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Silkworm droppings are the product of mulberry leaves digested by silkworm intestines, which are an important medicinal
resource in traditional Chinese medicine (TCM). 1e contents of total fat, fat acids, crude protein, amino acids, and secondary
metabolites of obtained mulberry leaves and silkworm droppings were analyzed by HPLC, GC-MS, and UHPLC-Q-TOFMS.1e
target genes and enriched pathways related to significantly changed compositions between mulberry leaves and silkworm
droppings were analyzed by network pharmacology. High unsaturated C18 : 3 fatty acids were transformed to low unsaturated
C18 :1 from mulberry leaves to silkworm droppings. Only lysine and 17 mini-peptides had significantly higher content in
silkworm droppings than in mulberry leaves. 1ere were 36 common target genes or the different compounds between mulberry
leaves and silkworm droppings. 1e main pathways of mulberry leaf were enriched in antivirus and anticancer properties, while
the pathways of silkworm droppings were enriched in hormone regulation and signal transduction.

1. Introduction

Traditional Chinese medicine has an extensive history and
has been applied to prevent and cure diverse diseases in
China and Asian countries [1]. Mulberry leaves (ML,Morus
alba L.) and silkworm droppings (SD) are important me-
dicinal resources of traditional Chinese medicine. ML play a
pivotal role in the sericulture industry because they are the
sole food of silkworm (Bombyx mori L.) [2]. When the
silkworm ingests ML, about 60% of the leaves were excreted
without digestion, resulting in droppings (also known as
Can-sha in China) that are composed of both mulberry leaf
material and various materials transformed by enzymes and
microbes in the intestine of the silkworm [3]. In traditional
Chinese medicine, ML is used for dispelling wind-heat,

moistening the lungs, soothing the liver, and brightening the
eyes, while silkworm droppings are used to expel wind,
harmonize the stomach, transform turbidity, and disperse
dampness, as well as activating blood and promoting
menstruation. 1e different efficacy of them may be caused
by the metabolism of silkworms. 1e cold/hot natures of
them were changed from cool to warm.1e cold/hot natures
theory of Chinese materia medica is one of the essential and
foundational principles in traditional Chinese medicine
(TCM) and clinical therapy [4]. Biotransformation plays an
important role in this process, such as fermentation and
biotransformation of tissues and organs [5].

Morus alba L., widely distributed in tropical, subtropical,
and temperate areas, is an excellent source of nutrients and
phytochemicals [6]. ML are a precious source of macro- and
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micronutrients and organic acids [7]. ML contain fatty acids,
amino acids, polysaccharides, flavonoids, alkaloids, volatile
oils, and other active compounds with good antioxidation,
antibacterial, anti-inflammatory, hypoglycemic, and lipid-
lowering roles [8–12]. 1e ML tea is rich in c-aminobutyric
acid (2.7mg g−1 dry weight) which is 10 times higher than
that of green tea [13]. 1e chemical constituents of silkworm
dropping are major in chlorophyll and chlorophyll deriv-
atives, xanthophyll, carotenoid, flavonoids, and so forth
[14, 15]. Besides, the compositions of the lipids in SD were
concentrated liposoluble compounds such as phytosterol,
unsaturated fatty acid, and fatty alcohol [16].1eML and SD
are multicomponent, multitarget, and multipathway [17].
However, current understanding of different pharmacology
and mechanism of them is limited.

Recently, more and more approaches have been studied
to identify the characteristics of Chinese medicinal mate-
rials, including chemical metabolites, network pharmacol-
ogy, and bioinformation [18–21]. 1e HPLC, GC-MS, and
UHPLC-Q-TOF MS are important techniques for the
quality evaluation of natural products [22–24]. In our re-
search, the different pharmacology and composition of ML
and SD were analyzed by differential metabolomics (HPLC,
GC-MS, and UHPLC-Q-TOF MS) and network pharma-
cology. 1e contents of various long-chain fatty acids and
amino acids were significantly changed. 386 compounds
were found to differ in ML and SD. 1e target genes of high
content compounds in ML were mainly enriched in virus
infection and cancer signaling pathways. 1e target genes of
high content compounds in SD were mainly enriched in
neuroactive ligand-receptor interaction, bile secretion and
insulin resistance, and signaling pathway. 1e results can
provide new insight into the pharmacology and pharma-
codynamics of ML and SD.

