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Recently published evidence has challenged some protocols related to oxygenation, ventilation, and airway management for
out-of-hospital cardiac arrest. Interrupting chest compressions to attempt airway intervention in the early stages of OHCA in
adults may worsen patient outcomes. The change of BLS algorithms from ABC to CAB was recommended by the AHA in
2010. Passive insufflation of oxygen into a patent airway may provide oxygenation in the early stages of cardiac arrest. Various
alternatives to tracheal intubation or bag-mask ventilation have been trialled for prehospital airway management. Simple methods
of airway management are associated with similar outcomes as tracheal intubation in patients with OHCA. The insertion of a
laryngeal mask airway is probably associated with worse neurologically intact survival rates in comparison with other methods
of airway management. Hyperoxemia following OHCA may have a deleterious effect on the neurological recovery of patients.
Extracorporeal oxygenation techniques have been utilized by specialized centers, though their use in OHCA remains controversial.
Chest hyperinflation and positive airway pressure may have a negative impact on hemodynamics during resuscitation and should
be avoided. Dyscarbia in the postresuscitation period is relatively common, mainly in association with therapeutic hypothermia,
and may worsen neurological outcome.

1. Introduction

Since the late 1950s, when Safar et al. described the ABC
principle in cardiopulmonary resuscitation [1, 2], the letters
“A” (airway) and “B” (breathing, ventilation) have been the
cornerstones of resuscitation in cardiac arrest. For many
years, this algorithm remained unchanged. Opening the
airway, delivering oxygen at 100% concentration, insertion
of a tracheal tube, and application of intermittent positive
pressure ventilation (IPPV) were considered “gold standards”
in oxygenation and airway management. This applied both
during cardiopulmonary resuscitation for cardiac arrest in
adults and also in the early period after restoration of sponta-
neous circulation (ROSC). However, the outcomes of patients
after out-of-hospital cardiac arrest (OHCA) remained quite
poor. In the United States, survival rate to hospital admission

is 26.3%, and only 9.6% of patients are able to be discharged
from inpatient care [3].

Many CPR standards have been challenged during the
last decade in adult cardiac arrest of nontraumatic origin.
This has included the method of delivering oxygen, its ideal
fraction, ventilation strategies, timing, and utilizing adjuncts
other than a tracheal tube for maintenance of airway patency.

2. Management during Resuscitation

2.1. Oxygenation in Cardiac Arrest. Oxygen requirements
in cardiac arrest and in the period after return of spon-
taneous circulation (ROSC) have been extensively studied
during recent years. Maximizing oxygen delivery (DO

2
) is

paramount during the period of cardiac arrest and ineffective
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circulation for aerobic metabolism and synthesis of adeno-
sine triphosphate (ATP) [4, 5]. High paO

2
does not cause

intracellular or tissue hyperoxia at this time.The consensus is
that, during cardiac arrest, 100% oxygen should be delivered
to victims in order to increase arterial and tissue pO

2
[6, 7].

Debate continues as to whether oxygen should be delivered
via bag-mask ventilation, tracheal tube, supraglottic airway
devices or via passive oxygenation [8, 9]. What is more
controversial is the most appropriate oxygen fraction (FiO

2
)

to deliver once restoration of spontaneous circulation has
been achieved [10]. Oxygenation strategies in the post-ROSC
period are described in detail in another section of this paper.

Novel and alternative oxygenationmethods and strategies
in adult out-of-hospital cardiac arrest are discussed in follow-
ing paragraphs.

2.2. Concept of Passive Oxygenation. The concept of contin-
uous passive flow of oxygen to the airway was developed
on animal models (dogs) in 1982 [11]. Same authors showed
that anesthetized and paralyzed dogs may be oxygenated
using this method for a relatively long period [12]. Passive
oxygenation was first described in humans in 1991 [13].
Brochard and colleagues used specially equipped tracheal
tubes with inserted microcannulas which allowed delivery
of a constant flow of concentrated oxygen in ICU patients
during disconnections of their breathing circuit. This study
was followed by Säıssy et al. who evaluated passive insuf-
flation of oxygen in adult patients during cardiac arrest
outside the healthcare facilities [14]. The design of this study
was prospective, randomized, and controlled. In total, 48
persons were managed using passive oxygenation, while,
in the control group, another 47 patients were ventilated
with intermittent positive pressure ventilation. There were
no differences in the main outcomes studied—percentage of
patients with ROSC or number of victims surviving until
hospital admission.

