly, sun exposure is the primary source of UVR
associated with BCC onset. Artificial UVR exposure, namely,
tanning beds, ultraviolet phototherapy, and arc welding has
recently been reported to have a strong relationship with
BCC onset.

SUN EXPOSURE

The result of a population-based, case-control study indicates
that recreational sun exposure of children and adolescents
increases risk, demonstrating that these life cycle stages are
crucial to establishing the risk of developing BCC (25). The
BCC risk is likely to depend on the nature and characteristics
of sun exposure, such as pattern, timing, and amount. Previous
studies have demonstrated that compared with cumulative,
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long-term UV exposure, intense intermittent exposure increases
the risk of BCC (26, 27). Despite that, Iannacone et al. (28)
studied the significance of sun exposure patterns (intermittent
or continuous) and timing (childhood or adulthood) in BCC.
Results suggested that sun exposure was associated with both
the risk of BCC incidence regardless of the exposure pattern
(intermittent or continuous). Therefore, the relationship between
sun exposure pattern and BCC risk is still unproven and requires
further research. UVR exposure dosage is positively linked with
BCC risk, but after a certain amount of exposure, this effect
level decreases or even disappears (29). Additionally, geographic
variation is positively correlated with the incidence of BCC. The
relationship between the incidence rate and proximity to the
equator could be explained by higher UV exposure at lower
latitudes, such as Hawaii, and higher UV exposure in higher
latitudes, such as the Midwest (30, 31).

INDOOR TANNING

Indoor tanning first appeared in Western countries in the 1920’s.
Recently, this tanning trend has also become more prevalent
among young people in China and other Asian countries who
traditionally preferred lighter skin tones. Additionally, tanning
services have increased, and online shops have begun to sell
tanning products, such as tanning beds and tanning lamps.
Indoor tanning equipment emits artificial UVR, which is one
of the causes of skin cancer. Indoor tanning is also strongly
correlated with BCCs of the trunk and extremities mainly
exposed during tanning compared with head/neck lesions, which
are only occasionally exposed to UVR to a considerable extent.
The use of tanning beds has been correlated with an apparent
increase in the development of NMSC (particularly early in life)
(32, 33). A large case-control study revealed that indoor tanning
was correlated with a 69% increase in the risk of early-onset
BCC, and this was more evident in women, multiple BCCs, and
BCCs located on the trunk and extremities. Previous studies
have predicted that if individuals never tanned indoors, about
a quarter of early-onset BCCs (or 43% in women) could be
prevented (34). Several other studies also proved that indoor
tanning is correlated with the incidence risk of early-onset BCCs
(35). Compared with tanning bed use at the age of 25–35, the risk
of BCC from using tanning beds during high school/college is
significantly higher. There is also a dose-response link between
sunbed use and the risk of skin cancers, particularly for BCC,
and this relationship is more robust for younger patients exposed
to sunbathing (36). Moreover, a meta-analysis showed that the
relative risk of BCC development after indoor tanning before
25 years old was 1.4 (95% CI = 1.29–1.52). Compared with the
control group, this translates to a 40% increase in risk. Studies
have concluded that this risk will increase in a dose-dependent
pattern with indoor tanning equipment usage (years) (37).

ULTRAVIOLET PHOTOTHERAPY

Psoralen and ultraviolet A (PUVA) therapy and UVB
therapy are both highly effective treatments for chronic