2. Materials and Methods

2.1. Sample Preparation for Metabolomics Study.
Mulberry leaves (Morus alba) were harvested from a mul-
berry garden of Zhejiang University in Hangzhou, Zhejiang
Province, China. Each leaf was symmetrically divided into
two parts. Half of the leaves were dried at 40°C and ground to
a fine powder in an electric grinder. 1e other half of leaves
were fed to the fifth instar third-day silkworm (Qiu-
feng×Baiyu) to get the intraday SD. 1e obtained silkworm
droppings were dried at 40°C and ground to a fine powder in
an electric grinder. 1e powders of mulberry leaves and
silkworm droppings were stored in a biobank of Zhejiang
Academy of Traditional Chinese Medicine.

2.2. Crude Fat and Fatty Acids Content Determination.
1e 1.0 g sample was wrapped in a filter paper tube and then
put into the Soxhlet extractor. Petroleum ether was added
and extracted in a water bath at 40°C for 6–8 h. After the
extraction, recycling extract and filter paper tubes were dried
and weighed to get total fat content. 1e 1 g sample was
soaked overnight in 2mL of petroleum ether, 2mL of
n-hexane, and 2mL of 0.4m KOH/CH3OH solution. 1e

saturated salt solution was added and stratified, and the
upper extract was dried and redissolved by n-hexane. 1e
1 µL fatty acids extract was analyzed by GC-MS.

2.3. Crude Protein and Amino Acids Content Determination.
1e 0.5 g sample, 0.4 g CuSO4, 6 g K2SO4, and 20mLH2SO4
were added to the digester and digested at 420°C for 1 h.
After cooling, 50mL water was added to the sample to
conduct titration by semiautomatic Kjeldahl nitrogen meter
to calculate the crude protein content. 1e 0.5 g sample was
hydrolyzed at 110°C for 22 h with 10ml 6 N HCl. 1e upper
extract was dried and redissolved by 2mL 0.1N HCl. 1e
content of amino acid was determined by liquid
chromatography.

2.4. UHPLC-MS Analysis. A 100mg aliquot of the sample
was extracted with 1000 μL methanol/water mixture
(v : v � 3 :1) overnight at 4°C on a shaker and centrifuged at
12500 rpm for 15min at 4°C. 1e UHPLC separation was
carried out using a Waters ACQUITY UPLC HSS T3 col-
umn (100× 2.1mm, 1.8 μm). Mobile phase A was 0.1%
formic acid in the water, and mobile phase B was aceto-
nitrile. 1e column temperature was set at 40°C. 1e
autosampler temperature was set at 4°C and the injection
volume was 2 μL.

1e QE Focus mass spectrometer was used for its ability
to acquire MS/MS spectra on an information-dependent
basis (IDA) during an LC/MS experiment. In this mode, the
acquisition software (Xcalibur 4.1, 1ermo) continuously
evaluates the full-scan survey MS data as it collects and
triggers the acquisition of MS/MS spectra depending on
preselected criteria. In each cycle, 3 precursor ions whose
intensity was greater than 5000 were chosen for fragmen-
tation at collision energy. Acquired mass range was divided
into 70–300, 290–600, and 590–1100 with 3 injections. ESI
source conditions were set as follows: spray voltage: +3500/-
3500V, capillary temperature: 350 °C, sheath gas:30, aux gas:
10, CE: 10, 30, and 50. AB Sciex QTrap 6500 mass spec-
trometer was applied for assay development. Typical ion
source parameters were ion spray voltage: +5500/−4500V,
curtain gas: 35 psi, temperature: 550°C, ion source gas 1 : 60
psi, ion source gas 2 : 55 psi, and DP: ±100V.