Unfortunately, the neurological outcome of resuscitated
individuals was not reported. A subsequent large prospec-
tive randomized trial evaluated 1,042 patients with OHCA,
assigned to receive either conventional mechanical ventila-
tion or constant flow insufflation of oxygen (CFIO) [15].
The authors did not find any difference in ROSC rates,
admissions to hospital, or successful discharge from intensive
care facilities. The ICU discharge rate was very low in both
groups (2.3% conventional ventilation versus 2.4% in CFIO
patients). These two studies used passive oxygen insufflation
through a modified tracheal tube (Boussignac tube).

Different results were reported by a group from Arizona.
In their first study, Bobrow et al. retrospectively analyzed
1,019 patients who were managed during resuscitation either
with positive pressure bag-mask ventilation or with passive
insufflation of oxygen through an oropharyngeal airway [16].
Significantly higher survival without neurological deficit was
found in the passive oxygen insufflation subgroup—38.2%
versus 25.8%, though only in witnessed VF/VT arrest. No
difference in outcomes was noted in this study for unwit-
nessed VF/VT arrest patients or for cardiac arrests caused
by nonshockable rhythms. The same group of researchers

evaluated in total 4415 scenarios of OHCA in adults caused
by a heart disease during a 5-year period [17]. Persons in this
study were found by lay bystanders. They were divided into
three groups according to the mode of CPR—conventional
CPR with chest compressions and mouth-to-mouth breath-
ing, chest compression-only CPR (COCPR), and no CPR
provided on scene. COCPR group had the highest survival
to discharge from hospital—13.3%. While the results of
previous studies suggested a beneficial role of passive oxygen
insufflation, the latest trial of Bobrow et al. [17] and results
of other studies [18] suggested that the main advantage of
this mode of resuscitation—COCPR or cardiocerebral resus-
citation (CCR)—is probably through the constant delivery
of chest compressions, without interruptions for advanced
airway interventions, than the passive application of oxygen
“per se.” Therefore, cardiocerebral resuscitation is accepted
in the early phases of OHCA of cardiac origin [19]. Several
animal studies have reported the usefulness of CFIO in the
early stages of cardiac arrest compared with conventional
ventilation, but their interpolation into human medicine
is problematic [20, 21]. Passive insufflation of oxygen is
probably not sufficient for an adequate gas exchange during
advanced stages of cardiac arrest when chest resistance is
higher and lung compliance significantly decreases [22].

Both ERC and AHA guidelines mention passive oxygen
delivery in their recent guidelines [6, 7] but do not recom-
mend its routine use during cardiopulmonary resuscitation
until more clinical data become available.

2.3. Airway Management Strategies. Management of the
patent airway during OHCA may be divided into basic
and advanced. Basic airway management consists of the
manual relieving of upper airway obstruction (“triplemaneu-
ver”), bag-valve mask ventilation (BMV), or the insertion of
oropharyngeal or nasopharyngeal airway [6, 7]. Techniques
of advanced airway management include the insertion of a
supraglottic airway device (SAD) [23], tracheal intubation
[24], insertion of Combitube [25], or cricothyrotomy [26].
For many years, all resuscitation algorithms and protocols
recommended early tracheal intubation as a part of prehos-
pital advanced life support (ALS). Arguments favoring early
tracheal intubation mainly revolved around expectations for
better control of the airway, protection against upper airway
obstruction, decreased risk for aspiration of gastric contents,
and better control of carbon dioxide removal [25]. The
strategy of airway management in OHCA in adult patients
has gradually shifted towards less invasive techniques during
the last decade. ERC guidelines from 2010 recommend per-
forming prehospital tracheal intubation only if a competent
intubator is present at the site of OHCA, and with only
minimal interruption of chest compressions [6, 8]. AHA
guidelines recommend using the most familiar device for
the rescuer and conclude that an insertion of supraglottic
airway device may be an equivalent to bag-mask ventilation
or tracheal intubation [7].

