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Introduction: Artificial intelligence is widely used inmedical field, andmachine learning has
been increasingly used in health care, prediction, and diagnosis and as a method of
determining priority. Machine learning methods have been features of several tools in the
fields of obstetrics and childcare. This present review aims to summarize the machine
learning techniques to predict perinatal complications.

Objective: To identify the applicability and performance of machine learning methods
used to identify pregnancy complications.

Methods: A total of 98 articles were obtained with the keywords “machine learning,”
“deep learning,” “artificial intelligence,” and accordingly as they related to perinatal
complications (“complications in pregnancy,” “pregnancy complications”) from three
scientific databases: PubMed, Scopus, and Web of Science. These were managed on
the Mendeley platform and classified using the PRISMA method.

Results: A total of 31 articles were selected after elimination according to inclusion and
exclusion criteria. The features used to predict perinatal complications were primarily
electronic medical records (48%), medical images (29%), and biological markers (19%),
while 4% were based on other types of features, such as sensors and fetal heart rate. The
main perinatal complications considered in the application of machine learning thus far are
pre-eclampsia and prematurity. In the 31 studies, a total of sixteen complications were
predicted. The main precision metric used is the AUC. The machine learning methods with
the best results were the prediction of prematurity from medical images using the support
vector machine technique, with an accuracy of 95.7%, and the prediction of neonatal
mortality with the XGBoost technique, with 99.7% accuracy.
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Conclusion: It is important to continue promoting this area of research and promote
solutions with multicenter clinical applicability through machine learning to reduce perinatal
complications. This systematic review contributes significantly to the specialized literature
on artificial intelligence and women’s health.

Keywords: perinatal complications, machine learning, pregnancy, artificial intelligence, predictive tool, prediction model

INTRODUCTION

While most pregnancies and births are uneventful, all pregnancies
are at risk. About 15% of all pregnant women will develop a life-
threatening complication that requires specialized care, and some
will require major obstetric intervention to survive (WHO, 2019).
According to the World Health Organization (WHO), around 800
women die every day around the world from preventable causes
related to the inherent risks of pregnancy. About 295,000 women
died during and following pregnancy and childbirth in 2017. The
vast majority of these deaths (94%) occurred in low-resource
settings, and most could have been prevented (WHO, 2019).

Several maternal factors influence the appearance of perinatal
complications. It is recognized that the first trimester of
pregnancy is the best stage to predict and prevent perinatal
complications. For example, it is known that increasing
obesity in women of childbearing age leads to increased risk of
perinatal complications such as gestational diabetes, large for
gestational age (LGA), fetal macrosomia, and hypertensive
syndromes in pregnancy (Denison et al., 2010; Mariona, 2016;
Edwards and Wright, 2020). On the other hand, developed
countries tend to see decreased birth rates over the years,
leading to advanced gestational ages, predisposing women to
adverse pregnancy outcomes (Laopaiboon et al., 2014).

Artificial intelligence (AI) technologies have been developed to
analyze a wide range of health data, including patient data from
multibiotic approaches, as well as clinical, behavioral,
environmental, and drug data, and from various data included
in the biomedical literature (Hinton, 2018). AI can help
professionals in making decisions, reducing medical errors,
improving accuracy in the interpretation of various diagnoses,
and thereby reducing the workload to which they are exposed
(Makary and Daniel, 2016). Machine learning (ML) is the subfield
of computer science and a branch of AI. These techniques provide
the ability to infer meaningful connections between data items
from various data sets that would otherwise be difficult to
correlate (Darcy et al., 2016; Obermeyer and Emanuel, 2016).
Due to the large quantity and complex nature of medical
information, ML is recognized as a promising method for
supporting diagnosis or predicting clinical outcomes (Bottaci
et al., 1997; Frizzell et al., 2017).

There are different types of data used for health learning
models, including electronic medical records, medical images,
biochemical parameters, and biological markers (Ahmed et al.,
2020). The type of data that is used depends on what one tries to
diagnose through ML.

Most of these decision support systems remain complex black
boxes, which means that their internal logic is hidden from the
clinical team who cannot fully understand the rationale behind their

predictions. Interpretability is important before any health-care team
can increase reliance on ML systems (Carvalho et al., 2019).
Therefore, the research community has focused on developing
both interpretable models and explanatory methods in recent years.

In general, the ML models are validated using the train–test
split or the cross-validation schemes. Models are usually initially
fitted to a training data set (Sohil et al., 2021), a set of examples
used to fit the model parameters. Model fitting may include both
variable selection and parameter estimation (Ripley, 1996). The
test data set is a data set that is used to provide an unbiased
evaluation of a final model fit on the training data set (Brownlee,
2017). Cross-validation is a statistical method for evaluating and
comparing learning algorithms by dividing the data into k-folds,
where each fold is separated into two segments: one used to learn
or train a model and one used to validate the model. In typical
cross-validation, the training and validation sets must be crossed
in successive rounds so that each data point has a chance to be
validated (Refaeilzadeh et al., 2009). Deciding the sizes and
strategies for partitioning data sets into training, test, and
validation sets depend mainly on the problem and available
data. The performance metrics of the ML model are related to
the ability of a test to determine if a health diagnosis is effective.
Some of the commonly used metrics are accuracy (number of
correctly classified assessments over the total number of
assessments), precision, sensitivity and specificity, predictive
values, probability ratios, and the area under the ROC curve
(Šimundić, 2009). To evaluate the success of an ML system when
predicting a medical diagnosis, these must be taken into account.
It is relevant to note that the area under the curve (AUC) is one of
the main performance metrics used in prediction systems;
however, metrics such as precision are recommended to
complement the results.

Recent studies have described how AI has been involved in
areas like gynecology and obstetrics (Iftikhar et al., 2020; Cecula,
2021); however, the effect of all ML techniques on the prediction
of perinatal complications has not been reviewed. Thus, we
decided to carry out this review to present and synthesize
different ML-based models, highlighting the main input
characteristics used for training, output results, performance
metrics in prediction, and contribution to decision-making
related to perinatal complications associated with non-
congenital risk factors in pregnant women.