cutaneous inflammatory diseases, in particular psoriasis.
The BCC incidence related to ultraviolet phototherapy
could be controversial. Previous studies have demonstrated
that the BCC incidence rate among patients with psoriasis
receiving a large number (>100–200) of PUVA treatments
is significantly higher than expected, and this risk persists
for some time after the discontinuation of PUVA therapy
(38, 39). However, Stern et al. (40) suggested that substantial
PUVA exposure only increases the risk of SCC, and even
high-dose exposure to PUVA does not significantly increase
BCC risk. Compared with the PUVA therapy, UVB (>300
treatments) is reported to be correlated with modest increases
in the risk of developing BCC (41). However, the function
of broadband UVB or narrowband UVB therapy in human
skin carcinogenesis in psoriasis has not been clarified clearly
(42, 43). A retrospective study showed that 80% of the statistical
power in broadband UVB could detect six to seven times
the increase in skin cancer, while in narrowband UVB, 83%
of statistical power can detect five to six times the increase
in skin cancer, and only one patient developed melanoma
in situ. In this study, the tumor occurred within a year of
phototherapy initiation. Hearn et al. (44) found no existing
evident correlation between NB-UVB treatment and the
incidence risk of BCC. Therefore, current studies do not offer
strong evidence for increased BCC risk for patients treated
with broadband and narrowband UVB phototherapy (45).
Nevertheless, the concomitant potential risk of BCC should
be considered when determining the risk of the therapy for
long-term treatment of PUVA and UVB associated with the
treatment for chronic inflammatory skin diseases (such as
severe psoriasis).

ARC WELDING

Arc welding produces the full UVR spectrum, which may be
a contributing cause of cutaneous cancer (46). Several case
reports have reported the onset of BCC after several years of arc
welding. Currie and Monk (47) reported five welders suffering
from NMSC (average age of onset of 52 years). Three other
case reports described welders developing BCC after exposure
during unprotected arc welding (48). A study was conducted
with a 25-year duration of systematic follow-up and eventually
showed that long-term metal arc welding exposure might be
associated with an increased BCC risk located exclusively at
the neck. However, it could not provide evidence for the
assumption that welding exposure enhances the risk in other
locations (49).

OTHER ENVIRONMENTAL FACTORS

Although, UVR is the primary risk factor of BCC,
recent evidence suggests that a small amount of UV
exposure combined with other behavioral and/or
environmental factors may lead to a higher incidence of
BCC (50–52).
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ALCOHOL CONSUMPTION

Alcohol consumption is a well-known risk factor associated
with various malignant tumors, namely, pharynx and larynx,
esophagus, breast, prostate, pancreatic, and colon cancers (53–
56). It has been observed that alcohol use can increase the
prevalence of severe sunburn. It is hypothesized that the
combination of alcohol consumption and UVR can enhance
carcinogenicity in the skin via intermediate by-products or
metabolites of alcohol (such as acetaldehyde), which can act
as photosensitizers (57, 58). However, the association between
alcohol consumption and the risk of developing BCC has been
controversial. Although, two previous studies have reported
a correlation between alcohol consumption and BCC risk, a
subsequent study and several case–control studies did not show
evident association (59–61). The result of a large prospective
study conducted by Wu et al. has demonstrated that alcohol
consumption is associated with an increased risk of BCC in both
women and men. According to the result of a case–control study,
alcohol consumption is generally associated with aggressive
tumors. This may result from the modulation of the peritumoral
micro-environment associated with alcohol consumption, which
may be considered a contributing factor to the progression and
malignant behavior of tumor cells.

CITRUS PRODUCTS

Furocoumarins, a group of natural chemicals that are abundant
in citrus products, have relatively high UV absorbance. Two
large prospective cohort studies reported positive dose–response
relationships between citrus consumption and the risk of BCC in
two cohorts of men and women. Also, it is suggested that UVR
could amply this association between the citrus consumption
and the risk of BCC (62). In the European Prospective
Investigation into Cancer and Nutrition cohort (EPIC) cohort
study,Mahamat-Saleh et al. (63) also found that total citrus intake
was associated with BCC risk. Specifically, they found that citrus
juice intake was positively and linearly associated with BCC and
mutagenic properties.

COFFEE INTAKE

Coffee intake has been demonstrated to have an anticarcinogenic
potential in skin carcinogenesis. There is considerable and
convincing experimental evidence that caffeine, which occurs
naturally in seeds of the coffee plant, may have anti-proliferative
effect via inducing apoptosis in UV-damaged keratinocytes via
multiple pathways, such as the ataxia-telangiectasia and Rad3-
related (ATR) kinase/ checkpoint kinase 1 (Chk1) pathway (64,
65). A review of the literature and meta-analysis conducted
by Caini et al. (66) found that caffeinated coffee intake is
moderately associated with a reduced risk of BCC development.
However, the judgments on the strength of the evidence from the
WCRF (World Cancer Research Fund International) regarding
the influence of coffee on the BCC risk is evaluated to be limited
suggestive. Increasing the number of randomized clinical trials is
needed to verify the relationship.