2.3.1. Tracheal Intubation. The major concerns associated
with prehospital tracheal intubation in OHCA include a low
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success rate, long duration of intubation attempts with inter-
ruption of chest compressions, and unrecognized tube mis-
placement or inadvertent esophageal insertion [27].The total
success rate of prehospital tracheal intubation performed by
nonphysicians varies between 75 and 90% [26–28]. Jones and
colleagues found that 5.8% of all patients intubated outside
hospital had their tracheal tube outside the trachea [29]. Bair
et al. reported a 2% incidence of incorrect positioning of
the tracheal tube at admission to hospital, unrecognized by
paramedics [30]. Other authors reported an even higher inci-
dence of tracheal tube malpositioning—6.7% of esophageal
intubation and 10.7% of endobronchial intubation [31]. The
correct positioning of the tracheal tube inside the trachea
should be always confirmed by an etCO

2
detection device. An

esophageal detector device can be used to avoid esophageal
placement [32].Wang et al. evaluated the impact of intubation
errors in the out-of-hospital setting on patient outcome [33].
One or more errors were reported in 22.7% of patients
(failed tracheal intubation in 15%, multiple attempts in 3%,
and tube malpositioning also in 3%). However, these errors
were not directly linked to increased mortality. Difficulties
with, and failures of, tracheal intubation in the prehospital
environment may be caused by conditions which are often
far from ideal—too little or too much light, patient position,
and lack of space—and exacerbated by the low exposure of
many paramedics to regular tracheal intubation. The average
incidence of tracheal intubation performed by individual
EMS providers is estimated at between 1 and 4 per annum
[27, 34]. The incidence of difficult intubation in prehospital
medicine is over 10%, with independent contributing factors
being obstructed airway, intubation on the floor, and a
distance between hyoid bone and tip of the chin less than
4.5 cm [35].

Attempts for tracheal intubation may cause significant
interruption to chest compressions during CPR for OHCA.
The median duration of interruptions caused by tracheal
intubation was 109.5 s, with more than one-third of patients
requiring more than two attempts for successful tracheal
intubation [36]. Another study evaluated the number of
attempts needed for successful tracheal tube placement in the
prehospital setting [37]. More than one attempt was required
in more than 30% of patients. Cumulative success rate in
OHCA for the first three intubation attempts was 69.9%,
84.9%, and 89.9%, respectively. However, the success rate
for tracheal intubation was significantly higher in OHCA
patients than in the scenario of nonarrested subjects requir-
ing sedation. Egly et al. studied the influence of prehospital
intubation on survival of patients with OHCA [38]. Retro-
spective analysis included 1515 cases of OHCA. Patients with
ventricular fibrillation or ventricular tachycardia who were
intubated showed lower survival rate to discharge while, in
the whole cohort, there was no difference found between
intubated and nonintubated subjects.

Some countries, as Germany, Austria, or the Czech
Republic, have physicians trained in anesthesia or emergency
medicine available as part of a coordinated prehospital
ambulance service response. The risks associated with tra-
cheal intubation amongst these services are therefore lower,
with the first pass and overall success rates being higher.

Under these conditions, prehospital tracheal intubation may
offer a benefit over other methods [39].

2.3.2. Supraglottic Airway Devices. Several studies have
compared the insertion of a supraglottic airway device (SAD)
with conventional tracheal intubation in cardiopulmonary
resuscitation in the adult population. Percieved benefits of
an alternative airway management using an SAD in cardiac
arrest include a shorter time of device insertion and higher
success rates than tracheal intubation when performed
by paramedics and other nonanesthesiologists [23]. Most
published studies are nonrandomized mainly due to ethical
reasons.

Tanabe and colleagues performed a nation-based study of
318141 patients with OHCA [40]. Advanced airway manage-
ment techniques were used in 43.5% and included esophageal
obturator (63%), laryngeal mask airway (25%), and tracheal
tube (12%). Both SADs were associated with significantly
worse neurological outcome than tracheal intubation. Kajino
et al. studied the influence of airway management technique
on outcome in OHCA using a prospective cohort design [41].
In total, 5377 cases received advanced airway management
following cardiac arrest (31.2% using tracheal intubation,
68.9% using a supraglottic airway device). There were no dif-
ferences either in survival or incidence of good neurological
outcome between devices, although tracheal intubation took
a significantly longer time. Shin and colleagues studied the
outcome of 5278 patients with OHCA whose airways were
managed using bag-mask ventilation, tracheal intubation,
or laryngeal mask airway [42]. The latter option showed
the lowest rates of survival to hospital admission and also
reduced survival to discharge from hospital. The main limi-
tation of the study was the significant disproportion between
the airway management techniques used (BMV 87.9%, TI
7.4%, and LMA 4.7%). Similar results were published by
Wang et al. who performed a secondary analysis of data
related to airway management from ROC PRIMED trial
[43, 44]. Successful tracheal intubation was associated with
better early survival and higher hospital discharge rates when
compared to insertion of an SAD during OHCA [43].