METHODS

This systematic review was carried out following the guidelines
for systematic reviews and meta-analysis (PRISMA) (Urrútia and
Bonfill, 2010) (Supplementary Table S1).
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Information Sources and Search Strategy
Full and original articles related to ML techniques on complications
during pregnancy published in English from 2015 to 2020 were
searched on PubMed, Web of Science, and Scopus databases. Search
terms were chosen and searches performed in an iterative process,
initially using word headings associated with ML, such as “machine
learning,” “deep learning,” “artificial intelligence,” and related to
perinatal complications, such as “complications in pregnancy” and
“pregnancy complications,” and excluding articles related to
postpartum and congenital complications. For PubMed, the
MESH terms were used to include associated synonyms in the
search, and for Scopus and Web of Science, the terms of interest
mentioned before with Boolean operators were used (Table 1). The
search and final collection of articles were 98 articles, of which 20
were excluded by duplication.

Eligibility Criteria
The included criteria for the articles searched were 1) English original
articles, 2) access to full text, 3) studies based on humans, 4) studies
using machine learning methods to predict complications in
pregnancy, and 5) complications during pregnancy and at term in
the mother and the newborn. The exclusion criteria applied were 1)
systematic reviews, meta-analysis, and bibliographic reviews; 2)
articles that included postpartum complications; 3) maternal
congenital disease that increases the risk of perinatal
complications; and 4) fetal congenital diseases. Articles were
added manually according to the aforementioned criteria.

Article Screening
All articles found were uploaded to the Mendeley desktop
platform, where they were saved in a dedicated folder for the
present systematic review. After eliminating the duplicate articles,
a total of 78 articles remained. Then 16 articles were excluded by
title, 18 were excluded by criteria, and 19 were excluded after
reading. Finally, 31 articles for the review were selected. The
selected articles were classified by the ML model used, type of
features used, outputs, and performance metrics, in order to
estimate which methods are the most accurate in the context of
predicting perinatal complications.

Risk of Bias
The 31 articles were subjected to the CASP checklist, which
contains 11 questions to help evaluate a clinical prediction rule
(CASP, 2017). Study quality was scored according to the CASP
critical score: if the criterion was met entirely � 2 points; criterion
partially met � 1 point; and criterion not applicable/not met/not
mentioned � 0. Finally, study quality was ranked: a total score of
22 � high quality; 16–21 � moderate quality; and ≤15 � low
quality.

Data Synthesis and Visualization
To optimize the visualization of the results obtained in the
systematic review, several tables were made according to the
terms addressed in the search, showing complications that the
models seek to predict, input characteristics for the training of the
ML model, the type of ML used, and its validation and
performance metrics.

RESULTS

Study Characteristics
To apply the PRISMA method, the articles have been classified
according to the criteria mentioned before: title, abstract, and the
full article. A total of 84 articles were found, of which 52 were
excluded because they did not meet the search criteria of interest.
Of these, 16 were eliminated by title, 18 after reading the abstract,
and 19 after reading the entire article, leaving 31 articles to
analyze (Figure 1 and Supplementary Table S2). The type of
studies in the manuscripts analyzed were mainly cohort (87.2%)
and retrospective (96.8%). The populations studied were
primarily from Asia and Europe (both 32.3%), followed by
North and South America (22.5 and 6.5%, respectively). An
increased rate of studies was observed during 2019 (35.5%)
(Table 2). The features mainly used to predict perinatal
complications are electronic medical records (48%) and then
medical images (29%), biological markers (19%), and 4% are
based on another type of feature, in this case, sensors (Moreira
et al., 2016a) and fetal heart rate (Zhao et al., 2019). Two studies
contemplate two features: electronic medical records and medical
images (Nair, 2018; Lipschuetz et al., 2020).

According to the CASP checklist, one article met the total
score and was classified as a high-quality article (Gao et al., 2019).
The rest of the items were classified as moderate quality and none
as low quality according to the evaluation criteria (average total
score � 18–19). It is essential to mention that the “non-
compliance” items were not being mentioned or not applicable
to the study. The item asking whether the sample was randomized
in 15 articles does not apply since analyzed retrospective
electronic health records or images. Regarding using a
comparison group, 12 reports do not apply due to
retrospective data and data management for the prediction
model (Supplementary Figure S1).

Features Studied
The choice of informative, discriminatory, and independent
characteristics is crucial to achieving effective algorithms for
recognizing, classifying, and regression patterns. Thus, the four
types of features analyzed in the articles were electronic medical

TABLE 1 | Search expressions used in the systematic review.

Data base Search expression Year of publication

PubMed [“Machine learning” (Mesh)] AND “Pregnancy Complications” (Mesh) NOT (“postpartum”) 2015–2020
Web of Science (“Machine learning” OR “Deep learning” AND (“complications in pregnancy” OR “pregnancy complications” OR “perinatal

complications”) NOT (“postpartum”)Scopus
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FIGURE 1 | Process for selecting articles for the systematic review (PRISMA). One hundred four articles were found. Sixteen articles were excluded by title, 18 were
excluded by criteria, and 19 were excluded after reading. Finally, 31 articles for the review were selected.

TABLE 2 | Main characteristics of selected articles.

Type of study Temporality Geographic location of
the study group

Year of publication

Cohort (87.2%) Retrospective (96.8%) Asia (32.3%) 2015 (3.2%)
Control case (6.4%) Prospective (3.2%) Europe (32.3%) 2016 (9.6%)
Exploratory (3.2%) North America (22.5%) 2017 (12.9%)
Cross section (3.2%) South America (6.5%) 2018 (19.4%)

Africa (3.2%) 2019 (35.5%)
Oceania (3.2%) 2020 (19.4%)
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TABLE 3 | Perinatal complications predicted through ML models using electronic medical records.

