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Down syndrome (DS), caused by trisomy of chromosome 21, is the most common
genetic cause of intellectual disability. Individuals with DS exhibit changes in
neurochemistry and neuroanatomy that worsen with age, neurological delay in learning
and memory, and predisposition to Alzheimer’s disease. The Ts65Dn mouse is the
best characterized model of DS and has many features reminiscent of DS, including
developmental anomalies and age-related neurodegeneration. The mouse carries a
partial triplication of mouse chromosome 16 containing roughly 100 genes syntenic
to human chromosome 21 genes. We hypothesized that there would be differences in
brain metabolites with trisomy and age, and that long-term treatment with rapamycin,
mechanistic target of rapamycin (mTOR) inhibitor and immunosuppressant, would
correct these differences. Using HPLC coupled with electrochemical detection, we
identified differences in levels of metabolites involved in dopaminergic, serotonergic,
and kynurenine pathways in trisomic mice that are exacerbated with age. These include
homovanillic acid, norepinephrine, and kynurenine. In addition, we demonstrate that
prolonged treatment with rapamycin reduces accumulation of toxic metabolites (such
as 6-hydroxymelatonin and 3-hydroxykynurenine) in aged mice.
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INTRODUCTION

Down syndrome (DS) is due to partial or complete trisomy of human chromosome 21 (Hsa21)
and is the most common genetic form of intellectual disability, occurring in roughly 1 in 700 live
births (Parker et al., 2010; Presson et al., 2013). Individuals with DS display neurological deficits
in learning and memory, are predisposed to Alzheimer’s disease (AD), autoimmune disease, blood
disorders, and chronic infections, and have a lower incidence of solid tumors and hypertension
(Anwar et al., 1998; Malinge et al., 2013; Bratman et al., 2014; Roberts and Izraeli, 2014; Sobey et al.,
2015; Alexander et al., 2016). People with DS show many molecular and anatomical changes in the
brain, including neuronal loss and the neuroanatomical hallmarks of AD, amyloid-beta plaques
and neurofibrillary tangles. These changes occur most notably in hippocampus and cerebellum,
and worsen with age resulting in neuroanatomical features of AD by the fourth decade of life
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(Lott and Head, 2001). By the time they reach 65 years of
age, 68–80% of individuals with DS tested are diagnosed with
dementia (Wiseman et al., 2015). Thus, people with DS represent
the largest group genetically at risk for developing AD.

Many biomarkers associated with aging, such as markers for
oxidative stress, accumulation of mutations, and altered DNA
repair, are found in the central nervous system and periphery
in individuals with DS (Lott, 2012; Patterson and Cabelof, 2012;
Zigman, 2013). Marked improvements in life expectancy have
been achieved, largely because individuals with DS are typically
no longer institutionalized and because of improvements in, and
better access to, quality medical care. However, the life expectancy
of individuals with DS remains significantly reduced, and risk
of mortality is higher (Coppus et al., 2008). Hematopoietic
and neural stem cells taken from individuals with DS show
changes characteristic of premature aging such as increased
expression of pro-apoptotic genes and inflammatory genes, and
reduced expression of DNA repair genes (Cairney et al., 2009).
Increased accumulation of altered aspartate residues in proteins,
an indicator of increased protein instability and a phenomenon
associated with cellular aging, has been observed in erythrocyte
membrane proteins in children with DS (Galletti et al., 2007).
These findings suggest that individuals with DS experience an
accelerated aging phenotype.

The Ts65Dn [Ts(1716)65Dn] mouse model of DS carries a
partial triplication of mouse chromosome 16 (Mmu16) due to
translocation of part of Mmu16 to the centromeric region of
Mmu17 (Davisson et al., 1990). The Ts65Dn mouse is trisomic
for approximately 100 Mmu16 genes orthologous to Hsa21 genes
(Vacano et al., 2012). It is also trisomic for roughly 60 Mmu17
genes, although only ∼28 encode proteins (Duchon et al., 2011;
Reinholdt et al., 2011). The Ts65Dn mouse is generally considered
the best characterized DS mouse model. The mice exhibit deficits
in spatial learning and memory beginning by 3 months of age.
These deficits are minimized by 8 months of age but learning
and memory rapidly decline as the mice age. By 12 months of
age neurological deficits in learning and memory are apparent
(Hyde and Crnic, 2001). Ts65Dn mice exhibit a widespread
impairment of cell proliferation in cerebellum, hippocampus,
skin, and bone marrow (Jablonska et al., 2006; Contestabile et al.,
2009a,b). Ts65Dn mice have an increased risk of mortality and
show age related declines in mobility and motor function along
with other signs of premature aging reminiscent of individuals
with DS (Sanders et al., 2009). The mice exhibit many features
common in people with DS. For example, they have abnormal
fetal brain development and reduced male fertility and exhibit
many characteristics of premature aging and neuropathology
reminiscent of AD (Vacano et al., 2012; Hamlett et al., 2016).
The mice lose functional basal forebrain cholinergic neurons, a
feature reminiscent of early onset AD (Granholm et al., 2000).
Ts65Dn mice are trisomic for the amyloid precursor protein
(APP) gene and although they do not develop plaques, a recent
study concluded that there is an age dependent dysregulation
of APP metabolism in Ts65Dn mice (Choi et al., 2009). No
abnormalities could be found in APP gene expression or
APP metabolite levels in brains of 4-month-old Ts65Dn mice.
However, at 10- and 12-months of age, Ts65Dn mice showed