It is appropriate to mention some limitations of SAD use
during CPR for cardiac arrest. Laryngospasm is sometimes
present in the early stages of cardiac arrest as a protective
airway reflex against aspiration. Higher peak inspiratory
pressures are necessary to overcome laryngospasm and may
exceed themaximal seal pressure of the SADdevice, causing a
significant leak or ineffective ventilation [23]. During elective
surgical procedures under general anesthesia major leak is
seen only in 0–5% of cases [45, 46] while, during CPR, it
may reach more than 20% [47, 48]. SADs are also ineffective
in providing controlled ventilation in patients with very low
chest compliance and high rigidity, as seen in drowning
persons or in the advanced stages of cardiac arrest [49].
SADs furthermore provide only limited protection against
aspiration of gastric fluid and very low protection against
aspiration of solid gastric contents. However, most patients
with OHCA aspirate before arrival of the EMS and before
attempts for advanced airway management [50]. The 2nd
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generation SADs such as the ProSeal LMA, Supreme LMA,
and i-gel supraglottic airway [51] should theoretically provide
better protection against aspiration of gastric contents. Inser-
tion of the i-gel and Supreme LMA seems to be easier than
with the LMA Classic [23]. The i-gel resuscitation pack has
been developed specially for CPR scenarios and incorporates
a side channel for passive delivery of oxygen [52], but clinical
experience is so far very limited [53]. The i-gel airway
has showed 100% insertion success rate in OHCA with
97% of patients receiving effective ventilation. Furthermore,
insertion of the device did not cause any interruptions in
chest compressions in 74% of victims [48]. Other SADs
trialled in OHCA included laryngeal tube (85.3% insertion
success rate), which was not considered to be an appropriate
adjunct in CPR due to high incidence of failure and other
complications [47], intubating LMA, LMA Supreme, LMA
ProSeal, and CobraPLA. The Combitube has been trialled
for prehospital airway management mainly in the United
States. Wang et al. in their paper reported 1521 Combitube
insertions in out-of-hospital scenarios (1.7% of all airway
interventions) [27]. The Combitube has an overall insertion
success rate almost 98% but its use may be associated with
serious complications including esophageal perforation or
airway trauma and has proven difficult to insert in people
with neck immobilization with a cervical collar [54].

In conclusion, the laryngeal mask airways and the i-gel
might be considered as alternate airway devices in OHCA.
Other SADs have lower success rate or carry a higher risk of
potentially serious complications.

2.3.3. Bag-Valve Mask Ventilation. Bag-valve mask ventila-
tion (BMV) is a fundamental basic airway skill. During its
application with a self-inflating bag, maintenance of a patent
upper airway is mandatory. This can be achieved with a
“triplemaneuver” (jaw thrust and neck extension) or with the
insertion of an oropharyngeal or nasopharyngeal airway [25].
BMV is an easymethod, often applicable without difficulty by
paramedics or even by laypersons.Using intermittent positive
pressure ventilation, the main adverse effects associated with
BMV are stomach distension, airway leak (up to 40%), and
lack of protection of the airway against aspiration [50].
Regurgitation may occur in 12.4% of patients ventilated with
BMV during OHCA while insertion of LMA may decrease
this risk to 3.5% [50]. Another study showed an even higher
incidence of this complication—20% of patients regurgitated
at the scene and 24% of all resuscitated persons had radio-
logical findings of aspiration on chest X-ray after admission
to hospital [55]. All patients were intubated at the scene. A
prospective population-based study (All-Japan Utstein Reg-
istry) evaluated 649,359 patients with OHCA [56]. Primary
outcome of this trial was neurological outcome related to
different airway management technique during CPR and
prehospital emergency care after ROSC. In total, 57% of
patients were managed using bag-mask valve ventilation
while 37% of them had inserted a supraglottic airway device
and only 6% underwent prehospital tracheal intubation.
BMV was associated with a significantly higher chance for
neurologically favorable outcome than tracheal intubation or

supraglottic airway device insertion.No difference in terms of
neurologically intact survival was reported between patients
receiving tracheal intubation or a supraglottic airway device.