Electronic medical records

Ref Time of
data

collection

Number
of

records

Outcome Validation technique ML methods Performance metrics

AUC Sen.
(%)

Spec.
(%)

Acc.
(%)

Lipschuetz et al.
(2020)

During
pregnancy with
term delivery

9,888 TOLAC failure risk 10-fold cross-validation
and deletion of a portion
of the data

Gradient increasing
machines

0.793 — — —

-High RF 0.756 — — —

-Medium RF 0.782 — — —

-Low AdaBoost set 0.784 — — —

Hamilton et al.
(2020)

<22 gw 100 Severe neonatal
mortality v/s no severe
neonatal mortality

10 replicates of 10-fold
cross-validation and on
the one standard error
rule

Decision tree 0.853 79.7 80.9 75.6
SVM 0.851 79.1 79.6 77.4
Generalized additive
model

0.850 80.6 81.8 75.0

Simple neural network 0.848 78.5 80.7 73.3
Artzi et al. (2020) <20 gw 588,622 High-risk GDM v/s low-

risk GDM
Cross-validation on the
training set, and
resampling from the
validation

Gradient augmentation
machine built with
decision tree base
learners

0.850 — — —

Jhee et al. (2019) Early second
trimester to
34 gw

1,006 Pre-eclampsia v/s no
pre-eclampsia

Training (70%) validation
set (30%)

Logistic regression — 70.3 — 86.2
Decision tree — 64.8 — 87.4
Naive Bayes — 50 — 89.9
SVM — 13.7 — 89.2
RF — 67.9 — 92.3
Stochastic gradient
augmentation method

— 60.3 — 97.3

Rittenhouse et al.
(2019)

During
pregnancy (not
specified)

1,450 Premature v/s not
prematurea

k-fold cross-validation
(with 10 folds)

Binary logistic regression
model, RF classification,
and generalized additive
model

0.868 98.9 — —

— Gestational age
prediction

k-fold cross-validation
(with 10 folds)

Combined continuous
model of linear
regression, RF,
regression, and
generalized additive
models

0.878 90.2 — —

Kuhle et al. (2018) Pre-pregnancy
at 26 gw

30,705 LGA v/s AGA Test (20%) training
(80%) and ten-fold
cross-validation in the
training data

RF 0.728 — — 79.9
Decision tree 0.718 — — 79.4
Elastic net 0.748 — — 80.9
Gradient increasing
machines

0.748 — — 80.5

Logistic regression 0.745 — — 81.3
Neural network 0.746 — — 81.2

SGA v/s AGA Test (20%) training
(80%) and ten-fold
cross-validation in the
training data

RF 0.745 — — 90.3
Decision tree 0.713 — — 80.1
Elastic net 0.771 — — 91.2
Gradient increasing
machines

0.766 — — 91.1

Logistic regression 0.771 — — 91.2
RF 0.772 — — 91.4

Khatibi et al.
(2019)

During
pregnancy,
before 37 gw

1,547,677 Non-premature delivery
v/s premature

Training dataset Set of decision trees,
SVM and RF

0.68 — — 81.0

Malacova et al.
(2020)

During
pregnancy (not
specified)

952,813 Miscarriage v/s born
alive

Dataset was randomly
divided into 10 folds

Artificial neural networks:
multilayer perceptron +
radial base networks

— 80 94.1 90.9

Pan et al. (2017) During
pregnancy (not
specified)

6,457 Adverse delivery v/s
non-adverse delivery

10-fold cross-validation
and repeated the cross-
validation process with
new folds 9 more times
in the test set

Logistic regression — 31.9 — —

Linear discriminant
analysis

— 31.7 — —

RF — 30.1 — —

Naive Bayes — 29.2 — —

Moreira et al.,
2016b

During
pregnancy (not
specified)

25 Hypertensive disorder
v/s without
hypertensive disorder

10-fold cross-validation
for decision trees

Decision tree J48 0.748 60 — —

5-fold cross-validation
method

Naive Bayes 0.782 52 — —

(Continued on following page)
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records (EMRs) (Table 3), medical images (recordings,
ecotomographs, ultrasound, resonance, etc.) (Table 4),
biological markers (Table 5), and others (sensors and fetal
heart rate) (Table 6).

Perinatal Complications to Predict
These have been divided into 16 main prediction outputs:
prematurity, pre-eclampsia, adverse delivery, size for
gestational age, gestational diabetes mellitus, neonatal
mortality, fetal acidemia, fetal hypoxia, placental accreta,
pulmonary diseases, cesarean section, placental invasion,
congenital anomaly, severe maternal morbidity, spontaneous
abortion, and trial of labor after cesarean (TOLAC) failure
(Figure 2). The main perinatal complications considered in
the application of ML are prematurity (7 studies) and pre-
eclampsia (6 studies).

Validation Methods
Validation methods are strategies that allow the estimation of the
predictive capacity of ML models. Fifty-five percent use training
tests and the cross-validation method as a validation method with
greater reliability in results, while 41.8% use a single validation
method and 3.2% do not use any validation method (neither
training tests nor cross-validation).

ML Models and Performance Metrics
In the present review, 67.7% of the articles used AUC and 61.3%
used the accuracy metric. Sensitivity was only evaluated in 61.3%

of the studies. While all studies assess results with at least one
performance metric, reports of predictive accuracy were often
incomplete, with a total of 38.7% of studies reviewing at most two
performance methods. According to the studies, none had a
clinical application, they only functioned to establish precise
prediction systems in the diagnosis of the different perinatal
complications presented.

Twenty-one different ML methods were used to predict
these 16 perinatal complications. Placental invasion is referred
to as placental adhesive disorders observed in women with
placenta previa or prior cesarean section that lead to
complications such as perinatal hemorrhage and visceral
injuries, where an early diagnosis is necessary for
appropriate treatment (Sun et al., 2019). Excellent
performance of placental invasion can be observed with an
AUC and an accuracy of 0.980 and 95.2%, respectively, using
the Tree-based Pipeline Optimization Tool (TPOT) (Sun et al.,
2019). To predict fetal acidemia, using convolutional neural
networks, an AUC and accuracy of 0.978 and 98.4% are
achieved, respectively (Zhao et al., 2019). Only one study of
the six attempting to diagnose pre-eclampsia had a
performance considered as good, using the AdaBoost
model, with an AUC of 0.964 and an accuracy of 89%
(Munchel et al., 2020). The prediction of prematurity has
excellent results in two studies; the one that uses SVM
achieves an AUC of 0.952 and an accuracy of 95.7%
(Sadi–Ahmed et al., 2017), and the study that uses stacked
sparse autoencoder achieves an AUC of 0.900 and an accuracy

TABLE 3 | (Continued) Perinatal complications predicted through ML models using electronic medical records.