elevated levels of APP and soluble APP metabolites. MRI studies
reveal in vivo cholinergic changes possibly relevant to early onset
AD in the brains of Ts65Dn mice (Chen et al., 2009). These mice
also exhibit microtubule associated protein tau (Mapt, or Tau)
hyperphosphorylation (Kern et al., 2011; Qian et al., 2013; Dorard
et al., 2016). Recently, our laboratory conducted an analysis of
the cerebellar and hippocampal proteomes in young and aged
Ts65Dn mice. Our results showed expression changes in proteins
involved in energy metabolism, neurotransmitter transport, and
synapse function that were more dependent on age than ploidy
(Vacano et al., 2018).

In recent years, rapamycin has been shown to increase
the life- and healthspan of mice and to delay appearance of
AD-like features in mouse models of AD (Harrison et al.,
2009; Spilman et al., 2010; Miller et al., 2011; Richardson
et al., 2015; Lin et al., 2017). Rapamycin is a macrocyclic
immunosuppressive agent which is FDA-approved for use as
an anti-rejection agent in transplant patients (Guertin and
Sabatini, 2009). It forms a complex with the peptidyl-prolyl-
isomerase FK506 binding protein 1A (FKBP1A) and directly
inhibits signal transduction pathways involved in cell growth and
proliferation by inhibition of the mechanistic target of rapamycin
(mTOR) (Wullschleger et al., 2006). The mTOR signaling cascade
acts as a metabolic rheostat, regulating processes required for
cell proliferation (protein, lipid, and nucleotide synthesis) and
suppressing catabolic activities such as autophagy (Wullschleger
et al., 2006; Hartford and Ratain, 2007). Inhibition of the mTOR
signaling pathways has been shown to promote longevity in
Drosophila, yeast, and mice (Kapahi et al., 2004; Kaeberlein
et al., 2005a; Harrison et al., 2009; Miller et al., 2011; Lamming
et al., 2013). In particular, recent work shows that rapamycin
treatment in the apolipoprotein E34 transgenic mouse model of
AD rescues vascular, metabolic, and learning deficits in these
mice (Lin et al., 2017). Rapamycin has proven to be an effective
longevity intervention; however, there are well documented side-
effects such as insulin resistance and dyslipidemias, hampering
the translation of rapamycin treatment in humans (Barzilai et al.,
2012; Lamming et al., 2013). In mice, these detrimental side-
effects appear to diminish after prolonged exposure (>20 weeks)
(Fang et al., 2013), and a number of recent publications suggest
that long-term rapamycin treatment is well tolerated.

We employed high energy focused microwave (HEFM)
euthanasia and high-performance liquid chromatography
coupled with electrochemical detection (HPLC-EC) to detect
changes in the brain metabolome of the Ts65Dn mouse model
of DS, AD, and premature aging. We hypothesized that there
would be changes in brain metabolites associated with trisomy
and age, and that long-term treatment with rapamycin would
correct these changes. Identifying novel changes temporally in
these mice may provide valuable insight into the neurochemical
changes associated with aging. Moreover, understanding if
rapamycin alters these changes will allow us to investigate
the mechanism or pathways involved in the cognitive benefits
associated with rapamycin treatment. Here, we report changes in
the Ts65Dn mice associated with trisomy and age consistent with
neurological deficits. Among these changes, we find a disruption
in the dopamine (DA) and kynurenine (Kyn) pathways
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previously shown to be altered due to pro-inflammatory events.
These changes appear in young mice and are exacerbated in
aged mice. Furthermore, rapamycin treatment appears to correct
many of the metabolome changes detected in both young and
old Ts65Dn mice.

