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Abstract

Hematoxylin and eosin (H&E) staining is ubiquitous in pathology practice and research. 
As digital pathology has evolved, the reliance of quantitative methods that make use of 
H&E images has similarly expanded. For example, cell counting and nuclear morphometry 
rely on the accurate demarcation of nuclei from other structures and each other. One 
of the major obstacles to quantitative analysis of H&E images is the high degree of 
variability observed between different samples and different laboratories. In an effort 
to characterize this variability, as well as to provide a substrate that can potentially 
mitigate this factor in quantitative image analysis, we developed a technique to project 
H&E images into an optimized space more appropriate for many image analysis 
procedures. We used a decision tree‑based support vector machine learning algorithm 
to classify 44 H&E stained whole slide images of resected breast tumors according 
to the histological structures that are present. This procedure takes an H&E image as 
an input and produces a classification map of the image that predicts the likelihood 
of a pixel belonging to any one of a set of user‑defined structures (e.g., cytoplasm, 
stroma). By reducing these maps into their constituent pixels in color space, an optimal 
reference vector is obtained for each structure, which identifies the color attributes that 
maximally distinguish one structure from other elements in the image. We show that 
tissue structures can be identified using this semi‑automated technique. By comparing 
structure centroids across different images, we obtained a quantitative depiction of 
H&E variability for each structure. This measurement can potentially be utilized in the 
laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by 
aligning reference vectors derived from this technique, images can be transformed in a 
way that standardizes their color properties and makes them more amenable to image 
processing.

Key words: Cell counting, classification, image processing, machine learning, 
segmentation

BACKGROUND

Hematoxylin and eosin (H and E) staining facilitates 

pathologist interpretation of microscopic slides by 
enhancing the contrast between cell nuclei and other 
histological structures. This allows pathologists to visually 
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identify cellular components, extracellular structures, 
and lumen with relative ease. Although subjective 
interpretation by trained pathologists presently remains 
the gold standard for pathology diagnosis, its accuracy 
and reproducibility have been called into question.[1,2] 
A particularly ambitious aim of digital pathology is the 
automatic classification of tissue structures, which enables 
the application of a number of computational methods 
to provide quantitative support to the pathologist 
or to produce new metrics with direct prognostic 
significance (for review, see Gurcan, et al.).[3]

Several methods have been developed to classify tissue 
structures in digital images of H&E stained slides. 
For instance, color deconvolution methods have been 
applied to specifically identify cell nuclei,[4,5] although 
the interdependence of dyes introduces a nonlinearity 
that can affect the assumption of superposition. Methods 
largely based on thresholding have been developed to 
segment nuclei from the background,[6] classify nuclei 
and lumen,[7,8] characterize chromatin patterns,[9] and 
to distinguish nuclei from cytoplasm.[10] These advances 
have produced a number of useful quantitative methods, 
but staining variability within a single laboratory, and 
even more prominently, across laboratories[11] can make 
many threshold‑based procedures difficult to implement 
in practice.

Variability in the color properties of the histologic 
structures of interest to pathologists arises from both 
the intrinsic biological heterogeneity and in the slide 
preparation.[12] Computational treatment of digital 
histology images should ideally be designed to account for 
this variability. We have developed a novel preprocessing 
stage that behaves as a transformation to a more workable 
color space that optimally separates user‑defined tissue 
structures. This procedure can, therefore, be an important 
first step for image processing methods such as cell 
counting, nuclear segmentation, morphometry, tissue 
identification, and region of interest (ROI) guidance. A key 
feature of this algorithm is that the transformed space is 
defined by the staining attributes of the cases under study 
and is, therefore, less influenced by staining variability.

METHODS

Slide Preparation
Breast carcinoma resection cases, including breast 
conservative surgery and mastectomies as primary 
therapy, were retrieved from an IRB‑approved database 
of 378 patients that were diagnosed with invasive breast 
carcinoma as part of the ongoing clinical activities 
of the department from 2009 to 2014. These cases 
were processed meeting CAP/ASCO guidelines for the 
performance and interpretation of ER and HER2. The 
H&E slides were cut at 4 µm thickness and stained using 
Harris Hematoxylin (Thermo‑Fisher cat#23021558) 

for 3 min and Eosin‑Y for 2 min (Thermo‑Fisher 
cat#22050198).