VITAMIN D

Vitamin D has multiple functions for the human body via
binding to vitamin D receptor (VDR) associated with cell growth,
differentiation, apoptosis, and regulation of the immune system
(67). Solar exposure is the major source of 25-hydroxyvitamin D3
(25-OH D3) synthesis. Vitamin D is known to have a protective
effect against colon, breast, prostate cancers, and even NMSCs.
It has been clarified that non-genomic pathways activated by
vitamin D may have a protective role against DNA damage,
which may contribute to the development of NMSCs (68). Ince
et al. (69) found that maintaining the levels of 25-OH vitamin
D3 more than 25 ng/ml in patients with an initial diagnosis of
BCC can significantly decrease the recurrence rate. It could be
a contradiction in terms that UV exposure has been recognized
to be the predisposing factor of BCC. They think that patients
with BCC should avoid sun exposure in the areas of high risk,
but may expose other body areas without BCC during daylight
for 10–15min. The specific relationship between vitamin D and
UV exposure in the development of BCC requests a long process
of research.

LONG-TERM CHEMICAL EXPOSURE

Arsenic is a non-metallic element that occurs naturally in air, soil,
and water in organic and inorganic states. The organic state is
non-toxic, while the inorganic state is toxic. Arsenic exposure
elicits oxidative stress that causes DNA damage, genome
instability, and telomere shortening (70–72). Epidemiological
studies have shown that long-term exposure to arsenic increases
cancer risk, such as bladder, lung, and kidney cancer (73, 74).
Moreover, arsenic exposure has been widely involved in NMSC,
and the strongest evidence comes from studies on people who
drink highly polluted water (75, 76). Surdu et al. (77) conducted a
study to evaluate airborne arsenic exposures at the workplace and
quantify the relationship with NMSC. Eventually, they found no
association between workplace exposure to arsenic and NMSC.
However, it was suggested that women exposed to arsenic in
the air with co-exposure to sunlight at work might be more
susceptible to NMSC than those who are not exposed to the sun.
In another multi-center case-control study, Srinivas et al. (78)
observed that contrary to consistent reports about the association
between increased telomere length and rising incidence risk
of different cancers, among people exposed to arsenic, short
telomeres are correlated with increased risk of BCC. Data analysis
also showed that arsenic exposure could regulate the direction of
the telomere length effect.

Radon is a type of radioisotope with a half-life of 3.8 days.
Radon-222 gas originates from the radioactive decay of radium-
226 and is present over the crust of the Earth and many building
materials. The primary source of radon in buildings is the gas
released from the ground, which enters a house through cracks
in the basement. Radon gas accumulates indoors. The skin and
lungs are both known to be the primary target organs.

Radon progeny exposure can result from alpha emitters,
such as polonium-218 and polonium-214, which are classified
as human carcinogens. The evidence of a link between radon
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and lung cancer risk is derived from studies on miners exposed
to relatively high concentrations and exposure of the general
population to radon indoors (79–82).

A large cohort study on a Danish population showed
that long-term residential exposure might result in skin BCC
development through detailed personal exposure assessment and
control of several potential confounding factors. Investigators
could not rule out confounding from sunlight exposure, nor
could they conclude causality, because the correlation is stronger
among people residing in apartments but not among those
residing in single houses (83).