2.5. UHPLC-MS Data Preprocessing, Annotation, and Dif-
ferent Compounds Analysis. 1e high-resolution MS data
were converted to the mzXML format using ProteoWizard
and processed by MAPS software (version 1.0). 1e pre-
processing results generated a data matrix that consisted of
the retention time (RT), mass-to-charge ratio (m/z) values,
and peak intensity. In-house MS2 database was applied in
metabolites identification; and the MRM data were pro-
cessed with Skyline software. After being recognized and
aligned, the resultant datasets were analyzed to conduct
multivariate statistical analysis by SIMCA-P software
package, including supervised partial least squares dis-
crimination analysis (PLS-DA).
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Parameters including R2 and Q2 (cum) were used to
assess the quality of PLS-DA and orthogonal partial least
squares discriminant analysis (OPLS-DA) models [25]. 1e
differentiating features were extracted by the variable im-
portance in the projection (VIP) values (VIP> 1.0, P< 0.05).

2.6. Network Pharmacology Analysis. To determine the
bioactivity of different chemical components between mu
ML and SD, we performed a database search by SymMap
(https://www.symmap.org/) and Traditional Chinese Med-
icine Systems Pharmacology (TCMSP) (http://tcmspw.com/
tcmsp.php) using different chemical components. 1e target
genes of different chemical components were found. 1e
Gene Ontology (GO) function and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway of target genes were
enriched by clusterProfiler. 1e component-target-pathway
interaction was established through Cytoscape.

3. Results

3.1. Different Content Analysis of Crude Fats and Fatty Acids.
Fats play a significant role in human health and nutrition.
Fats store energy in the body and are transported to fat-
soluble vitamins in the blood. We found that the crude fats
contents of ML and SD had no significant differences
(P> 0.05) (Figure 1(a) and Table S1). However, the contents
of long-chain fatty acids including C15 : 0, C15 :1, C18 :1,
and C24 : 0 in SD were significantly higher than those in ML
(P< 0.05) (Figure 1 and Table S1). 1e content of C18 : 3
fatty acids in SD was significantly lower than that in ML
(P< 0.05) (Figure 1 and Table S1).

3.2. Different Content Analysis of Crude Protein and Amino
Acids. 1e protein has to be consumed as part of an
otherwise nutritionally adequate diet to achieve the de-
sired structure and function. Amino acids are required for
body protein synthesis and nitrogen-containing com-
pounds, such as hormones and neurotransmitters. 1e
content of crude proteins and amino acids had a sig-
nificant (P � 0.004 and P � 0.002) effect on ML and SD
(Figures 2(a) and 2(b) and Table S2). 1e alanine, serine,
asparagine, isoleucine, glycine, cysteine, threonine,
phenylalanine, and glutamic acid contents of ML were
higher than those of SD (P< 0.05) (Figure 2(c) and
Table S2). However, lysine content was higher in SD
(P< 0.05) (Figure 2(c) and Table S2).

3.3. Differentiated Components and Metabolic Pathway
Analysis. 1e metabolic profiles of samples from quality
control (QC), ML, and SD were acquired by the validated
UHPLC/Q-TOF MS methods in positive and negative ion
modes (Figure S1). 1e results of each group were clustered
using PCA (Figure 3(a)). All metabolite peaks were assigned
by a self-established secondary mass spectrometry database.
Approximately 604 components were identified in ML and
SD (AnnoScore>0.9) (Table S3).

To clarify the metabolic changes of ML and SD, the
metabolic differences were characterized by OPLS-DA. 1e

samples from ML and SD (R2X (cum)� 0.816, R2Y (cum)�

1, and Q (cum)� 0.998) were unambiguously separated
according to their difference in the entire metabolic profiles
by OPLS-DA permutation test (Figures 3(b) and S2). 1ese
results indicated that the metabolic profiles of ML and SD
were greatly perturbed after silkworm digestion.

To identify the differentiated metabolites contribution,
the VIP was constructed by OPLS-DA and P value by
Student’s t-test. 1e 386 differentiated compounds were
found between ML and SD (VIP>1 and P value< 0.05)
(Figure 3(c) and Table S4).1e content of 156 compounds in
ML was higher than that in SD (Table S4). 1ere were 83
mini-peptides among all of the differentiated compounds.
1e content of 66 mini-peptides was higher in ML than in
SD, while the content of 17 mini-peptides was higher in SD
than in ML. 1e KEGG pathways of differentiated com-
pounds were analyzed. 1e flavonoid biosynthesis and
phenylalanine as well as tyrosine and tryptophan biosyn-
thesis pathways were the main differential compound
synthesis pathways (Figure 3(d)).