In another smaller study, a group of patients with OHCA
managed using BMV showed a comparable rate of survival
without neurological deficit compared to patientswho under-
went prehospital tracheal intubation [57].

2.4. Extracorporeal Oxygenation and Life Support. The term
extracorporeal cardiopulmonary resuscitation refers mainly
to the technique of venoarterial extracorporeal membrane
oxygenation (VA-ECMO) [58]. This technique may be indi-
cated in both out-of-hospital and in-hospital cardiac arrests,
mainly those refractory to conventional CPR. Venous blood
is led to a membrane oxygenator and then oxygenated
blood returned to the arterial circulation of the victim. VA-
ECMO is used as a bridging therapy in arrested patients
with severely impaired ventricular function, until either their
heart function improves or before utilization of a mechanical
ventricular assist device [59]. The main prerequisite for the
use of the VA-ECMO in cardiac arrest is undamaged or
only minimally affected brain function [60]. The use of
cardiopulmonary bypass in prolonged cardiac arrest was
firstly described by Safar et al. in 1990 [61]. Extracorporeal
support devices have undergone significant technological
advances over the years in terms of simplicity, portability, and
miniaturization.

Several studies have explored the efficacy of VA-ECMO
in cardiac arrest in terms of mortality and neurological
outcome. An initial report described up to 20% survival rate
after in-hospital cardiac arrest of adult patients [62].

Three-month neurological outcome following CPR for
nontraumatic cardiac arrest was evaluated in a cohort of 162
adult patients [63]. VA-ECMO was initiated in 53 patients
while conventional CPR was used in the remaining 109 vic-
tims. Survival with neurologically unchanged brain function
was significantly higher in the VA-ECMO group—29.2%
versus 8.3% (𝑃 = 0.018). The only independent predictor
associated with a favorable neurological outcome at 90 days
was the diameter of the victim’s pupils at time of hospital
admission.

Reports evaluating the efficacy of extracorporeal CPR in
adult OHCA were appraised in an article by Morimura et al
[60]. The authors collected a sample of 1282 victims (from
105 articles) who received the VA-ECMO during CPR. The
overall survival rate, including discharge from hospital, was
26.7%. Most surviving patients presented as neurologically
intact or having a mild disability only.

Chen and colleagues performed a three-year prospective
observational trial assessing the efficacy of VA-ECMO versus
conventional CPR in witnessed in-hospital cardiac arrest
[64]. They found a significantly higher 30-day survival rate,
discharge rate from hospital, and 1-year survival rate in the
extracorporeal support group.

Most centers have reported significantly lower survival of
patients with out-of-hospital cardiac arrest treated with the
VA-ECMOwhen compared with patients who had witnessed
cardiac arrest of cardiac origin in hospital [65, 66].
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Le Guen et al. in their study reported very low survival
rates (4%) in patients supported with VA-ECMO following
OHCA and recommended a rather restricted approach for its
use for this indication [67].

ERC guidelines recommend consideration of extracor-
poreal life support in various scenarios, but not in out-of-
hospital cardiac arrest of cardiac origin [6, 8]. AHA 2010
guidelines do not recommend extracorporeal life support
techniques for routine use in patients with cardiac arrest.The
use of extracorporeal techniques should be considered only
in specialized centers and in persons with a good chance for
neurological recovery [68].