Electronic medical records

Ref Time of
data

collection

Number
of

records

Outcome Validation technique ML methods Performance metrics

AUC Sen.
(%)

Spec.
(%)

Acc.
(%)

Gao et al. (2019) During
pregnancy (not
specified)

45,858 Severe maternal
morbidity v/s no serious
maternal morbidity

Train dataset and 10-
fold stratified cross-
validation

Logistic regression 0.937 76.5 — —

Mailath-Pokorny
et al. (2015)

Between 22
and 32 gw

617 Delivery prediction
within 48 h of transfer v/
s Before 32 gw

Validation set Multivariate logistic
regression

0.850 — — —

Shigemi et al.
(2019)

Data from the
first and last
prenatal
checkup

15,263 Macrosomia v/s No
macrosomia

Training dataset (90%)
and a validation
dataset (10%)

Logistic regression 0.880 88 55 —

RF 0.990 60 82 —

Paydar et al.
(2017)

Before the first
trimester

149 Live births v/s stillbirths Test (70%)
training (30%)

Logistic regression 0.834 40.5 99.7 94.7
Decision tree 0.808 40.6 94.7 99.7
RF 0.836 41.1 94.7 99.7
XGBoost 0.842 45.3 94.7 99.7
Artificial neural networks
multilayer perceptron

0.840 43.5 94.7 99.7

Spontaneous preterm
birth

Multivariate logistic
regression

0.670 — — —

Boland et al.
(2017)

Each trimester
of pregnancy

36,898 Pregnancies without
congenital abnormality
v/s pregnancies with
congenital abnormality

Method of data
validation is not
identified

RF — — — 88.9

Ref., references; ML, machine learning; AUC, area under curve; Sen, sensitivity; Spec, specificity; Acc, accuracy; TOLAC, trial of labor after caesarean, RF, random forest; gw, gestational
weeks; SVM, support vector machine; GDM: gestational diabetes mellitus; LGA, large for gestational age; AGA, adequate for gestational age, SGA, mall for gestational age.
aThis study also uses biological markers.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7803896

Bertini et al. Machine Learning and Pregnancy Complications

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


of 90% (Chen et al., 2019). For the prediction of neonatal
mortality, through sociodemographic records using XGBoost,
an AUC of 0.842 and an accuracy of 99.7% were obtained
(Hamilton et al., 2020). Regarding the performance of the
predictions included in the greatest number of studies,
prematurity outperformed pre-eclampsia according to the
AUC (Table 7).

It was decided to corroborate the performance of the methods
based on deep learning. Only four studies used deep learning
methods. They all had an excellent performance. For the
prediction of fetal acidemia, a deep convolutional network was
used with an AUC of 0.978 and an accuracy of 98.4% (Zhao et al.,
2019). For the prediction of spontaneous abortion, multilayer
perceptron and radial-based networks were used, with an
accuracy of 90.9% (Paydar et al., 2017). And as mentioned
above, for the prediction of pre-eclampsia, using biological
markers and multilayer perceptron, an AUC of 0.908 was
obtained (Nair, 2018). For the prediction of neonatal
mortality, through sociodemographic records using XGBoost,
an AUC of 0.842 and an accuracy of 99.7% were obtained
(Hamilton et al., 2020) (Table 8).

Interpretable ML Models
The interpretability of ML models refers to the degree to
which a human being can consistently predict the outcome of
the model (Kim et al., 2016), which has been well accepted by
the clinical team. In this systematic review, we found that 24%
of the studies use AI-interpretable ML models. The ML
methods that were the most used in the prediction of
perinatal complications were the random forest, logistic
regression, neural networks, and support vector
machine (SVM).

Predictive Variables
Forty-eight percent of the studies explain the main characteristics
of pregnant women that could be relevant to predict some
conditions. Characteristics and antecedents such as gestational
diabetes, cardiovascular disease, underlying diseases, and the age
of the mother, as well as the presence of chronic arterial
hypertension, are considered high-ranking features for the
prediction of premature births; and the father’s nationality is
very important to differentiate the provider-initiated
spontaneous preterm births (Khatibi et al., 2019).

TABLE 4 | Perinatal complications predicted through ML models using medical images.

Medical Images

Ref Time of
data collection

Number of
records

Outcome Validation
technique

ML methods Performance metrics

AUC Sen.
(%)

Spec.
(%)

Acc.
(%)

Sun et al. (2019) After 24 gw 155 Placental invasion v/s
placenta previa simple

Test (83%)
Training (17%)

Genetic algorithm-
based machine
learning algorithm
implemented in TPOT

0.980 100 88.5 95.2

Chen et al.
(2019)

150 EHG in pregnancy
(not specified) and 150
EHG in labor (24 h
before delivery usually)

300 Premature v/s born of
term

Test (67%)
training (33%)

Stacked sparse
autocoder

0.900 92 88 90

Extreme learning
machine

0.840 80 88 83

SVM 0.850 88 82 85
Fergus et al.
(2018)

>36 gw 552 Vaginal delivery v/s
caesarean section

Test (80%)
training (30%)

SVM RF and linear
discriminant analysis of
features

0.960 87 90
— — — —

Borowska et al.
(2018)

From 24 to 28 gw 20 Deliver after 7 days v/s
deliver within 7 days

10-fold cross-
validation

PCA + SVM — — — 83.32
RQA + SVM — — — 79.3

Veeramani and
Muthusamy
(2016)

During pregnancy (not
specified)

ni Diagnosis of recurrent
lung diseases in the
newborn

Test Training RVM — — — 100
Multilevel RVM — — — 90

Romeo et al.
(2019)

During pregnancy (not
specified)

108 Delivery with placental
accreta spectrum v/s
delivery without
placental accreta
spectrum

Test (75%) training
(25%) and a 10-fold
cross-validation

RF — 93.7 93.7 95.6
K-nearest neighbor — 97.5 98.7 98.1
Naive Bayes — 86.1 75 80.5