We used an Aperio Scanscope XT (Aperio, Vista, CA) 
whole‑slide scanner configured for image capture at 
×20 magnification. Image resolution was 0.5 µm/pixel and 
typically spanned several millimeters of tissue. Analysis 
regions, however, were confined to a 0.5 mm × 0.5 mm 
ROI selected by a pathologist in training. ROIs were 
selected prior to computational processing of the 
images, and were subjectively determined based on two 
criteria: (1) that the region was comprised of all four 
structures used in this study (nuclei, cytoplasm, stroma, 
and lumen); (2) that the staining properties of the 
selection were representative of the image as a whole; 
and (3) when chosen from the same case, the ROI did 
not overlap previously selected ROIs.

Case Selection and Pathologist Evaluation
Forty‑four whole slide images from 28 cases were 
selected at random (with replacement) from the 
database and were presented to a pathologist in 
training (A.P.) without access to patient data or 
diagnostic information. A.P. did not have prior 
knowledge of the details of the algorithm and was 
instructed to select an ROI based on the criteria 
described above. One to four ROIs were selected per 
image. After ROI selection was complete, a 10‑color 
pseudocolor image of the ROI appeared and A.P. 
was asked to assign at least one color to each of the 
four structures. To assist with the color selection and 
localization, A.P. was allowed to select any of the 
10 colors to be temporarily highlighted in the image. 
When the color assignment was complete, feedback was 
not given, as not to influence color assignment strategy 
and to improve the stationarity of the procedure.

Algorithm Design
Hematoxylin & eosin characterization and classification 
in this study were semi‑automated techniques written 
in Matlab (Mathworks, Natick, MA) that relied on the 
establishment of a ground truth by a pathologist in 
training (as described in the previous section). After 
ROIs had been selected, pixels in the ROI were converted 
from their native red‑green‑blue (RGB) format to 
hue‑saturation‑value (HSV) coordinates using the Matlab 
rgb2hsv function. Agglomerative hierarchical clustering 
was applied to these data, in which each pixel was treated 
as an independent data point. The linkage order was 
determined using Ward’s criterion,[13] which attempts 
to minimize intra‑cluster variance. The cylindrical 
HSV coordinate system was represented in Cartesian 
coordinates to accommodate the Euclidean metric used 
in this step according to the following set of equations:
x = S cos H

y = S sin H

z = V



J Pathol Inform 2015, 1:33 http://www.jpathinformatics.org/content/6/1/33

Clustering was halted when only 10 independent clusters 
remained, which served as the 10 basis groups for the 
remainder of the analysis. The 10‑color images were 
presented to A.P. for evaluation as described above.

After evaluation, each pixel was designated nucleus, 
cytoplasm, stroma, or white space, or was left 
uncharacterized, depending on the cluster to which 
it belonged and whether that cluster was assigned to 
a structure by the pathologist. White space generally 
corresponded to glandular and vascular lumen, but 
also included fat, blank regions, and tissue artifacts. 
Uncharacterized pixels were discarded from the 
analysis. A random sample (N = 104) of the remaining 
pixels was used to train support vector machine 
(SVM)[14] hyperplanes in a decision tree fashion. This 
was accomplished using the svmtrain function in Matlab 
with polynomial order equal to 1 and box constraint 
equal to 1.