2.5. Hyperventilation and the Effect of Positive Airway Pres-
sure. Hyperventilation and intermittent positive pressure
ventilation (IPPV) “per se” have negative effects on circula-
tion during CPR and after ROSC [69]. Positive airway and
intrathoracic pressures during the mechanical inspiration
phase of the breathing cycle cause a significant decrease in
venous return to the thoracic cavity, reducing preload to the
right heart [70]. Hyperinflation results not only in a fall in
cardiac output and performance of the right ventricle, but
also cause a significant reduction in coronary perfusion pres-
sure [69] enhancing hypotension [71]. In published studies,
most paramedics ventilated patients at a higher frequency
and at higher inspiratory pressures than recommended [72].
A special device—impedance threshold device (ITD)—has
been developed in order to reduce intrathoracic pressures,
with a resulting improvement in venous return and coronary
blood flow during CPR [73, 74]. A valve inside the ITD
closes during chest wall recoil and helps to create a negative
intrathoracic pressure as low as −13mmHg [75]. Various
clinical studies have assessed the effect of ITD on survival and
neurological outcome after OHCA. In total, seven random-
ized controlled trials have assessed the ITD in prehospital
emergency care. A study by Plaisance et al. showed better
coronary perfusion and higher diastolic pressures in patients
treated with ITD valve [76] while another trial compared
the use of ITD with a sham device during CPR in twenty-
two patients with OHCA and showed marked improvement
in systolic pressure in the ITD group [77]. Use of the
ITD combined with active compression-decompression was
associated with increased hospital admission and short-term
survival rates [78, 79]. Aufderheide et al. compared ITD
with a sham device during standard CPR in 230 patients
[71]. The subgroup of people who presented with a pulseless
electrical activity (PEA) showed higher 24 h survival, while
there was no difference in patients with VF or asystole.
A meta-analysis based on available trials [80] concluded
that the use of ITD may improve short-term outcome after
OHCA. None of the studies evaluated hospital discharge
rate in terms of neurological deficit. A robust multinational
study unfortunately did not confirm the conclusions of this
meta-analysis [81]. The authors evaluated 8,718 patients with
OHCA randomly allocated to an active treatment with ITD
and to sham group and found no differences in survival,
ROSC, or recovery without neurological dysfunction. Similar
concerns were also reported by some animal studies. These

trials reported either no positive effect of ITD [82, 83] or
indeed a worse outcome in the ITD groups [84].

On the other hand, if an ITD is combined with active
compression-decompression it improves hospital discharge
with neurologically favourable outcomewhen comparedwith
conventional CPR [78].

The real significance of clinical studies assessing the role
of ITD in OHCA might be confused by the fact that some
studies compared ITD use with conventional CPR only,
whilst other studies implemented ITD application with the
use of active compression-decompression CPR [81].

ERC guidelines do not recommend the routine use of
the ITD due to a lack of data confirming its benefit in long-
term survival of victims [6, 7]. AHA guidelines recommend
consideration of ITD use by the staff familiar with the device
during OHCA (level of evidence B, class IIb) [68].

3. Management after Resuscitation
(Post-ROSC Period)

3.1. Hyperoxemia after Resuscitation. Hypoxemia has dele-
terious and potentially lethal effects on vitally important
organs, mainly on the brain and myocardium. However,
recent studies have shown that hyperoxemia may also have
significant negative effects in the postcardiac arrest period,
primarily on neurological outcome [10, 85]. Excessive oxy-
gen is a precursor for reactive forms of oxygen (reactive
oxygen species—ROS, oxygen free radicals—OFR) which
are created after restoration of spontaneous circulation in
the tissues as a part of ischemia-reperfusion injury [5].
Mainly superoxide, hydroxyl radicals, and peroxynitrite
cause direct damage to the cells which may result in their
worsened function or death.

Several animal trials and data from three human studies
support this theory. The effect of different oxygen fraction
on neurological outcome after experimental cardiac arrest
in animals was firstly evaluated by Balan et al. 2006 [85].
The authors induced ventricular fibrillation in 17 dogs and
then resuscitated them using open-chest CPR.The dogs were
subsequently randomized to receive either 100% O

2
IPPV

or controlled ventilation with FiO
2
adjusted according to

pulse oximetry measurements (target spO
2
was 96%). In the

hyperoxemic subgroup paO
2
rose to 75.2 (±4.8) kPa while, in

the oximetry subgroup, it remained within the physiological
range—12.5 (±0.5) kPa. Hyperoxemic dogs showed a higher
incidence of neurological deficit at 23 hours, as well as a
higher number of pathologically altered neuronal changes in
the CA1 region of the dorsal hippocampus. Similar findings
were also reported by Liu et al, who demonstrated better neu-
rological recovery and a lower degree of lipid oxygenation in
the brain at 24 h on a canine model of ventricular fibrillation
in normoxemic animals (FiO

2
0.21) than in a hyperoxemic

group (FiO
2
1.0) [86]. Vereczki et al. performed another

study on a canine model of cardiac arrest and demonstrated
that normoxemic animals in the post-ROSC period had
a lower level of oxidative stress, decreased intraneuronal
protein nitration, and a lesser extent of neuronal death in
the hippocampus [87]. Another study performed on swine
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model ventilated with 100% oxygen for 60 min after ROSC
also showed a significantly higher degree of degeneration
of neural cells in the striatum when compared with the
group ventilated with FiO

2
0.21 10 minutes after ROSC

[88]. These findings are, however, disputable because of
the retrospective study design and insufficient number of
probands.