MATERIALS AND METHODS

Care and Use of the Ts65Dn Mice
All experiments were approved by the University of Denver
Animal Care and Use Committee (IACUC). The care of the
Ts65Dn mice and the procedures for their use follow many
of the recommendations for the use of mice in gerontological
research (Miller and Nadon, 2000). We chose two treatment
ages, 6- and 18-months mice for metabolomics analysis. For
each age group, we fed trisomic and disomic mice with either
microencapsulated rapamycin or control diet (Table 1). Males
were used exclusively for experiments because (1) Ts65Dn mice
are difficult to breed; (2) Ts65Dn males are sterile and cannot
be used in colony maintenance; (3) the majority of previous
work using the Ts65Dn mice has been done on males. Mouse
chow (Purina 5LG6) containing microencapsulated rapamycin
at the dose (14 mg/kg food) previously shown to safely
and effectively extend longevity, and control diet (Harrison
et al., 2009; Miller et al., 2011) were purchased from Test-
Diet (Richmond, IN, United States). Mice were fed control
diet from weaning to 4-months of age at which point they
were given rapamycin or control diet until their designated
end-point.

Blood was collected by maxillary venipuncture monthly.
A subset of blood samples from 4-, 6-, 12-, and 18-month
old mice were analyzed for complete blood cell counts (CBCs)
and comprehensive blood analysis as a general health check by
the diagnostic company IDEXX, Inc. Additionally, five blood
samples per group were sent to Dr. Martin Javors at the University
of Texas Health Sciences Center San Antonio (UTHSCSA) for
measurement of rapamycin levels. The mice were euthanized via
HEFM irradiation directly to the head as previously described
(Hunsucker et al., 2008; Vacano et al., 2018). This method
euthanizes the mouse quickly and humanely, and instantaneously
halts metabolic activity in the brain, preserving the in vivo
metabolic state (Leary et al., 2013). The mice were quickly
decapitated, and the brains removed; the cerebella were separated
from forebrains and each placed in separate microcentrifuge
tubes. We analyzed one hemisphere of the forebrain sample
(excluding the cerebellum). We use “brain” from here on out to

TABLE 1 | The final number of mice per rapamycin and control diet groups.

Control Rapamycin

Group 6-months 18-months 6-months 18-months

Disomic 14 14 14 13

Trisomic 14 7 15 10

The initial number of mice was 15 per group.

describe changes in the forebrain. Samples were flash frozen in
liquid nitrogen and stored at −80◦C until analysis.

Metabolite Extraction
Metabolites were extracted from 16 mg of tissue in 1 ml of
acetonitrile acidified with acetic acid (0.4%). The samples were
further homogenized using sonication (Branson Sonifier Cell
Disrupter 185): three 15 s intervals separated by 1-min incubation
on ice at power setting no higher than 6. The homogenized
samples were centrifuged at 14,000 × g for 5 min at 4◦C. The
supernatants were collected and frozen at −80◦C for 1 h, and
pellets were stored at −80◦C for protein content analysis (BCA
colorimetric assay, Thermo Scientific) and used to normalize the
metabolomic data to total protein content. The frozen samples
were lyophilized in a Speedvac concentrator until all the acidified
acetonitrile was removed (∼2 h). The samples were re-suspended
in 200 µl of mobile phase A (see below) and centrifuged at
14,000 × g for 15 min to remove insoluble material.

High Performance Liquid
Chromatography (HPLC-EC)
For the separation of brain metabolites, we employed reverse-
phase HPLC using a gradient profile similar to one previously
described (Kristal et al., 2007a,b). Briefly, mobile phase A is
primarily aqueous: 10 g/l pentane sulfonic acid (PSA), 1%
methanol (MeOH), 1 mg/l citric acid, pH 2.85. Mobile phase B is
primarily organic: 50 mM lithium acetate (LiAc), 80% methanol,
10% acetonitrile, 10% isopropanol, pH 5.0. Both mobile phase
solutions were filtered through 0.2 µm filters. Samples were kept
at 4◦C and 30 µl injected via an ESA autosampler (model 542).
The samples were separated using a Tosoh Bioscience TSKgel
guard cartridge and two TSKgel ODS-80Tm C-18 columns
(250 mm × 4.6 mm ID, 5 µm) in series. A column and
detector temperature of 30◦C was maintained throughout the
analysis. The analytes were detected using a CoulArray HPLC
system (model 5600A, ESA) with three coulometric detector
modules. Each electrochemical cell contains four flow-through
coulometric detectors in series. Cell one (channels 1–4) was
set to a range of potentials from 0 to 300 mV in 100 mV
increments. Cells two and three (channels 5–12) were set to a
range of potentials from 375 to 900 mV in 75 mV increments.
The CoulArray software (ESA, version 3.10) was used for baseline
correction, peak alignment, and analysis. Manual verification
of peak alignment and annotation was performed to ensure
correct metabolite identification. Using this system, we obtain
a 2-dimensional separation of metabolites by retention time
and electrochemical potential allowing resolution of co-eluting
metabolites (Supplementary Figure S1).