Tissue Classification
The derivation of hyperplanes using the decision tree 
model effectively partitioned the data space into four 
regions, one each for the nucleus, cytoplasm, stroma, and 
white space. Using this data space, all pixels in the ROI 
were thus classified according to the partition in which 
they resided. A measure of the classification certainty 
was derived using a normalized distance‑from‑hyperplane 
metric. For each hyperplane, the cluster centroids 
between the two classes were identified, and the distance 
between them served as the normalization factor. The 
distance between a data point and the hyperplane was 

then divided by the normalization factor and used to 
indicate the degree of classification certainty. In this way, 
data points that are relatively close to the hyperplane 
were considered less certain classifications; thresholding 
of this scalar value can potentially be a useful tool for 
segmentation and tissue characterization. Normalization 
ensured that classification certainty could be compared 
at any level in the decision tree and that thresholds 
could remain class‑invariant. Classification maps were 
formed by setting the hue equal to one of the four 
colors, each denoting a different class, and setting the 
intensity equal to the normalized classification certainty. 
Saturation was set equal to one. For the purposes 
of visualization, classification map intensities were 
saturated at the 95% level (i.e., the top 5% of pixels were 
set equal to one) to compress the dynamic range of the 
images.

Inter‑Image Variability
Variability across images was assessed by measuring 
the distances between cluster centroids in the 
three‑dimensional HSV space. Data were treated 
separately in the hue‑saturation plane and value axis in 
order to emphasize the differences between chromatic and 
intensity properties, respectively. The Standard deviation 
was calculated in the two‑dimensional hue‑saturation 
plane using the Euclidean distance between points, and 
naturally produced higher values than standard deviation 
computed within the one‑dimensional value axis.

Classification Performance Evaluation
We evaluated the performance of histological structure 
classification when trained with a separate training set. To 
accomplish this, we used leave‑one‑out cross‑validation, 
in which the manual assignments from 43 cases were 
used to classify centroids from the remaining case. This 
procedure was performed iteratively until all 44 cases 
were evaluated; in this way, a strict separation between 
training and test data was observed.

After clustering was performed on the test image, the 
centroids in HSV space associated with each cluster were 
evaluated relative to the centroids from the training 
set that were manually annotated. A test centroid was 
considered to belong to a class if it was surrounded 
primarily by training centroids of that class. To estimate 
this, distances between the test centroid and training 
centroids were measured and sorted. The K‑nearest 
neighbors to the test centroid were examined, where K 
was determined to be the lowest value in which 50% of 
a class’s centroids were represented. The test centroid 
was then assigned to that class if fewer than 5% of its K 
nearest neighbors belonged to another class. If >5% of its 
nearest neighbors belonged to another class, then it was 
left unclassified unless there were no other clusters that 
could be assigned to that class. In that case, the cluster 
with the smallest percentage of nearest neighbors that 
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Figure 1: Hue, saturation, and value representation of a representative 
hematoxylin and eosin stained image. (a) A digital image of a 
normal breast lobular unit, showing distinct nuclear, cytoplasmic, 
and stromal regions. Scale bar: 50 μm. The hue (b), saturation (c), 
and value (d) components of the image shown in (a) are depicted
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belonged to another class was selected to represent that 
class.

RESULTS

We analyzed 44 digital images of H&E stained slides 
of primary invasive breast carcinoma from 28 patients, 
acquired as part of the clinical activities of the department 
between 2009 and 2014. A 0.5 mm × 0.5 mm ROI from 
each whole slide image was selected by a pathologist 
and converted to HSV color space. HSV is a cylindrical 
coordinate system in which the polar (hue) and radial 
(saturation) components represent the chromatic 
properties of a pixel while the orthogonal axis (value) 
represents its intensity. In this color space, dissimilar 
colors are separated in the hue‑saturation plane, aiding 
in the linear classification of structures based on color 
properties. Conversion to HSV space facilitated the 
interpretation of our results, although it may not be 
necessary for successful performance of the algorithm.

The transformation to the HSV color space is shown for 
a normal breast lobular unit in Figure 2. As expected, the 
hue of most of the stained tissue resides in the red and 

purple range while areas of the slide lacking tissue do not 
have any meaningful hue. This channel appears to be 
especially useful for distinguishing cell boundaries from 
surrounding tissue. Saturation is inversely proportional 
to the “whiteness” of the image and tends to be lowest 
in areas that appear “washed out”. Notably, the stromal 
components of the tissue exhibit the highest saturation 
and are easy to identify visually in this channel. Value 
is proportional to pixel intensity, which is an especially 
prominent feature in this channel for the relatively dark 
nuclei. Tissue structure is apparent in all three channels, 
which implies that each channel contains information 
that can be utilized for H&E slide characterization and 
classification.