Angelos et al. demonstrated a deleterious effect of post-
ROSC hyperoxemia on a rat model. Sprague-Dawley rats
exposed to high-concentration oxygen for 60min presented
with significantly impaired function of myocardial mito-
chondria when compared with normoxemic rats [89].

The first human trial related to the oxygen fraction in
the postarrest period was published in 2006 [90]. In total,
28 patients who had witnessed OHCA were randomized to
receive controlled ventilation with FiO

2
1.0 or 0.3, respec-

tively, after the return of spontaneous circulation. Functional
neurological status and biochemical markers of neuronal
injury (neuron specific enolase—NSE, protein S100) were
measured for up to 48 h after ROSC. There was a higher
level of NSE at 24 h in the hyperoxemic group without any
difference in mortality or neurological outcome. However,
this study was significantly underpowered to detect changes
in neurological status between the groups.

More human data comes from a retrospective analysis
of 6,326 patients hospitalized in the ICU after CPR for
cardiac arrest [10]. These persons were divided into the three
groups—hypoxemia (PaO

2
less than 8.0 kPa), normoxemia

(PaO
2
between 8.0 and 40 kPa), and hyperoxemia (PaO

2

more than 40 kPa). A significantly higher hospital mortality
(63%) was demonstrated in the hyperoxemic patients, whilst
the lowest mortality was seen in normoxemic victims (44%).
Hyperoxemic patients also had the highest incidence of
neurological deficit at hospital discharge.

However, these findings were questioned by two recent
clinical studies [91, 92]. In total, 12,108 patients resuscitated
from nontraumatic cardiac arrest were divided into three
groups according to their PaO

2
. The authors studied the

outcomes of resuscitated adult patients divided into three
groups according to their worst PaO

2
within 24 h after

CPR. The hyperoxemic group showed slightly lower survival
rate than normoxemic victims but after adjustments and
Cox modelling the differences became statistically insignifi-
cant [91]. Spindelboeck and colleagues studied the outcome
of resuscitated adult patients divided into three groups
according to their PaO

2
at 60 min after commencing CPR.

Hyperoxemic group showed higher survival rates to the
hospital admission than normoxemic and hypoxemic groups
but differences in neurologically intact survival rates were
insignificant between the groups [92].

Another study explored the time frame of exposure to
hyperoxemia after cardiac arrest [93]. The authors found that
most patients were exposed to high values of PaO

2
in the

immediate period after ROSC or during the following 24
hours, suggesting that the highest hyperoxemic values are
associated with treatment in the prehospital phase and the
Emergency Department. Furthermore, patients after OHCA
had a higher incidence of hyperoxemia than patients after

in-hospital cardiac arrest. As in other published studies,
there have been extensive discussions over how to define
hyperoxemia.

Based on this evidence, a lower targeted oxygen therapy
(spO
2
or saO

2
between 94 and 98%) may be beneficial

in the period after ROSC. Both resuscitation guidelines
published recently—the American Heart Association (AHA)
guidelines and European Resuscitation Council guidelines
since 2010—highlight the harmful effect of hyperoxemia after
ROSC. They recommend consideration of a normoxemic
strategy controlled by spO

2
(94–98%) or saO

2
monitoring

[6, 7].

3.2. Ventilation and Carbon Dioxide Tension after ROSC.
Controlled ventilation affects carbon dioxide (CO

2
) tension

in the vascular system. Cardiac arrest is typically associated
with profound metabolic acidosis. Previously, strategies have
recommended hyperventilation after ROSC with the aim of
decreasing PaCO

2
and thus stabilizing the pH of arterial

blood. However, a deleterious effect on brain circulation is
seen if hyperventilation results in hypocapnia [94]. Cerebral
hyperperfusion occurs immediately after ROSC and can
persist for up to 30 minutes. The subsequent period is
characterized by significantly reduced cerebral blood flow.
Hypocapnia during this period potentiates vasoconstriction,
which can further aggravate postresuscitation hypoxic brain
injury [7]. On the other hand, insufficient CO

2
removal is

associated with hypercapnia contributing to the vasodilation
of cerebral vessels and elevated intracranial pressure (ICP).