3.4. Network Pharmacology Analysis. 1e 303 differentiated
compounds except for 83mini-peptides were searched in the
TCMSP and SymMap database, generating information on
32 components (Figure 4). 1e content of 13 components
was higher in ML than in SD, while the content of 19
compounds was higher in SD than in ML. 1e related target
genes of 32 components in ML and SD were also searched.
1e compound-target-pathway network was constructed
using Cytoscape software based on the degree of a topo-
logical parameter (Figure 4(a) and 4(b)).

1e 36 target genes are common targets for the different
compounds between ML and SD (Figure 4(c)). 1e enriched
GO terms and pathways of common target genes are shown
in Figure 5. 1e special target genes in ML were related to
ubiquitin-protein ligase, cytokine, and kinase activity gene
functions and involved in multiple viral infections and
cancer pathways (Figure 6). However, the special target
genes in SD were related to steroid hormone receptor ac-
tivity, adrenergic receptor activity, and catecholamine
binding gene functions and involved in neuroactive ligand-
receptor interaction, bile secretion, and cGMP-PKG sig-
naling pathway (Figure 7).

4. Discussion

ML and SD are commonly used in traditional Chinese
medicine. 1e medical functions of both ML and SD are
similar but different due to the digestion of silkworm. More
than 50% of the constituents were different between MeOH
extracted ML and SD by thin-layer chromatography (TLC)
patterns [26]. 1e active ingredients in ML include organic
acids, flavonoids, and alkaloids such as gallic acid, fumaric
acid, chlorogenic acid, quercetin, and 1-Deoxynojirimycin
(1-DNJ) [27–29]. 1-DNJ inhibits alpha-glycosidase involved
in the hydrolysis of carbohydrates and prevents sugar from
entering the bloodstream [30]. Also, the ML extract has been
reported to inhibit cholesterol absorption in the intestine to
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have an antihyperlipidemic and atherosclerosis effect
[31–33]. 1e polysaccharides of ML own antioxidant
properties [34]. Mulberry leaf extract can resist hepato-
toxicity induced by methotrexate [35]. SD can serve as a
cheap source including chlorophylls, vitamins, and metal
complexes of porphyrins [16]. SD extract (shengxuening
tablet) has been used as an efficient oral iron supplement to
IDA [36–38]. SD extract ameliorates various allergy
symptoms by regulating11/12 immune response [39, 40].

Lipids are important and elemental nutrients for health
and include cholesterol and fatty acids. Meanwhile, cavi-
tating oil-water flows and oil viscosity affects the extraction
efficiency of lipids in different containers [41]. In our re-
search, the samples were extracted with petroleum ether in
Soxhlet extractor. Lipid molecules are important compo-
nents of membranes and mediators of multiple signaling
pathways [42–44]. 1e saturated and unsaturated fatty acid
can affect cardiovascular disease (CVD) progress by

inflammatory and oxidative stress [45–47]. We found no
significant difference in crude fat content between ML and
SD, but there was a significant difference in the contents of
some long-chain fatty acids (Figure 1 and Table S1). 1e
C15 : 0 (pentadecanoic acid) fatty acids deficiency contrib-
utes to liver injury in nonalcoholic fatty liver disease
(NAFLD) [48]. Oleic acid (C18 :1) can affect embryo de-
velopment by a metabolite of fatty acids [49]. 1e oleic acid
owns anti-inflammatory activity as an alternative to treat
inflammatory skin disorders [50]. 1e linolenic acids were
potent antiglycation and advanced glycation end-products
inhibition compounds [51]. Linolenic acid attenuates ace-
tylcholine-induced relaxation by inhibiting nitric oxide-
induced cGMP formation [52]. Besides, lipid might be
regarded as an oral drug delivery system to provide solubility
of the drug and avoid vessel embolization [53–55].