PHOTOSENSITIVE AGENTS

The usage of photosensitizing medications has been identified
to reduce UVR exposure that is likely to generate a sunburn-like
erythema response, enhancing the risk of phototoxicity (84–86).
A study (87) was conducted to assess the relationship between
diuretic use and primary BCC, considering the history of
sun exposure, constitutional characteristics, lifestyle factors,
and geographically dispersed anthropometric measurements
of individuals extensively exposed to ambient UVR. They
found that among overweight participants, increased risk of
BCC associated with diuretic use may be related to higher
dosages, more extended periods of medication, decreased
drug metabolism, or drug interaction. Tetracycline is a
classical drug known to elicit photosensitivity, particularly
phototoxic cutaneous disorders, and increase the susceptibility
of the epidermis and dermis to UVR-induced damage. A
prospective study demonstrated that tetracycline use is related
to a mildly increased BCC risk but not to melanoma or SCC
(88). Furocoumarins are natural chemicals that are abundant
in certain plants, consisting of citrus products (89, 90).
Animal model studies have shown the photocarcinogenic
characteristics of furocoumarins (91). Wu et al. (62)
designed a study to investigate the association between
citrus consumption and BCC and SCC incidence risk. They
found a positive correlation between BCC and SCC in two
groups of men and women and called for studies to further
understand the potential photocarcinogenesis related to
dietary intake.

THE PATHOGENESIS OF UVR-INDUCED

BCC

Skin cancers caused by DNA damage are considered to be
a direct result of UVR toxicity. UVR exposure can activate
various oncogenes while inactivating tumor suppressor genes,
leading to gene mutations, which induces the survival, and
proliferation of keratinocytes, thereby, repairing this damage.
Furthermore, increasing evidence shows that inflammatory
responses of immune cells within a tumor microenvironment
also significantly promote the onset of skin cancers.

GENETIC MUTATIONS

Ultraviolet radiation exposure, particularly UVB, to some degree,
could induce different categories of DNA damage, including
cyclobutene pyrimidine dimers (CPD) and 6-4 photoproducts
(6-4 PP), DNA strand breaks, and crosslinks. If not repaired
entirely, this could transform into genetic mutations, ultimately
resulting in skin carcinogenesis (92, 93). Here, we focus on some
recently discovered genetic mutations involved in the onset and
development of UVR-induced BCC.

THE HEDGEHOG PATHWAY-ASSOCIATED

GENES

As a highly conserved developmental pathway, the Hedgehog
(Hh) pathway is responsible for various processes, such
as organogenesis, stem cell maintenance, tissue repair, and
regeneration (94). The Hh pathway is crucial for maintaining
stem cell numbers and regulating hair follicle and sebaceous
gland development in the skin. Abnormal activation of the Hh
pathway induces various periods of tumorigenesis, such as onset,
development, and recurrence (95, 96). The pathway could be
separated into two categories, the canonical and non-canonical
Hh pathways. The former includes some crucial components,
consisting of Hh ligands as sonic Hh, Indian Hh, and Desert
Hh; transmembrane receptor proteins PTCH1 and PTCH2, the
G protein-coupled receptor-like protein SMO, and the GLI
transcription factors 1, 2, and 3 (GLI1, GLI2, andGLI3) (97).
When the Hh ligands bind to PTCH1, the pathway is activated,
thereby, releasing PTCH-mediated SMO suppression of the
primary cilium. SMO is in turn transported to the cilium, driving
a signaling cascade and inducing the release of the GLI proteins,
which are sequestered in the cytoplasm by several proteins, such
as the suppressor of fused (SUFU). Then, GLI transcription
factors enter the nucleus, activate the transcription of context-
specific genes, and regulate self-renewal, cell fate, survival, and
angiogenesis. Additionally, a feedback loop to automatically
adjust the Hh signaling GLI1 has also been established to regulate
the Hh signaling via PTCH1 modulation automatically (94, 98).
Any level of genetic mutations in the Hh signaling pathway, such
as PTCH1, SMO, and SUFU, will develop an increased expression
of GLI1 (99). In BCC, upregulation of Hh signaling is proved
to be the most significant pathogenic event (99, 100). Over 90%
of BCCs have a deficiency of PTCH1 function by inactivating
PTCH1 mutations and aberrant activation of SMO (101).