Standard Preparation and Peak
Identification
Standards used for peak identification were purchased from
suppliers (e.g., Sigma Aldrich) providing the highest possible
purity. A metabolite database was prepared and included analyte
retention time and electrochemical potential (Supplementary
Table S1). Standards were dissolved in Milli-Q purified water
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(Millipore), dilute HCl or dilute NaOH, depending on solubility.
Standards were run individually and in small analyte groups.
This was done to determine first if the compound was detectable,
and if separation from other compounds was adequate. We also
“spiked” brain samples with a known amount of standard to
ensure that retention times and potentials were consistent with
results from standards-only runs. Peaks that did not correspond
to a standard were designated “unknown” and numbered based
on the order eluted off the column.

Protein Sample Preparation
The pellets from the metabolite extracted samples were re-
suspended in cell lysis buffer (10 mM Tris–HCl pH 8.3, 1 mM
KCl, 2 mM EDTA, 1 mM DTT, 4% glycerol) supplemented with
EDTA-free protease inhibitor [cOmplete Mini Protease Inhibitor
Cocktail Tablets (Roche)]. The homogenate was centrifuged at
16,000 × g for 30 min, and the supernatant was collected.
The protein concentration was determined by Pierce BCA
protein concentration colorimetric assay (Thermo Scientific)
according to the manufacturer’s instructions and measured using
a Powerwave XS2 and Gen5 software (BioTek).

Data Processing and Analysis
Blood chemistry and general health metrics were analyzed by
One-way and Two-way ANOVA when appropriate. The raw
chromatographic data was baseline filtered and peak alignment
was performed using CoulArray Software (ESA Bioscience) to
correct for drift in peak retention times. Once the sample
chromatographs were aligned, peak values (in Coulombs) were
normalized to protein concentration. The normalized peak values
were Pareto scaled (using the square root of the standard
deviation) and centered [MetaboAnalyst 2.0 (Xia et al., 2012)].
Final normalized metabolite values were analyzed using a
combination of MetaboAnalyst 2.0 software and Prism by
GraphPad. Two-way ANOVA was used for statistical analysis.
Data are presented as volcano plots [Log2 (Fold Change), −Log10
(p-value)], and box and whisker plots (mean, Q1/Q3, min/max).

RESULTS

General Health Metrics
A blood sample was taken the week of sacrifice by maxillary
venipuncture from each mouse and a subset was sent to
UTHSCSA for rapamycin analysis. As expected there was
between 25 and 35 ng/ml of circulating rapamycin in the treated
mice (Figure 1A). Mice were weighed at three intervals during
the study. At 6 months, the weights of the mice were not
significantly different, however, by 12- and 18-months there
was a significant difference (Figure 1B). The Ts65Dn mice are
smaller than the disomic mice, and do not lose a significant
amount of weight during treatment. Interestingly, the disomic
mice receiving rapamycin do have a reduction in weight at
18-months of age. Rapamycin has been proposed as a dietary
intervention for weight maintenance in people who cannot diet
or exercise in a safe manner (Houde et al., 2010; Moore et al.,
2011).

Both complete blood count and blood chemistry was
performed to assess the general health of the mice (IDEXX,
Inc.). We found changes in glucose and cholesterol levels in
the mice after long-term treatment with rapamycin. After 6-
months of age, glucose levels rise in the rapamycin treated mice,
independent of trisomy, but after 10-months, steadily decline
toward pretreatment levels (Figures 1C,D). This increase in
glucose and subsequent decrease has been witnessed in a previous
study of prolonged rapamycin treatment and heart disease (Flynn
et al., 2013). Cholesterol levels are significantly lower in the
Ts65Dn mice compared to the disomic mice and are largely
unaffected by rapamycin treatment (Figures 1E,F).

Since rapamycin is an immunosuppressant, we expected to
see a reduction in white blood cell (WBC) levels with rapamycin
treatment. Surprisingly, WBC levels were not reduced in mice
treated with rapamycin relative to control diet mice, with the
only exception being that 18-months disomic mice treated
with rapamycin had a lower WBC count compared to 18-
months control fed disomic mice (Table 2). We detected a
decline in total WBC counts in aged (18-months) trisomic
mice that is corrected in the rapamycin treated mice (Table 2).
Analysis of these changes by two-way ANOVA showed significant
reduction in total WBC counts in aged trisomic control diet
mice compared to aged disomic control diet mice, which is
normalized by rapamycin treatment (Table 3). Further analysis
of WBC components (neutrophils, lymphocytes, monocytes,
eosinophils, and basophils) show minimal changes in trisomic
mice compared to disomic mice at 6-months, regardless of
diet (Supplementary Figure S2). However, there were changes
in WBC components in the aged trisomic mice treated with
rapamycin, notably, the elevation of myeloid cells (neutrophils)
and monocytes, and reduction of eosinophils. It should be
noted that these values do not fall outside of normal ranges
(Supplementary Figure S2). mTOR inhibition by rapamycin
treatment may be reducing the levels of lymphocytes, thus
altering the percentages of myeloid cells in the aged treated
mice.