We grouped pixels according to similarity in HSV space 
using an agglomerative hierarchical clustering algorithm 
that sought to minimize intracluster variance while 
maximizing the Euclidean distances between clusters. 
Clusters were serially merged according to this rubric 
until only 10 clusters remained, at which point the 
procedure was terminated. In Figure 2b, a dendrogram 
depicting the result of the clustering procedure is shown 
for the image from Figure 2. For visualization purposes, 
the color assigned to each of the 10 clusters in the 
lower dendrogram branches was determined by the 
color of the cluster centroid. The three major divisions 
in the dendrogram (four groups on the left, three 
groups in the middle, and three groups on the right) 
primarily correspond to nuclei, stroma, and white space, 
respectively. When the color of each pixel in the image 
was remapped to the centroid of the cluster to which it 
belonged, the resulting image retained most of the detail 
present in the original (compare Figures 1a‑2b), even 
though it was composed of only 10 colors. This result 
demonstrates that the reduction to a tractable set of 
pixel values does not destroy the features of the image 
important for classification.

A pathologist in training was presented with the 10‑color 
image and was asked to assign at least one color to 
the nucleus, cytoplasm, stroma, and lumen groups. 
Ambiguous colors were left unassigned. Typically, nuclei 
were comprised of one or two colors (mean: 1.34); 
cytoplasm one or two colors (mean: 1.57); stroma 
two, three, or four colors (mean: 2.86); and lumen one 
color (mean: 1.00). The pixels associated with the 
labeled colors served as the ground truth for the machine 
learning procedure, shown schematically in Figure 3. 
Pixels belonging to unassigned clusters were discarded 
from training. SVM learning was applied in a decision 
tree fashion to achieve multiclass classification. Lumen 
was first teased out from the image; nuclei were then 
extracted from the other tissue structures, and lastly, 
cytoplasm and stroma were distinguished from one 
another. This produced three SVM classifiers represented 
as planes in HSV space that optimally separated two sets 

b
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Figure 2: Color reduction for user characterization.  (a) Hierarchical 
clustering of the pixels in Figure 2a produced 10 clusters, each 
represented by a different color in the dendrogram. Colors matched 
the cluster’s centroid, except for lumen which is designated black 
for clarity. The heights of the connecting links in the dendrogram 
represent the dissimilarity between two clusters. For clarity, only the 
top of the dendrogram is shown and therefore nodes corresponding 
to single pixels are not visible. (b) A pseudocolor representation was 
formed by assigning each pixel to one of the clusters shown in (a)
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of points from each other. In Figure 4, the classifiers for 
the case in Figures 1 and 2 are shown as dashed lines. To 
enable visualization of the planes in three‑dimensional 
space, the data space was rotated so that the planes are 
directed out of the page. As expected, the planes appear 
to be optimally positioned to separate the different 
classes. The distributions of distances of pixels from the 
SVM hyperplanes are shown in the bottom panels of 
Figure 4. We used these distances, normalized by the 
distances separating the cluster centroids, as a measure of 
classification certainty.

To demonstrate the classification capabilities of the 
algorithm, we applied the algorithm to 44 whole slide 
images of H&E stained slides, three of which are 
shown in Figure 5. For this figure, we selected images 
that appeared to be more difficult to classify or that 
contained structures that were not explicitly accounted 
for in the training. In the right panels, each pixel is 
depicted with a color according to the class to which it 
was assigned redundant and the intensity of the color 
was proportional to the distance of the pixel from the 
classification plane. Therefore, high intensities in the 
pseudocolor images were associated with more certain 

classifications, whereas low intensities indicated less 
certain predictions.