The PTCH1 gene is mapped to 9q22.3, composed of 23 exons
with a length of about 74 kb, encoding a 1,447 transmembrane
glycoprotein (102). Somatic mutations of PTCH1 range from
11–75%, which are mainly nonsense and splice site mutations
through the entire length of the PTCH1 gene, and there is no
evidence of hot spot (103–105). About half of these mutations
include the “UV-signature” C-T and tandem CC-TT transitions
(106). However, the UVR source of PTCH1 mutations is
controversial, and other factors, such as oxidative stress, have
been involved in the gene mutation (107, 108).
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Ten to twenty percent of sporadic BCCs have the activating
SMO mutations mainly manifested as missense mutations
affecting codon 535 (109, 110). Functional studies of the W535L
mutant showed that it is a constitutively active variant whose
fundamental Hh activity is enhanced in the absence of a Hh
ligand. Recent studies indicated that up to 8% of BCCs have
dysfunctional SUFU mutations, such as both missense and non-
sense mutations. This disrupts their binding to GLI, thereby,
resulting in the activation of the constitutive pathway. Urman
et al. reported a higher frequency of SUFU mutations (111), even
though they are conceived to be a type of passenger mutation.
Eventually, the homolog PTCH2 gene has been muted in few
sporadic BCCs, with 57% similarity to PTCH1 and acting as a
receptor (112, 113).

TP53

The second most common event related to the development
of BCC is TP53 gene inactivation. As a type of tumor
suppressor gene, it participated in the activation of cell
cycle arrest and programmed cell death. As the genome’s
guardian, TP53 is stabilized by phosphorylation under pressure
and alters the different downstream target gene expression
categories, such as those that elicit cell cycle arrest (114). The
inactivating TP53 genetic alterations are detected among almost
all skin carcinomas, considered to be an early event in skin
carcinogenesis (115, 116). Most TP53 missense substitutions
are located at the central DNA-binding core region (codons
102–292), including codons 177, 196, 245, 248, 278, and 282,
which generate full-length protein function in skin cancers. Most
of the TP53 mutations in BCC are transition from C to T,
and the frequency of double base changes from CC to TT is
relatively high, which indicates alterations induced by UVR.
Individuals who wear sunscreen have fewer TP53 mutations in
BCCs compared with people who do not wear sunscreen (117).

TERT

The TERT gene can maintain the length of telomere via encoding
the catalytic reverse transcriptase subunit of telomerase.
Increased telomerase activity is known to be one of the
primary characteristics of human cancers, and the transcriptional
mediation of the TERT gene is the main cause for its cancer-
specific activation (118).

The TERT gene is located at chromosome 5p15.33. Its
promoter region is considered to be the essential regulatory
component of telomerase expression. TERT promoter mutations
are frequently detected in various cancers such as skin
and glioma (119, 120). They have been associated with
increased TERT expression by recreating the binding sites for
ETS/TCF transcription factors, higher telomere length, and poor
prognostic factors. The fact that they are driving events in
cancer development rather than passenger events is supported
by the high recurrence, specificity, and functional acquisition of
non-coding promoter TERT mutations. Several recent studies
have investigated the role of the TERT promoter in BCCs and

identified a high incidence of mutations. Most of these mutations
have a UV-signature with C to T or CC to TT changes, which
favors an etiologic role for UVR exposure (120–122).

DPH3-OXNAD1 BIDIRECTIONAL

PROMOTER

Similar to the TERT gene, it is reported that in the bidirectional
promoter of both DPH3 and oxidoreductase NAD-binding
domain containing 1 (OXNAD1) genes, recurrent mutations
of non-coding sites close to the transcription start site are
often present. DPH3, essential to the synthesis of diphthamide,
is a modified histidine residue in the eukaryotic translation
elongation factor 2, which helps keep the fidelity of translation.
The silencing of DPH3 can damage the in vivo deterioration
of mouse melanoma cells. Its family member DPH1 is also
considered a tumor suppressor, necessary for the synthesis of
diphthamide (123). Typical UVR mutations in the region of the
DPH3 promoter were recently shown to be ubiquitous in BCC
(42%) (124). The adjacent site and binding motif of the ETS /TCF
transcription factor were mutated at−8 and−9 bp of the DPH3
transcription start site.