— Multilayer perceptron — 92.4 83.8 88.6

Sadi-Ahmed
et al. (2017)

Between the 27th and
the 32nd gw

30 Premature vs. term 100 iterations of
“holdout” cross-
validation for training
and test sets

SVM 0.952 98.4 93 95.7

Cömert et al.
(2018)

During pregnancy (not
specified)

552 Presence of fetal
hypoxia v/s absence of
fetal hypoxia

Test (90%) training
(10%) and 10-fold
cross-validation

Least squares support
vector machines

— 63.5 65.9 65.4

Weber et al.
(2018)

First prenatal visit ∼2,700,000 Born preterm v/s born
of term in white women
v/s color

Test set and 5-fold
cross-validation

Logistic Regression 0.625 56 62.5 —

Ref., references;ML, machine learning; AUC, area under curve; Sen, sensitivity; Spec, specificity; Acc, accuracy; gw, gestational weeks; TPOT, tree-based pipeline optimization tool; EHG,
electrohysterograhic; SVM, support vector machine; PCA, principal components analysis; RQA, recurrence quantification analysis; RVM, relevance vector machine.
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On the other hand, important predictors to determine the
likelihood of a newborn to be small for gestational age (SGA) were
smoking, a particular amount of gestational weight gain, and
low–birth weight newborn. The body mass index (BMI) before
pregnancy, gestational weight gain, and a macrosomic newborn
in a previous delivery were the strongest predictors to determine
large for gestational age (LGA) newborns (Kuhle et al., 2018). To
predict fetal macrosomia, the determining variables were age ≥30,
multiparity, 12 kg of total weight gain during pregnancy,
abdominal circumference >95 cm (at the last perinatal
checkup), and a gestation period over 39 weeks (Shigemi et al.,
2019).

In order to predict pre-eclampsia, the most influential
variables were systolic blood pressure, serum levels of ureic
nitrogen and creatinine, platelet count, serum potassium level,
leukocyte count, blood glucose level, serum calcium, and
proteinuria levels in the early second trimester (Jhee et al.,
2019). Interestingly, high pre-pregnancy BMI and previous

preterm births (Pan et al., 2017) were able to predict whether
pregnant women will have an adverse pregnancy outcome
(preterm, low birth weight, neonatal/infant death, stay in the
neonatal intensive care unit) and indicate the main risk
characteristics.

Furthermore, in order to predict TOLAC, the determining
factors in the predictionmodel were parity, age, vaginal birth with
cesarean section in the past, gestational weeks, minimum
gestation week in previous deliveries, the weight of the
newborn from the previous delivery, dilation, and head
position (Lipschuetz et al., 2020). To predict pregnancy
complications associated with placental alterations (pre-
eclampsia, GDM, fetal growth restriction, macrosomia),
maternal age, BMI, newborn weight, and the results of adverse
events in previous pregnancies were the most influential
characteristics in the study (Guo et al., 2020).

To predict gestational age at delivery (if the newborn will be
preterm) variables such as the date of the mother’s last

TABLE 5 | Perinatal complications predicted through ML models using biological markers.

Biological Markers

Ref Time of
data collection

Numbers
of

records

Outcome Validation technique ML methods Performance metrics

AUC Sen.
(%)

Spec.
(%)

Acc.
(%)

Guo et al.
(2020)*

For GDM <18 gw 2,199 GDM Training and validation Logistic regression 0.732 — — 72.6
For PE PE 0.813 — — 81.5
<20gw MA 0.766 71 82.3 80.0
For MA and FGR,
12–28 gw

FGR 0.775 — — 79.5

Liu et al.
(2019)

>20 gw 77 PE v/s control Test and training SVM 0.958 95 66.7 —

Nair (2018) >20 gw 38 PE v/s control Test (85%) training (15%) Artificial neural
networks multilayer
perception

0.908 — — —

Yoffe et al.
(2019)

First trimester of
gestation

43 GDM v/s
without GDMa

Trained and evaluated the
datasets via a leave-one-out
cross-validation

Logistic regression 0.740 88 40 76
RF 0.810 94 40 81
AdaBoost 0.770 94 60 86

Munchel et al.
(2020)

Between 12 and
37 gw

113 Severe PE v/s
without PE

Dataset trained with 10-fold
stratified cross-validation

AdaBoost 0.964 88 92 89

Ref., references; ML, machine learning; AUC, area under curve; Sen, sensitivity; Spec, specificity; Acc, accuracy; GDM, gestational diabetes mellitus; gw, gestational weeks; PE, pre-
eclampsia; MA, macrosomia; FGR, fetal growth restriction; SVM, support vector machine.
aThis study also uses electronic medical records.

TABLE 6 | Perinatal complications predicted through ML models using sensors and fetal heart rate.

Other features

Ref. Time of
data collection

Numbers
of

records

Outcome Validation
technique

ML methods Performance metrics

AUC Sen.
(%)

Spec.
(%)

Acc.
(%)

Moreira
et al.,
2016a

During
pregnancy (not
specified)

25 Complication in hypertensive
disorder v/s without complication in
hypertensive disordera

Leave-one-out
method of cross-
validation

Naive Bayes 0.687 42.3 94.4 80

Zhao et al.
(2019)

Intrapartum 552 Presence v/s absence of fetal
acidemiab

Training set and 10-
fold cross-validation

Deep convolutional
neural network

0.978 98.2 94.9 98.4

Ref., references; ML, machine learning; AUC, area under curve; Sen, sensitivity; Spec, specificity; Acc, accuracy.
aSensors.
bFetal heart rate.
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menstruation, birth weight, delivery of twins, maternal height,
hypertension during labor and HIV serological status were
decisive in the ML model (Rittenhouse et al., 2019). To
determine preterm birth, the presence of premature rupture
of membranes and/or vaginal bleeding, ultrasound cervical
length, gestation week, fetal fibronectin, and serum C-reactive
protein were the determining variables (Mailath-Pokorny
et al., 2015). In another study, prediction of preterm birth
considered the most relevant variables to be maternal age,
whether the mother was black, Hispanic, Asian, born in the
United States, delivered by herself or assisted by a physician,
presence of diabetes mellitus, chronic arterial hypertension,

thyroid dysfunction, asthma, previous stillbirth, fetal weight
loss, in vitro fertilization, nulliparity, being a smoker during
the first trimester, and BMI (Weber et al., 2018).