Falkenbach et al. highlighted the effect of postresus-
citation therapeutic hypothermia on PaCO

2
level [95].

Hypothermia decreases metabolic rate and carbon dioxide
production. In their multicenter study, approximately 45%
of patients experienced hypocapnia or hypercapnia, both
of which negatively affect brain perfusion. The results of
this study support the necessity of frequent and regular
optimization of ventilator settings in the first 48 hours after
OHCA. A number of studies have evaluated the effects of
hypercapnia and hypocapnia on outcomes in adult patients
after cardiac arrest. The database of the Australian and New
Zealand Intensive Care Society (16,542 patients) has shown
higher mortality and lower discharge rates in hypocapnic
patients when compared with normocapnic and hypercapnic
victims [96]. Roberts and colleagues analyzed adult cardiac
arrest registry data from 193 victims and found that 69% of
them experienced pathological values of PaCO

2
after OHCA

[97]. Both hypocapnia and hypercapnia were associated
with worsened neurological outcome. Lee et al. studied the
relationship between blood gas tensions and outcome in 213
patients after OHCA treated with therapeutic hypothermia
[98]. Hypocapnia was associated with higher in-hospital
mortality; both hyperoxemia and hypoxemia were associated
with worsened neurological outcome.

ERC guidelines suggestmaintaining normocapnia during
postresuscitation care [6]. AHA 2010 guidelines recommend
monitoring of CO

2
tension with capnography and arterial

blood gas analysis and keeping its level within the physiolog-
ical range (PaCO

2
40–45mmHg; PetCO

2
35–40mmHg) [7].
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4. Conclusions

During last decade, many papers have evaluated the issues
of respiration, oxygenation, and airway management in
OHCA. Some of them have been high-quality random-
ized controlled trials, moving the science of resuscitation
forward and changing established algorithms and resus-
citation protocols. The main finding arising from these
studies is that, in OHCA of cardiac origin in adults,
significantly interrupting chest compressions for the pur-
poses of advanced airway management have a negative
impact on patient survival and neurological outcome [36,
99]. These findings have prompted changes in BLS of
adult patients with OHCA of nontraumatic origin. CAB
(circulation-airway-breathing) has evolved from ABC [100]
with the development of a new resuscitation philosophy—
cardiocerebral resuscitation (CCR) [101, 102].

Passive oxygenation has its advocates, but one can object
that its main beneficial effect is actually in minimizing
the interruption of chest compressions in comparison with
advanced airway management techniques.

The role of extracorporeal techniques on survival in
patients after OHCA remains unclear. A few studies have
demonstrated its benefit in patients with persisting cardiac
arrest and with reactive pupils, though other trials have failed
to report any significant benefit with this technique.

The choice of airway management technique in
OHCA remains controversial. Although bag-valve mask
ventilation has been repeatedly associated with better
survival—including better neurological function than
advanced techniques of airway management, the risk of
regurgitation and aspiration cannot be underestimated.
Tracheal intubation in the hands of experienced operators is
still a reliable method. The evidence would suggest, however,
that it should not be employed by individuals with low
skills, limited experience, or infrequent exposure [37, 103].
The insertion of a supraglottic airway device in OHCA is
probably associated with worse patient outcomes than other
methods of airway management.

A few studies have explored the harmful effects of
hyperoxemia, hyperventilation, and excessive chest inflation
on patient outcome following OHCA. A significant number
of these studies were performed on animal models with
a small number of probands, and their interpolation to
humans is difficult [104, 105]. Initial studies related to the
use of an impedance threshold device (ITD), which protects
against lung hyperinflation and helps to create a negative
intrathoracic pressure, were promising in patients with
OHCA of cardiac origin [73]. Unfortunately, a recent large
trial did not show any beneficial effect of ITD on long-term
survival with good neurological function [81].

The deleterious effects of pathological PaCO
2
values

after ROSC on neurological outcome have been repeatedly
described. Dyscarbia is a very common finding during
therapeutic hypothermia in the postresuscitation period
due to the decreased metabolic demand of patients [95].
Clinicians shouldmaintain PaCO

2
in the upper physiological

values after ROSC.
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