In Figure 5a‑b, all four histologic structures are 
prominently represented. Dark bands pervade the 
image, indicating low classification confidence primarily 
associated with the stromal components surrounding the 
most cellular portion of the image. However, the majority 
of nuclei in the image are accurately defined and 
demarcated. An image such as this lends well to serving 
as the input to many established nuclear segmentation 
algorithms (data not shown). Notably, the fibrin in the 
lumen of a vessel (left) and the lumen in a gland (right) 
exhibit low classification accuracy. Retrospective 
analysis of this observation revealed that these colors 
were not included in the initial training step, and so 
the machine learning procedure was unable to classify 
them accordingly. Importantly, however, they were not 
incorrectly assigned to the most similar class (stroma); 
rather, the scalar nature of the output effectively flagged 
these regions as weakly classified.

Figure 5c‑d exhibits similar classification performance 
and demonstrates that multiple cell types can be 

Figure 3: Support vector machine-based decision tree. A schematic of the machine learning procedure is illustrated, showing that 
unclassified data (open circles) can be classified in a serial fashion by sequentially applying binary support vector machine classifiers 
(denoted by the colored lines)

Figure 4: Support vector machine (SVM) classifiers derived from a single H&E stained image. SVM classifiers were computed from a 
ground truth supplied by the user in a serial fashion shown schematically in Figure 3. Hyperplanes are denoted by dashed lines. For clarity, 
data points are rotated in HSV space and projected into two dimensions so that the hyperplane extends out of the page. Histograms in 
the bottom panels represent the projection of points normal to the hyperplane and therefore represent the distribution of distances to 
the hyperplane. (a) Tissue versus lumen. (b) Nuclei versus cytoplasm and stroma. (c) Cytoplasm versus stroma

cba
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Figure 6: Classification confidence. The classification confidence, 
as the normalized distance from the classification hyperplane, was 
computed for 44 digital images from invasive breast carcinoma 
specimens. Lumen and stroma exhibited the highest median 
confidence values. Standard error bars are shown

Figure 5: Classification maps. (a-b) Three representative images 
were selected at different scales and with different histological 
content (left panels). (c-d) Classification was performed to assign 
each pixel to one of four classes, and accompanied by a measure 
of confidence proportional to the normalized distance of a pixel 
from the classifying hyperplane. (e-f) In the right panels, the class 
is denoted by one of four pixel hues (legend) and confidence 
determined pixel intensity as described in methods

dc
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captured using a single nuclear classifier. Also apparent 
from this image is that the white space that we have 
nominally associated with lumen is also shared by fat. 
Distinguishing the two is beyond the scope of this paper 
and likely requires shape and contextual cues. However, 
those analyses, the plural of analysis could potentially 
benefit from this initial color mapping.

Figure 5e‑f is shown at a different scale to demonstrate 
a case where less prominent nuclei in this image of 
DCIS solid type, low grade, can still be identified 
given a sensitive classifier. All or parts of most nuclei 
are identified in this figure, which can prove useful for 
operations such as cell counting. Furthermore, the scalar 
nature of the algorithm’s output enables the identification 
of the prominent nucleoli, as they tend to exhibit very 
high classification certainty values. Likewise, two necrotic 
cells are evident in the image and are represented with 
high classification values. They are also surrounded by a 
halo of white space, which is correctly classified.

It is evident from the images in Figure 5 that some 
areas exhibit lower classification certainties than others. 

Generally, this was the case for pixels classified as nuclei 
and cytoplasm, whereas white space usually exhibited 
higher classification certainty [Figure 6]. Stroma 
exhibited an intermediate level of certainty, consistent 
with the observations in Figure 5 of both very strong 
and very weak bands. However, these trends are less 
obvious in the histograms shown for the normal breast 
case in Figure 4, in which the data points associated 
with the stroma and nuclei tended to aggregate more 
closely to their corresponding hyperplanes. It remains 
unclear whether the stromal features, in this case, could 
be considered an outlier or whether this property is 
characteristic of normal breast tissue specimens.