Stillbirth can potentially be identified prenatally
considering the combination of current pregnancy
complications, congenital anomalies, maternal
characteristics, and medical history (Malacova et al., 2020).
Determining factors for the prediction of fetal acidemia were
maternal age, gestational age, pH, extracellular fluid deficit,
pCO2, base excess, APGAR 1 and 5 min, parity, gestational
diabetes, birth weight, child sex, and the type of delivery (Zhao
et al., 2019).

FIGURE 2 | Number of studies according to the complication to be predicted. Sixteen complications were identified: Prematurity, pre-eclampsia, adverse delivery,
size for gestational age, gestational diabetes mellitus, neonatal mortality, fetal acidemia, fetal hypoxia, placental accreta, pulmonary diseases, cesarean section, placental
invasion, congenital anomaly, spontaneous abortion and trial of labor after cesarean (TOLAC) failure, and severe maternal morbidity.

TABLE 7 | Models with best performance according to AUC and accuracy.

Prediction Input characteristics ML model Performance No of pregnant women

Placental invasion Magnetic resonance TPOT AUC: 0.980 – Acc: 95.2% 100–1,000
Fetal academia Maternal sociodemographic characteristics Neural networks AUC: 0.978 – Acc: 98.4% 100–1,000
Pre-eclampsia Biological marker AdaBoost AUC: 0.964 – Acc: 89% <100
Prematurity EHG recordings SVM AUC: 0.952 – Acc. 95.7% 100–1,000
Prematurity EHG recordings Stacked sparse autocoder AUC 0.900 – Acc: 90% 100–1,000
Neonatal mortality Maternal sociodemographic characteristics XGBoost AUC: 0.842 – Acc: 99.7% >10,000

ML, machine learning; TPOT, tree-based pipeline optimization tool; AUC, area under curve; Acc, accuracy; EHG, electrohysterogram; SVM, support vector machine.

TABLE 8 | Models and precision based on deep learning.

Prediction Input characteristics Deep learning model Performance N° of pregnant
women

Fetal acidemia Maternal and newborn sociodemographic
characteristics

Deep convolutional network AUC: 0.978,
Acc: 98.4%

100 - 1,000

Spontaneous
abortion

Maternal sociodemographic characteristics Multilayer Perceptron and radial-based
networks

Acc: 90.9% 100 - 1,000

Pre-eclampsia Biological markers Multilayer Perceptron AUC: 0.908 <100
Neonatal mortality Maternal sociodemographic characteristics Multilayer Perceptron AUC: 0.84 -

Acc: 99.7%
>100,000

AUC, area under curve; Acc, accuracy.
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TABLE 9 | Main predictive variables for predicting perinatal complications

Prediction Predictive variables Machine learning model Performance

AUC Acc

Premature birth Gestational diabetes Set of decision trees, SVM and RF 0.680 81%
Cardiovascular disease
Underlying diseases
Maternal age
Chronic arterial hypertension

SGA Smoking RF 0.728 79.9%
A particular values of gestational
weight gain

DT 0.718 79.4%

Low–birth weight newborn Elastic net 0.748 80.9%
Gradient increasing machines 0.748 80.5%
Logistic regression 0.745 81.3%
Neural network 0.746 81.2%

LGA Pre-pregnancy BMI RF 0.745 90.3%
Gestational weight gain DT 0.713 80.1%
Macrosomic newborn in a previous
delivery

Elastic net 0.771 91.2%
Gradient increasing machines 0.766 91.1%
Logistic regression 0.771 91.2%
Neural network 0.772 91.4%

Fetal Macrosomia Greater than 30 years-old Logistic regression 0.888 ni
Multiparity RF 0.990 ni
A 12 kg total weight gain in
pregnancy
Abdominal circumference > 95 cm
(at last perinatal checkup)
Gestation age > 39 weeks

Pre-eclampsia At second trimester Logistic regression ni 86.2%
Systolic blood pressure DT ni 87.4%
Serum levels of ureic nitrogen Naive Bayes ni 89.9%
Creatinine in the blood SVM ni 89.2%
Platelet count, serum potassium level RF ni 92.3%
Leukocyte count Stochastic gradient augmentation method ni 97.3%
Blood glucose level
Serum calcium and urinary protein
levels

Adverse delivery (preterm, low birth weight, neonatal/infant
death, stay in the neonatal intensive care unit) v/s non-
adverse delivery

High pre-pregnancy BMI Logistic regression nia nia

Linear discriminant analysis nia nia

Previous preterm births Random forest nia nia

Naive Bayes nia nia

TOLAC Failure Risk Parity Gradient increasing machines 0.793 ni
Age RF 0.756 ni
Vaginal birth with cesarean section in
the past Gestational week

RF 0.782 ni

Minimum gestation week in previous
deliveries

AdaBoost set 0.784 ni

The weight of the newborn from the
previous delivery
Dilation and head position

Gestational age (if the newborn will be preterm) Hypertension during labor Binary logistic regression model, random forest
classification, and generalized additive model

0.868 98.9%
HIV serological status

Delivery prediction within 48 h of transfer v/s before 32 weeks
gestation

Presence of premature rupture of
membranes

Multivariate logistic regression 0.850 ni

Vaginal bleeding
Ultrasound cervical length
Gestation week
Fetal fibronectin and serum
C-reactive protein

Spontaneous preterm birth Maternal age Multivariate logistic regression 0.670 ni
Black woman
Hispanic woman
Asian
Mother born in the United States
Paid delivery by herself or physician
Diabetes mellitus

(Continued on following page)
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In the case of the prediction of severe maternal morbidity,
the following characteristics were determining factors:
ventilator dependence, intubation, critical care, acute
respiratory failure, ventilation, trauma and postoperative
pulmonary failure, fluid and electrolyte disorder, systemic
inflammatory response syndrome, acidosis, and septicemia
(Gao et al., 2019).