Effects of Aneuploidy on Brain
Metabolites in Young Mice: 6-Months
Ts65Dn Mice and Disomic Mice
Given that roughly 100 Hsa21 ortholog genes are trisomic in
the Ts65Dn mice, we expected differences in metabolite levels
in Ts65Dn versus control (disomic) mice. We compared the
metabolite profiles of Ts65Dn mice and disomic controls at
6-months of age (control diet) to identify significant differences
in metabolites due to trisomy.

Significant differences in abundance of some metabolites
were observed (Figure 2A). Of the detectable 190 metabolites,
we were able to identify 45. Of the identifiable metabolites,
when comparing young trisomic mice to young disomic
mice, we found 16 metabolites significantly changed, of these
three were identified in our metabolite database. Of the
metabolites we could identify, homovanillic acid (HVA) and
norepinephrine (NE) are elevated and guanosine was decreased
in young (6-months) trisomic mice when compared to young
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FIGURE 1 | Health metrics of the Ts65Dn (trisomic and disomic) mice during rapamycin treatment study. (A) Rapamycin levels of the treatment groups in ng/ml.
(B) Weights (gm) of the mice at 6-, 12-, and 18-months showing differences between disomic and trisomic mice and the two treatment groups (control/rapamycin);
disomic control (DC), disomic rapamycin (DR), trisomic control (TC), and trisomic rapamycin (TR). 6-months ∗∗(DC–TC) and ∗∗∗(DC–TR); 12-months ∗∗∗(DC–TC),
∗∗∗∗(DC–TR), ∗∗∗(DR–TC), ∗∗∗∗(DR–TR); 18-months ∗∗∗(DC–TC) and ∗∗∗∗(DC–TR) are significantly different. (C,D) Blood glucose levels of the mice in mg/dl.
(E,F) Blood cholesterol levels of the mice mg/dl. Data represented as mean ± SEM. Two-way ANOVA, Tukey’s post-hoc test (B), One-way ANOVA, Tukey’s post-hoc
test (C–F), ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.

TABLE 2 | White Blood Cell (WBC) counts (109/l) as analyzed by IDEXX Inc.,
mean ± SEM.

Control Rapamycin

Group 6-months 18-months 6-months 18-months

Disomic 7.16 ± 0.64 12.83 ± 0.38 8.91 ± 0.64 8.2 ± 1.19

Trisomic 9.65 ± 0.57 5.00 ± 0.33 7.54 ± 0.29 8.37 ± 2.09

disomic controls (Figure 2B). We have not yet identified 13 of
the metabolites that are significantly different in abundance due
to trisomy but these may be indicative of the cognitive decline
experienced by the mice as they age (Figure 2C).

Effects of Aneuploidy on Brain
Metabolites in Aged Mice: 18-Months
Ts65Dn Mice and Disomic Mice
Due to the premature aging phenotype and deficits in learning
and memory abilities as the mice age we expected to identify
changes in brain metabolites of aged trisomic mice when
compared to age-matched disomic mice. Of the 190 detectable
metabolites, 18 were significantly changed (12 have been
identified), most of which are elevated in trisomic brain
(Figure 3A). In addition to the identified metabolites, we saw
several currently unidentified metabolites that were changed
significantly with age (Figure 3B). Of the identified identified
metabolites that were significantly elevated in the trisomic mice,
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TABLE 3 | White Blood Cell (WBC) count two-way ANOVA p-values, numbers in red represent statistically significant comparisons.

6-months 18-months

DR TC TR DC DR TC TR

6-months DC 0.84 0.47 0.99 0.0008 0.99 0.72 0.98

DR – 0.99 0.95 – 0.99 0.09 0.9999

TC – – 0.6748 – – 0.02 0.97

TR – – – – – – 0.99

18-months DC 0.07 0.23 0.002 – 0.02 0.0001 0.029

DR – 0.95 0.99 – – 0.30 0.99

TC – – 0.53 – – – 0.24

DR, disomic fed rapamycin diet; DC, disomic fed control diet; TR, trisomic fed rapamycin diet; TC, trisomic fed control diet.

FIGURE 2 | Effects of aneuploidy on brain metabolites in young mice: 6-months Ts65Dn mice and disomic mice. (A) Volcano plot indicating abundance and
significance of metabolite changes, green dots represent metabolites elevated in trisomic compared to disomic samples, red dots represent metabolites elevated in
disomic compared to trisomic samples. (B) Box-whisker plots (mean, Q1/3, high/low) comparing significantly changed identified metabolites. (C) Heatmap of
significantly changed unidentified metabolites, disomic control (DC), disomic rapamycin (DR), trisomic control (TC), and trisomic rapamycin (TR). Student’s t-test,
∗p < 0.05.

many of them represent the dopaminergic, serotonergic, and
adrenergic neurotransmission systems (Figure 3C). Interestingly,
two of the metabolites that were elevated in young trisomic
brain, HVA and NE, were elevated in aged trisomic brain
(Figure 4).