ULTRAVIOLET RADIATION-INDUCED

INFLAMMATORY RESPONSES

Chronic inflammation participates significantly in all three
periods necessary for BCC development, namely, initiation,
promotion, and progression. The inflammatory responses
induced by UVR contribute to increased blood flow and vascular
permeability, leading to edematous erythema, thickening
response, and cyclooxygenase-2 (COX-2) and prostaglandin
(PG) metabolite activation. Inflammation recruits many
leukocytes that secrete various pro-inflammatory cytokines
at the UV-irradiated site and are considered necessary in the
onset of the tumor. Additionally, various animal models and
the effective use of anti-inflammatory chemotherapy agents all
underline the significance of inflammation induced by UVR
exposure in the onset and development of BCC (125–127).

NUCLEAR FACTOR-KAPPA B

Nuclear factor-kappa B (NF-kB), expressed in almost all
types of cells, is a dimeric transcription factor that includes
p50 and p65 Rel family proteins (128). Notably, it also
functions in inflammatory response and cell proliferation, which
are both associated with tumor onset. It is demonstrated
that the constitutive expression of NF-kB is upregulated
in a variety of tumor cells (129–131). UVR promotes the
activation of IKKa, phosphorylation, and degradation of IkBa
in epidermal keratinocytes. Interestingly, UVB sequentially
mediates the activities of different subunits of NF-kB. NF-
kB/p50 is downregulated in the early stage (6 h), and NF-kB/p65
is downregulated in the later stage (12 h) (132). Thus, UVB
exposure is suggested to activate NF-kB, in turn leading to skin
carcinogenesis. Weng et al. (133) found that NF-kB p65 might
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promote the highly aggressive type of BCC. It contributes to
diagnosing malignant epidermal tumors, combined with TLR4
detection on epithelial cell membranes and p65 in epithelial cell
nuclei. Tong and Wu (134) reported that activation of cNOS
leads to the activation of NF-kB after UVB exposure. Continuous,
rather than acute, suppression of IkB reduction and subsequent
NF-kB activation is induced by the inhibition of cNOS.

HIGH-MOBILITY GROUP BOX-1

High-mobility group box-1 is released into the cytoplasm
and, in turn, extracellular matrix by interacting with the
Toll-like receptors (TLRs) or receptor of advanced glycation
end products (RAGE) to stimulate an inflammatory response.
Recently Johnson and Wulff revealed that UVR induced the
release of HMGB1 from in vitro keratinocytes, which is likely
to be expressed in cutaneous tumors after recurrent and long-
term exposure to UVR (134, 135). Similar to NF-kB, HMGB1
released by necrotic tumor cells was significantly expressed
extracellularly in BCC. It is suggested that HMGB1 could be
considered a potential prognostic indicator or treatment target
for BCC treatment (136).

TOLL-LIKE RECEPTORS

Toll-like receptors are expressed on various skin cells, such
as keratinocytes and epidermis Langerhans cells, and function
as a primary group of pattern recognition receptors activating
skin immune responses (137). They mediate the pathogens
and inflammatory response induced by potential endogenous
molecules. Recent studies demonstrate that TLR activation
contributes to the upregulation of host defense mechanisms
and the upregulation of DNA repair genes, and increased
functional DNA repair, thereby, providing an association
between inflammatory response and DNA damage. DNA damage
and repair induced by UVB radiation have been shown to
involve TLR2, 3, 4, 7, 8, and 9 molecules. TLR7 is located in
the endosome membrane and is highly expressed in BCC (138).
Imiquimod, a kind of TLR7 agonist, is being extensively used
topically nowadays to treat BCC (139). The results of animal
research indicate that the mechanism of action for imiquimod is
to enhance the expression of DNA repair genes and perform the
functional repair of the DNA damage mechanism (140).

ERBB2

As a proto-oncogene, Erbb2 (human epithelial growth factor
receptor 2 (HER2)/neu) is activated in different types of cancer,
related to invasive and treatment-resistant characteristics, which
UVR exposure can activate. The expression of Erbb2 is located at
both follicular and epidermal keratinocytes and acts in various
crucial roles, such as regulating cell migration, differentiation,
adhesion, inflammation, and angiogenesis after UVR exposure
(141, 142). Suppression or deletion of Erbb2 inhibits cell
proliferation, cell survival, and inflammation induced by UV.
Recently, Rao et al. (143) indicated that it could accelerate

skin carcinogenesis through the upregulation of ADAM12
(Disintegrin and metalloproteinase domain-containing protein
12). This demonstrated a new mechanism where the metastasis
of UVR-induced BCC resulted from Erbb2.