Clinical Applicability of ML Systems
According to the studies, none had clinical application; they only
served to establish precise prediction systems to diagnose the
perinatal complications presented.

DISCUSSION

Input Variables on Machine Learning
Machine learning plays a vital role and offers solutions with many
applications, for example, image detection, data mining, natural
language processing, and disease diagnosis (Maity and Das,
2017). This systematic review provides a study of different ML
techniques for the diagnosis of different perinatal complications
and frames a contribution to women’s health. A total of sixteen
perinatal complications predicted by various ML models were
detected, among which the most studied were prematurity and
pre-eclampsia.

TABLE 9 | (Continued) Main predictive variables for predicting perinatal complications

Prediction Predictive variables Machine learning model Performance

AUC Acc

Chronic arterial hypertension
Thyroid dysfunction
Asthma
Previous stillbirth
Fetal weight loss
In vitro fertilization
Nulliparity
Pregnant smoker during the first
trimester
BMI

Stillbirth Current pregnancy complications Logistic regression 0.834 94.7%
Congenital anomalies Decision tree 0.808 99.7%
Maternal characteristics Random forest 0.836 99.7%
Medical history XGBoost 0.842 99.7%

Artificial neural networks multilayer perceptron 0.840 99.7%
Prediction of complications in pregnancy: pre-eclampsia,
GDM, restriction of fetal growth, macrosomia

Maternal age Logistic regression 0.770 78.6%
BMI
Newborn weight
Results of adverse events in previous
pregnancies

Severe maternal morbidity Ventilator dependence Logistic regression 0.937 ni
Intubation
Critical care
Acute respiratory failure
Ventilation
Trauma and postoperative
pulmonary failure
Fluid and electrolyte disorder
Systemic inflammatory response
syndrome
Acidosis and septicemia

Fetal acidemia Maternal age Deep convolutional neural network 0.978 98.4%
Gestational age pH
Extracellular fluid deficit pC O 2
Base excess
APGAR 1 min, and 5 min
Parity
Gestational diabetes
Birth weight
Child sex
Type of delivery

AUC, area under the curve; Acc., accuracy; SVM, support vector machines; RF, random forest; SGA, small for gestational age; DT, decision tree; LGA, large for gestational age; BMI, body
index mass; TOLAC, trial of labor of after cesarean; HIV, human immunodeficiency virus; GDM, gestational diabetes mellitus; ni, not informed.
aThis study does not specify either AUC or accuracy. The only performancemetric used is sensitivity; logistic regression: 31.9%, linear discriminant analysis: 31.7%, random forest: 30.1%,
naive Bayes: 29.2%.
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ML can significantly improve health care; however, it is
necessary to consider the disadvantages of AI in health.
Ethical dilemmas need to be addressed and the potential for
human biases when creating computer algorithms (Ho et al.,
2019). Health-care predictions can vary based on race, genetics,
gender, and other characteristics, which could lead to the
overestimation or underestimation of patient risk factors if
not considered. When it comes to AI analysis in health care,
it will be the physician’s responsibility to ensure that AI
algorithms are developed and applied appropriately (Jordan
and Mitchell, 2015).

In the present systematic review, the main data collection
method was the use of electronic medical records. ML techniques
can establish patterns from a data set based on electronic medical
records (EMRs). Pattern recognition from these records supports
in predicting and making decisions for diagnosis and treatment
planning (Johnson et al., 2016). The application of EMR-based
MLmethods can be combined with other sources of large medical
data, such as genomics, and medical imaging, which through
predictive algorithms could improve clinical diagnosis and
treatment systems, when used as complementary information
(Barak-Corren et al., 2017). EMR data usually include
demographics data, diagnoses, biochemical markers, vital
signs, clinical notes, prescriptions, and procedures, which are
generally easy to obtain and reduce transfer errors when handling
large amounts of information. Previously, several studies have
described medical diagnosis prediction tools mediated EMRs
(McCoy et al., 2015; Osborn et al., 2015; Nguyen et al., 2017;
Rajkomar et al., 2018); furthermore, in the present systematic
review, 48% of the features for the diagnosis prediction model to
perinatal complications came from EMRs, of which the most used
features were sociodemographic maternal characteristics. Thus,
this tool can predict perinatal complications common in a given
population, contributing to the overall improvement of perinatal
public health.

Perinatal complications as Output Variables
Output variables were usually binary outputs (with complication
or without complication). However, some studies quantified the
risk, for example, the risk of TOLAC was classified as high,
medium, or low (Lipschuetz et al., 2020), and in studies of
gestational diabetes, one article quantified it as high risk or
low risk (Cömert et al., 2018). The most frequently predicted
perinatal complications in ML models were prematurity and pre-
eclampsia. According to the literature, the high rate of preterm
birth is a public health problem, since these newborns suffer
substantial morbidity and mortality in the neonatal period, which
translates to high medical costs (McCormick et al., 2011). Pre-
eclampsia is a pregnancy disorder characterized by the new onset
of hypertension after 20 weeks gestation and organ damage with
underlying causes being endothelial dysfunction (ACOG
(American College of Obstetricians and Gynecologists), 2020;
Carrasco-Wong et al., 2021; Roberts, 1998). It is the leading cause
of maternal and neonatal mortality and morbidity (Salsoso et al.,
2017; Fondjo et al., 2019). Thus, prediction of the risk for
developing pre-eclampsia can be performed in the first half of
pregnancy.

Performance of the Machine Learning
Methods
Diagnostic accuracy is the ability of a test to discriminate between
the target condition and health. This discriminative potential can
be quantified by several performance tools, such as sensitivity and
specificity, AUC, accuracy metric, and other measurements
(Šimundić, 2009). While all studies assess results with at least
one performance metric and just 38.7% assess at least two
performance methods, reports of predictive accuracy were
often incomplete. With this observation, it is imperative to
show the same performance tools on the different prediction
models to evaluate accuracy compared between them.