Effects of Rapamycin Treatment in
Young Mice (Ts65Dn and Disomic)
Comparing metabolites from 6-months control diet versus
rapamycin treated mice (disomic and Ts65Dn), we found
the levels of several metabolites were significantly different
(Figure 5A). In addition to HVA and NE, we show
changes in metabolites showing a response to rapamycin
treatment (Figure 5A). Above, we showed that HVA
and NE are elevated in trisomic mice when compared
to disomic mice in both the young and aged condition
(Figure 4). Here, we show that treatment with rapamycin
lowers the levels of both HVA and NE to a level similar
to that observed in young control diet disomic mice
(Figure 5B). Our analysis also shows that both DA and
Kyn levels are elevated in rapamycin treated 6-months
groups (disomic and trisomic) versus controls (Figure 5B).
In addition to the metabolites, we could identify, we also

see a change in four currently unidentified metabolites
(Figure 5C).

Effects of Rapamycin Treatment in Aged
Mice (Ts65Dn and Disomic Controls)
Both Ts65Dn mice and individuals with DS are susceptible to
age-related neurodegeneration and premature aging. In young
(6-months) mice, we found changes in metabolites, notably
HVA and NE, that are due to trisomy. We also observed a
reduction in the levels of these metabolites after rapamycin
treatment (Figures 4, 5). In aged (18-months) mice, we identified
several changes in neuroactive metabolites that may indicate
altered neurotransmission (Figure 3C). We hypothesized that
we would find changes in brain metabolite levels in aged
trisomic mice, and that treatment with rapamycin would act
to correct levels of these metabolites. Metabolite levels in
the aged (18-months) mice revealed several metabolites that
are significantly different between disomic and trisomic mice,
and control and treatment groups (Figure 6A). Nine of the
metabolites were not identified (Figure 6B). These metabolite
changes varied in levels between disomic and trisomic mice
and show a differential response to rapamycin treatment
(Figure 6C).
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FIGURE 3 | Effects of aneuploidy on brain metabolites in aged mice: 18-months Ts65Dn mice and disomic mice. (A) Volcano plot indicating abundance and
significance of metabolite changes, green dots represent metabolites elevated in trisomic compared to disomic samples, red dots represent metabolites elevated in
disomic compared to trisomic samples. (B) Heatmap of significantly changed unidentified metabolites in aged disomic and trisomic mice, disomic control (DC),
disomic rapamycin (DR), trisomic control (TC), and trisomic rapamycin (TR). (C) Box-whisker plots (mean, Q1/Q2, high/low) comparing significantly changed
metabolites; 6-hydroxydopamine (HD), aminobenzoic acid (ABA), tyramine (Tyr), 3-methoxytyramine (MT), 5-hydroxy-L-typthophan (HT), 6-hydroxymelatonin (HM),
dopamine (DA), kynurenine (Kyn), homoveratric acid (HVE), 3-hydroxykynurenine (3HK), homovanillic acid (HVA), and norepinephrine (NE). Student’s t-test,
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

DISCUSSION

The goal of this study was to assess changes in the brain
metabolome of the Ts65Dn mouse model of DS, AD, and
premature aging. Combining HEFM euthanasia and HPLC-
EC detection, we were able to separate and quantify 190
brain metabolites and obtain a “snapshot” of in vivo brain
chemistry. We hypothesized that there would be metabolite
changes reflecting neurological deficits due to trisomy and that
these would be exacerbated in the aged mice. Additionally,
we hypothesized that prolonged treatment with rapamycin,
a proven longevity intervention, would ameliorate these
differences. In aged trisomic mice, we observed differences in
levels of metabolites representing neurotransmitter pathways

involved in neurodegeneration. These include metabolites in the
dopaminergic, serotonergic, adrenergic, and Kyn systems.

General Health Metrics
The health and well-being of the mice was assessed via daily
health checks, comprehensive blood chemistries and CBCs.
Hyperactivation of mTOR signaling has been shown to elevate
the blood glucose levels and initiate insulin intolerance by
suppression of ketogenic genes in the liver and altered regulation
of cell function in the pancreas (Shigeyama et al., 2008; Mori
et al., 2009; Sengupta et al., 2010; Efeyan et al., 2013). Our data
show an initial rise in glucose levels with a subsequent decrease
after prolonged treatment, consistent with results from a study of
rapamycin treatment on cardiovascular health in C57Bl/6J mice
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FIGURE 4 | Effects of aneuploidy on homovanillic acid and norepinephrine in
young and aged Ts65Dn mice and disomic mice fed control diet. Box-whisker
plots (mean, Q1/Q2, high/low) showing significantly changed metabolites in
both young and aged mice fed control diet; green boxes indicated trisomic,
red indicated disomic. These are shown in Figures 3 and 4, shown here for
sake of comparison (by age). Two-way ANOVA with a Tukey’s HSD post-hoc
analysis, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

(Flynn et al., 2013). Fang et al. (2013) also showed that prolonged
rapamycin treatment led to beneficial metabolic effects. Further
investigation into the effect of interactions in mTORC1 and
mTORC2 signaling on glucose metabolism during prolonged
treatment with rapamycin is warranted.