Consistent with previous studies, we noted that there 
existed significant variation between samples prepared and 
stained by the same laboratory. By applying the classification 
procedure to 44 different images individually, we aimed to 
provide a quantitative account of these differences. We 
computed the centroids of each tissue structure in each of 
the 44 images, and although we confirmed that there was 
substantial variation, the centroids themselves exhibited 
very little overlap with centroids from other tissue 
structures [Figure 7a]. We noted, however, that the variation 
was anisotropic, especially for stroma. We measured the 
variation separately in the chromatic (hue‑saturation) 
plane and intensity axis, and confirmed that the ratio 
of chromatic to intensity variability was much higher 
for stroma than for nuclei or cytoplasm [Figure 7b]. The 
result indicates that staining variation, which is similar in 
overall magnitude for the three tissue structures, mostly 
has a chromatic component for stroma, and, therefore, 
simple intensity adjustment is inadequate to correct for 
inter‑specimen staining differences.

We have demonstrated that images analyzed individually 
can be re‑mapped into a new scalar space that may be 
used as a pre‑processing stage for a number of functions, 



J Pathol Inform 2015, 1:33 http://www.jpathinformatics.org/content/6/1/33

that exhibited certainty levels >1 and 0.92 for pixels that 
exhibited certainty levels >0.5. The median proportion 
of pixels that exhibited certainty levels >1 and 0.5 was 
0.56 and 0.79, respectively. Less certain classifications 
yielded slightly lower accuracy levels when compared to 
the manual procedure, but captured a greater proportion 
of pixels in the image. The ability to assign classification 
certainty values remains an important feature.

CONCLUSIONS

Evaluation of H&E stained specimens serves as the 
cornerstone for pathology diagnosis and staging. Here 
we demonstrate an algorithm that quantitatively 
characterizes the staining attributes of a sample and can 
identify tissue structures for the purpose of remapping 
to an alternate, optimized color space. Furthermore, 
we show that staining variability has a diverse signature 
for different tissue structures, further elucidating the 
difficulty in applying many popular approaches to image 
normalization metrics.

Remapping H&E digital images to an alternate color 
space supports a number of functions important for 
pathology. For instance, cell counting may be reliably 
performed; nuclear segmentation may be more 
accurately applied to support morphometric operations; 
substructures such as nucleoli may be identified and 
measured; nuclear‑cytoplasmic ratio may be accurately 
computed; and structure identification may be 
accomplished to aid in diagnosis or ROI selection. In 
addition, research endeavors with clinical implications 
that rely on image processing could be standardized and 
become more reproducible. Furthermore, a quantitative 
account of staining attributes could be used for 
the purposes of daily laboratory quality control and 
calibration. These functions position digital pathology 
in a more active role in the pathology laboratory.

The technique that we report relies on user intervention 
to establish a ground truth necessary to train the machine 
learning algorithm. It may be desirable to remove this 
manual component in order to automate the procedure 
fully. Given the substantial inter‑specimen variability that 
has been reported and that we confirmed, it is difficult to 
derive a single classifier that can directly be applied to all 
specimens while maintaining high classification accuracy, 
especially across laboratories. However, the insights gained 
from the results in Figure 7 provide a substrate on which 
models can be built for classification. The first stage of the 
algorithm is a data‑driven unsupervised clustering procedure, 
and, therefore, produces initial groupings that are specific to 
the slide analyzed. In this way, the clustering step accounts 
for the inter‑specimen variability. Since there was very little 
overlap in the tissue centroids across specimens, a classifier 
can be built from the results in Figure 7 to designate each 
cluster to a histologic structure in an automated fashion. 

Figure 7: Inter-image variability. (a) Cluster centroids for each 
structure in each analyzed image are plotted in HSV space. Points 
representing lumen are also shown projected to the hue-saturation 
plane to demonstrate that they consistently congregate about 
(0, 0). (b) The variability across images was computed within the 
hue-saturation plane (left) and the value axis (right). Stroma 
varied most strongly in the hue-saturation plane relative to the 
other structures