In this systematic review, several ML methods were used. One
of the better performances was obtained by the Tree-based
Pipeline Optimization Tool (TPOT) to predict placental
invasion (Sun et al., 2019), which was previously used in the
investigation of novel characteristics in data science, providing
optimization of the studied parameters (Le et al., 2020). Another
excellent performance observed was the convolutional neural
network (CNN) to predict fetal acidemia (Zhao et al., 2019).
The CNN has gained much attention from attempts made at
harnessing its power to automatically learn intrinsic patterns
from data, which can avoid time-consuming manual functions
engineering, and capture hidden intrinsic patterns more
effectively (Oquab et al., 2014). Moreover, in the health-care
field, CNN has been shown to capture more hidden data patterns
and learn high-level abstraction in problem-solving (Zhang et al.,
2017).

It is essential to mention that it is difficult to reach a consensus
on the best method for predicting perinatal complications, since
not all of them had the same input variables, type of records, and a
number of samples. However, the best performance metrics
observed were the prediction model of prematurity from
medical images using the SVM technique with an accuracy of
95.7% and the prediction of neonatal mortality using the
XGBoost technique with an accuracy of 99.7%. SVM has
shown simplicity and flexibility to address several classification
problems and also offers balanced predictive performance even in
studies where sample sizes may be limited (Alkhaleefah and Wu,
2018). The XGBoost technique is a very effective and widely used
ML method that data scientists use to achieve state-of-the-art
results in many ML challenges (Wang et al., 2020).

Interpretability of Machine Learning
Despite the recognition of the value of ML in medical care,
impediments persist for its greater acceptance within medical
teams (Holzinger et al., 2019). A fundamental impediment relates
to the nature of the black box, or “opacity,” of many ML
algorithms. The term refers to a system in which only the
inputs and outputs are observable, while the question of what
is transforming the inputs into the outputs cannot be fully
understood (Molnar, 2019). Therefore, new techniques have
been developed to facilitate the understanding of the internal
functioning of the model, granting interpretability, which seeks to
provide transparency to the black box (Freitas, 2014; Doshi-Velez
et al., 2017; Lipton, 2018), so that the end-user can understand the
model and may even improve the ML system (Freitas, 2014). The
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improvement in the precision of the prediction will depend on the
interpretability of the model to be used. This means that with ML
interpretability, clinical staff could know which variables are
involved in the prediction of a diagnosis.

Regarding the predictive variables, while most of them agreed
with current knowledge, it was also shown that ML models
contributed new variables of relevance, which would be
interesting to observe in controlled clinical studies (Table 9). For
example, pre-eclampsia was found to be predictable based on
systemic blood pressure, platelet count, and urinary protein levels
as influential variables, with lesser influence found from glucose
levels, leukocytes count, serum calcium, and potassium levels (Jhee
et al., 2019). Other innovative variables of interest found usingML in
the prediction of perinatal complications were newborn sex for the
prediction of fetal acidemia (Liu et al., 2019), and father’s nationality
and mother’s age for the prediction of provider-initiated
spontaneous preterm delivery (Malacova et al., 2020).
Nevertheless, some prediction models lack variable
measurements, making them impossible to apply in a clinical
setting. For example, “weight gain” is mentioned as a predictor
for SGA and LGA, but the article does not specify whether it was
inadequate or excessive (Kuhle et al., 2018). It is also stated that the
underlying disease of the mother influences the delivery initiated by
the provider; however, it is not detailed which underlying disease is
considered in this association (Khatibi et al., 2019). Also, some
studies describe obvious associations, such as low birth weight is
associated with SGA, or fetal macrosomia is associated with LGA
(Kuhle et al., 2018). pH was also a predictor of fetal acidemia,
which is logical since this condition is associated with pH
changes (Zhao et al., 2019). Since the engineering team behind
these investigations emphasizes these characteristics in the
results, without taking this obviousness into account, it is
imperative to include clinical experts on women’s health
into AI and data science teams.

Only 6.4% of the studies were case–control studies, while the
vast majority were cohort studies. This may limit the use of these
results in clinical practice (Salazar et al., 2019). Only one study was
multicenter for predicting neonatal morbidity (Khatibi et al., 2019),
representing higher quality evidence. Among the best performing
studies, it is noteworthy that most had less than 1,000 patients, and
only one based on XGBoost to predict neonatal mortality had over
10,000 patients. This may be risky since the sample size may not be
representative for a given geographic group, representing one of the
limitations of ML in health (Vayena et al., 2018). Also, another
significant limitation of the present systematic review is that all
studies included have different baselines, variable inputs, and
separate complications (endpoints) assessed in their prediction,
making it difficult to compare them.

It is essential to mention that all the studies reviewed have not
been applied in a clinical phase; however, the majority mention
that to optimize the results obtained, and the models should be
used in hospitals or health services that care for pregnant women.
Future prospective studies and additional population studies are
needed to assess the clinical utility of the model for the real world
(Liu et al., 2019; Malacova et al., 2020).

Few systematic reviews have addressed the use of AI in pregnancy.
The first one describes how AI has been applied to evaluate maternal

health during the entire pregnancy process and helped to understand
the effects of pharmacological treatments during this stage (Davidson
& Boland, 2020). The second systematic review concluded that using
ML algorithms is better than using multivariable logistic regression
for prognostic prediction studies in pregnancy care, focusing mainly
on decision-making for the medical team (Sufriyana et al., 2020).
Furthermore, the third one performed exclusively on neonatal
mortality reported that ML models can accurately predict
neonatal death (Mangold et al., 2021). Last, the use of modern
bioinformatics methods analyzing ML models as non-invasive
measures of heart rate variability to monitor newborns and
infants was reported (Chiera et al., 2020). Although this body of
evidence does not focus on predicting pregnancy complications, it
encourages the clinical use of IA to support women’s health during
pregnancy.

CONCLUSION

In conclusion, the main advantage of interpretable ML
applications is that the output is not subjective, due to the fact
that it is based on real-world data and results and identifies the
most critical variables for clinicians. It is important to continue
promoting this field of research inML in order to obtain solutions
with multicenter clinical applicability reduce perinatal
complications. AI has the overall potential to revolutionize
women’s health care by providing more accurate diagnosis,
easing the workload of physicians, lowering health-care costs,
and providing benchmark analysis for tests with substantial
interpretation differences between specialists. This systematic
review contributes significantly to the specialized literature on
AI and women’s health.
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