It has been shown previously that the Ts65Dn mice develop
a persistent macrocytosis and develop myeloproliferative disease
(Kirsammer et al., 2008). Our data show an age-related alteration
in total WBC levels in the trisomic mice versus disomic controls
(Tables 2, 3). In the aged mice, rapamycin treatment elevated
the total WBC counts of the trisomic mice to levels observed in
the disomic mice. In humans, lymphocytes are typically more
sensitive to mTOR inhibition, and a decrease in lymphocytes
would make the neutrophil percentage appear to be higher (Janes
and Fruman, 2009). Our data suggest that this may indeed be the
cause of WBC component alterations seen in the aged trisomic
mice treated with rapamycin.

Effects of Aneuploidy on Brain
Metabolites
While trisomy causes many developmental deficits, including
abnormal learning and memory, at 6-months of age, the
Ts65Dn mice have reached their peak cognitive abilities and
most resemble their disomic counterparts in some learning
and memory behaviors (Hyde and Crnic, 2001). Many of the
metabolites we detect show a significant difference between
disomic and trisomic mice at this age but have not yet been
identified. Of those that we have identified, HVA and NE are
elevated and guanosine is decreased in trisomic mice. HVA is a
major catecholamine metabolite intimately associated with DA

metabolism. Altered HVA metabolism has been reported in DS,
AD and other neurodegenerative disorders such as Parkinson’s
disease (PD) and Huntington’s disease (HD) (Kay et al., 1987;
Schapiro et al., 1987; Stahl et al., 1987; García Ruiz et al., 1995;
Vermeiren et al., 2014; Morimoto et al., 2017; Stefani et al.,
2017). Measurement of these compounds in cerebrospinal fluid
(CSF) or post-mortem brain tissue typically shows a reduction in
HVA levels, corresponding with reduced levels of DA. Elevated
levels of HVA have been associated with dysfunction in the DA
transporter (DAT) resulting in slower DA reuptake and increased
oxidative stress. Interestingly, HVA is elevated (along with other
catecholamine metabolites) in urine of neuroblastoma patients
(Lunardi et al., 2009; Barco et al., 2014; Stefani et al., 2017).

We also observed elevated levels of NE, a catecholamine
metabolite synthesized from DA and critical in the noradrenergic
system. NE is produced primarily by cells in the locus coeruleus
(LC), a region of the brain greatly affected in AD, PD, and
DS (Marcyniuk et al., 1988; German et al., 1992; Granholm
et al., 2010; Lockrow et al., 2011). Loss of neurons in the LC
corresponds to increased deposition of amyloid beta (Aβ) in a
mouse model of AD in a NE dependent manner (Heneka et al.,
2010). Our reported elevation in NE may indicate a disruption in
the DA neurotransmission system. It has previously been shown
that impairment of mTORC2 signaling increases prefrontal
cortex concentrations of NE (Siuta et al., 2010). Although
rapamycin is considered a specific mTORC1 inhibitor, inhibition
of mTORC2 due to long-term in vitro rapamycin treatment
has been observed (Sarbassov et al., 2005). However, Halloran
et al. (2012) showed memory enhancement and no impairment
in mTORC2 activity nor disruption in NE inputs from mTOR
inhibition after long-term rapamycin treatment. Monoamine
neurotransmitters (NE specifically) have been shown to be
elevated in DS and indicate disrupted monoamine turnover and
changes to functional brain activity (Kay et al., 1987; Schapiro
et al., 1987). Taken together, our data show an early disruption
in the metabolism of DA metabolites, specifically HVA and NE,
in young trisomic mice.

Previous work comparing metabolites extracted from brains
of patients with DS and AD showed reductions in NE, HVA, DA,
and other dopaminergic metabolites (Reynolds and Godridge,
1985; Godridge et al., 1987). Our data show elevations in NE and
HVA and suggest a widespread neuronal dysregulation affecting
these neurotransmitter systems that precedes the neuronal
loss associated with AD and subsequent reductions in these
metabolites levels. It may be that the post-mortem interval
between harvest and analysis may have allowed for degradation
of the metabolites in the above studies on human tissues. Our
study employed HEFM which halts all metabolic activity in the
brain reducing post-mortem changes in metabolites (Hunsucker
et al., 2008).