b
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or may be used to characterize an image’s consistency 
with other images (e.g., for calibration). This procedure, 
however, requires that a trained user first match the 
derived colors to their associated histological structures. 
We sought to determine whether this manual step could 
be eliminated after a sufficient number of training images 
were analyzed. We tested the classification performance 
of the algorithm using leave‑one‑out cross validation 
for our set of 44 images. We exploited the finding 
from Figure 7a that there is very little overlap between 
centroids associated with different histological structures. 
For each image, the centroids in HSV space of each 
cluster were compared to the centroids derived from the 
other 43 images. Those centroids that were sufficiently 
similar to the population of centroids were assigned 
to that structure in an automated fashion, replacing 
the manual classification stage in the computational 
pipeline. We evaluated the concordance rates between 
classified pixels based on automatic assignment and 
those based on manual assignment by A.P. We found 
that the median concordance rate was 0.95 for pixels 
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The algorithm can then proceed to classify all pixels in 
the image based on the SVM decision tree framework. It 
is important that this initial training be performed on a 
representative set of cases from the laboratory or research 
data set. We showed that automation of this step did not 
drastically change the classification maps for those pixels 
that exhibited high classification certainty.

We arbitrarily chose to reduce ROIs initially to 10 
clusters. A larger number of clusters may allow for less 
represented pixels to more accurately be characterized 
by the user, allowing them to be included in the training 
stage. However, more clusters may also lead to greater 
overlap between tissue structures, which may make an 
automated stage as described above more difficult to 
implement. This tradeoff needs to be explicitly tested to 
determine the optimum number of clusters to generate. 
Alternatively, a terminal condition could be specified that 
forces the hierarchical clustering procedure to terminate 
when specific criteria are met.

For demonstration purposes, we chose to classify four 
histologic structures in this report (nuclei, cytoplasm, 
stroma, white space associated with lumen), but the 
algorithm we describe has more general applicability. 
Specifically, it allows for a remapping of color space 
given an a priori set of structures, but this group can be 
augmented to accommodate other structures commonly 
found in other tissues or to subgroup nuclei, for instance, 
into different cell types. One such application may be 
the identification and quantification of inflammation in 
a sample.

Other clustering methods can potentially be used to 
perform tissue classification without the need for the 
SVM decision tree stage. In fact, some fuzzy clustering 
techniques could also produce scalar values that can be 
used as classification certainty measures. We believe the 
procedure described in this report has several advantages 
over a single‑stage clustering algorithm for classification. 
First, two‑stage algorithms do not require that the 
number of clusters matches the number of classes, 
allowing for these two variables to be manipulated 
independently for optimized performance. Second, the 
procedure we describe has a built‑in mechanism for 
discarding ambiguous clusters from training while still 
being able to classify all pixels in the image. A second 
stage is necessary to incorporate the discarded pixels 
back into the classification schema. Third, SVM is most 
strongly influenced by data points closest to the putative 
classification boundaries (the support vectors). The 
two‑stage model allows us to treat the data set initially 
according to cluster means for user evaluation, and then 
refine the classification based on an examination of the 
pixels at the cluster boundaries. Although this makes 
the algorithm sensitive to user error (e.g., by definitively 
assigning ambiguous clusters to tissue structures), it 

constructs classifiers based on the hardest‑to‑characterize 
pixels, which may improve classification of the 
ambiguous clusters that are more likely to reside near 
cluster boundaries. A cursory analysis of the pixels that 
served as support vectors for a subset of cases confirmed 
that they were indeed assigned to the correct structures 
(data not shown). Fourth, the scalar value produced by 
the SVM decision‑tree is the projection of the vector 
orthogonal to the hyperplane that serves as the classifier. 
Importantly, SVM can construct hyperplanes in a 
non‑linear fashion for improved classification accuracy. 
Although this was not performed here, this allows the 
orthogonal vector to position itself effectively in the data 
space non‑linearly, allowing for non‑Euclidean projections 
that may more accurately define classification certainty. 
This feature is difficult to accomplish with many other 
algorithms. Finally, since the first stage operates using 
relatively small samples, it is more computationally 
efficient than agglomerative clustering methods that 
require larger samples (or entire data sets). Divisive 
clustering methods that do not require point‑by‑point 
analysis could alternatively be used, but outlier detection 
with such methods often suffers, potentially increasing 
the number of ambiguous pixels incorporated into 
clusters. For these reasons, the SVM decision tree 
classification model is a robust tool for this application.
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