NLRP3

Nucleotide-binding domain, leucine-rich-repeat-containing
family, pyrin domain-containing 3 (NLRP3) inflammasome is
significant in innate immune responses by activating caspase-1
that contributes to the activation of pro-inflammatory cytokines,
such as IL-1β and IL-18(144–146). Ahmad et al. (147) indicated
that NLRP3 is found to be expressed in cells of human BCCs
and is involved in the inflammatory response of BCC. In
comparison, UVB exposure can inhibit Ca2+ mobilization by
downregulating the expression of sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA2), which contributes to activation of the
NLRP3 inflammasome.

CYCLOOXYGENASES

Increasing evidence demonstrates that COX are likely to
participate in the formation of NMSC. It is known that COX
mainly includes two isoforms, COX-1 and COX-2. Most cell
types have a constitutive expression of COX-1, while various
factors elicit the COX-2 expression. UVR exposure has been
shown to enhance the expression of COX-2 in human skin.
Furthermore, COX-1 and COX-2 are both demonstrated to have
a role in BCC progression. Various pathways, such as AKT,
p38, AMPK, and SIRT6, have been shown to regulate COX-2
associated with UVB (148, 149). Previous studies have shown that
skin carcinogenesis is reduced by the suppression of p38a, AKT,
and SIRT6, or activating AMPK (150–153).

Moreover, blocking the COX-2 expression may inhibit NMSC
and is considered a functional chemopreventive agent for BCCs.
However, it has been proved by animal studies that both
selective COX-2 inhibitors like celecoxib and non-selective COX
inhibitors (such as indomethacin and naproxen) can be regarded
as effective agents to suppress BCCs induced by UVR (154–157).

INTERLEUKIN-12

As a pleiotropic cytokine that participates in the inflammatory
process, IL-12 consists of two subunits (p35 and p40), which
have an antitumor function in various tumor models (158).
It possesses an antitumor effect via repairing UVR-induced
DNA damage in the form of cyclobutene pyrimidine dimmers
(159–161). Meeran et al. (162) investigated the mechanism of
antitumor activity of IL-12. They found that IL-12 deletion
contributed to increased COX-2 expression and production
of PGE2, along with upregulated inflammatory cytokines such
as IL-1β, TNF-a, and IL-6. Infiltration of leukocytes, NF-kB
activation, and cyclin D expression are induced via recombinant
IL-12 before UVR exposure, confirming the function of IL-12 in
the suppression of UVR-induced BCC.
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CONCLUSIONS

The incidence of BCC increases with age, while the etiology
and mechanism of this disease are still not well-known. Its
early diagnosis is difficult and often delayed. Furthermore, BCC
rarely invades, metastasizes, or leads to death but contributes to
widespread morbidity via tissue damage and local infiltration.
Therefore, investigating the possible risk factors and the
pathogenic mechanism is a worthwhile endeavor. As the primary
risk factor in the etiology of BCC, excessive UVR exposure plays
a crucial role in tumor-related gene mutation, microenvironment
changes, and immune system disorders. The incidence of BCC
induced by UVR is also influenced by several other factors, such
as general characteristics, source of UVR, and other associated
environmental factors. Additionally, an excessive amount of
UVR exposure directly or indirectly induced DNA damage of

the skin, contributing to mutations of an associated group of
proto-oncogenes and tumor suppressor genes and alterations
in the inflammation response, eventually leading to the onset
and development of BCC. However, the understanding of
UV-induced BCC is not comprehensive and complete. The
association with its tumor-related genes, immune regulation,

and inflammation response need to be further investigated
to offer more effective and selective immunomodulatory
strategies for patients with BCC that occurs in
exposed areas.
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