Proteins, made of amino acids, are responsible for nearly
every task of cellular life to act as catalysts or tiny pumps and
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Figure 1: Total fat and fatty acid content in ML and SD. (a) Total fat content in ML and SD. (b) Bar plot of 19 fatty acids proportions in ML
and SD. (c) Violin plot of 19 fatty acids proportions in ML and SD. 1e samples of ML were blue and samples of SD were red.
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so forth. 1e protein nutrition impairs host immunity, es-
pecially the T-cell system [56]. 1e protein content of ML is
significantly higher than those of other green leafy vegetables
[57]. In our studies, we found that crude protein and amino
acid content of ML was significantly higher than that of SD (P
value< 0.05) (Figure 2). 1e content of lysine in SD was
higher than that in ML (Figure 2(c)). 1is is due to the di-
gestion and absorption in the silkworm digestive tract of
proteins and amino acids. Lysine might induce humoral and
cell-mediated inflammatory and immune responses to aug-
mented healing of all types of wounds and induce angiogenic
responses [58, 59]. 1e amino acid metabolism disorders
induce an increase in the plasma amino acid concentration
[60]. Although only 2% of the protein is made up of cysteine,
cysteine is the major of posttranslational modifications [61].
Although cysteine is a nonessential amino acid, a lack of
cysteine can cause oxidative stress to induce neurodegener-
ative diseases [62–65]. In our studies, cysteine has the highest
content of amino acids in ML (Figure 2(c)).

1e chemical metabolomics and network pharmacology
can comprehensively characterize the Chinese materia
medica and reflect multiple components and multiple tar-
gets [18, 66–71]. 1e comprehensive analysis of metab-
olomics and network pharmacology is consistent with the
“holistic” perspective of TCM and the effect of Chinese
materia medica. 1e differentiated components and meta-
bolic pathways were analyzed to identify potential bio-
markers to the unique medicinal properties of mulberry
leaves and silkworm droppings. We found that the contents
of kaempferol and quercetin involved in flavone and fla-
vonol biosynthesis pathway in mulberry leaves were higher
than those in silkworm droppings (Figure 3(d) and
Table S4). 1e beneficial effects of flavonoids in ML are
resisting cancer, as well as inflammatory and viral activities
[72–74]. 1e content and compound species of benzene and
substituted derivatives, carboxylic acids and derivatives,
fatty acyls, and prenol lipids were more in silkworm
droppings than in mulberry leaves (Table S4). 1ese results
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suggest that the intestinal metabolism of silkworms increases
the complexity of mulberry leaf compounds. However, the
targets of many different compounds in silkworm sand are
consistent with those in mulberry leaves (Figure 4(c)).
Compared with silkworm droppings, the main target

pathways of differential compounds in mulberry leaves are
viral infection and cancer signaling pathways (Figure 6).
1ese different biological pathways between mulberry leaves
and silkworm droppings might be related to their different
medical properties.
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Figure 5: Go and KEGG enrichment of common target genes for the different compounds between ML and SD. (a) Significantly enriched
GO terms; the emapplot of gene overlap enriched GO terms and gene correlation between most prominent GO terms in common target
genes. (b) Significantly enriched KEGG pathways; the emapplot of gene overlap enriched KEGG pathways and gene correlation with most
prominent KEGG pathways in common target genes.
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Figure 6: GO and KEGG enrichment of unique target genes of ML. (a) Significantly enriched GO terms; the emapplot of gene overlap
enriched GO terms and gene correlation between most prominent GO terms in unique target genes of ML. (b) Significantly enriched KEGG
pathways; the emapplot of gene overlap enriched KEGG pathways and gene correlation with most prominent KEGG pathways in unique
target genes of ML.
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5. Conclusion

Pharmacodynamic substance bases and pharmacological
targets of ML and SD were analyzed by metabolomics and
network pharmacology. 1e fatty acids, amino acids, and
flavonoids in SD were significantly changed compared with
those in ML after digestion by silkworm intestines. 1e main
pathway of mulberry leaf is enriched in antivirus and cancer,
while the pathway of SD is enriched in hormone regulation
and signal transduction pathways. 1ese results might be
related to the traditional Chinese medicinal properties of ML
and SD and suggested that intestinal digestion and absorption
of silkworm played an important role in the change of the
pharmacodynamic substance basis and pharmacodynamic
activity ofML and SD.1is study would offer new insight into
the biotransformation of Chinese materia medica.
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