Effects of Aneuploidy on Brain
Metabolites in Aged Mice
One goal of this study was to understand the metabolome
changes in aged Ts65Dn mice. We identify many metabolites
that were changed, several of which are key metabolites in the
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FIGURE 5 | Effects of rapamycin treatment in young mice (Ts65Dn and disomic). (A) Two-way ANOVA of metabolite changes in young (6-months) mice comparing
aneuploidy (disomic and trisomic), and treatment (control fed and rapamycin fed) groups; blue dots represent significantly changed metabolite levels, black represent
unchanged metabolites. (B) Box-whisker plots (mean, Q1/Q2, high/low) of Tukey’s HSD post-hoc analysis of two-way ANOVA showing specific changes between
groups. (C) Heatmap of significantly unidentified metabolites, disomic control (DC), disomic rapamycin (DR), trisomic control (TC), and trisomic rapamycin (TR),
∗p < 0.05 and ∗∗p < 0.01.

FIGURE 6 | Effects of rapamycin treatment in aged mice (Ts65Dn and disomic controls). (A) Two-way ANOVA of metabolite changes in aged (18-months) mice
comparing aneuploidy (disomic and trisomic), and treatment (control fed and rapamycin fed) groups; blue dots represent significantly changed metabolite levels,
black represent unchanged metabolites. (B) Heatmap of significantly changed unidentified metabolites in aged disomic and trisomic mice treated with Rapamycin,
disomic control (DC), disomic rapamycin (DR), trisomic control (TC), and trisomic rapamycin (TR). (C) Box-whisker plots (mean, Q1/Q2, high/low) of Tukey’s HSD
post-hoc analysis of two-way ANOVA showing specific changes between groups, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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dopaminergic, serotonergic, and Kyn systems. Metabolites of
the dopaminergic system include precursors and degradation
products of DA and are critical to DA-related neurotransmitter
activity. These metabolites include DA, 6-hydroxydopamine
(6HD), HVA, NE, 3-methoxytyramine (MT), and tyramine
(Tyr). Our data show that several of these metabolites are
elevated in 18-months Ts65Dn trisomic mice when compared
to their disomic counterparts. Metabolites associated with
the serotonergic system changed in aged trisomic mice: these
include 5-hydroxy-L-tryptophan (HT), 6-hydroxymelatonin
(HM), and melatonin (Mel). Additionally, we find metabolites
associated with the Kyn pathway, including Kyn metabolite
3-hydroxykynurenine (HK). Of particular interest are the
elevated levels of known neurotoxic intermediates such as 6HD,
an amine derivative toxic to dopaminergic neurons and HK a
neurotoxic metabolite of Kyn metabolism. Hydroxydopamine
is often used to induce a PD phenotype in mouse models
by causing dopaminergic neuronal death. Neuronal death
from endothelial inflammation due to pro-inflammatory
cytokines [such as interleukin-1β (IL-1β), interleukin-6, and
tumor necrosis factor-α (TNFα)] (Fu et al., 2017) may be
responsible for the elevated levels of neurotoxic 6HD and HK
observed in the aged trisomic mice. 3-hydroxykynurenine is
a metabolite of the Kyn pathway and is a major metabolite in
the degradation of tryptophan. Elevated levels of HK have been
associated with excitotoxicity, and HK is a known generator
of highly reactive radicals such as quinolinate (Guidetti and
Schwarcz, 1999). Patients with AD have elevated levels of HK,
and blocking HK formation using a small molecule prodrug
inhibitor of kynurenine 3-monooxygenase (KMO) reduces
the neurodegenerative events in transgenic mouse models
of AD (Zwilling et al., 2011; Amaral et al., 2013; Schwarz
et al., 2013). Activated microglia predominantly express KMO
which catalyzes the conversion of Kyn to HK in response to
inflammatory signals [TNFα and interferon-gamma (IFNγ)]
and further activation of indoleamine 2,3-dioxygenase (IDO) by
IFNγ may drive the production of reactive radicals by triggering
tryptophan degradation (Guillemin et al., 2005; Connor et al.,
2008; Parrott and O’Connor, 2015). Interestingly, genes for
four of the six interferon receptors are triplicated in DS and
elevated interferon signaling has been reported in individuals
with DS (Reboul et al., 1999; Tanaka et al., 2012). Maroun
(1980, 1995) employed the Trisomy 16 (Ts16) mouse model
of DS to test the hypothesis that elevated interferon signaling
is the probable antagonist in the deficiencies experienced by
individuals with DS. Their efforts to regulate interferon activity
by gene knockout resulted in improved development and
survival of cortical neurons in the Ts16 mouse model (Maroun
et al., 2000). Recently, using complementary transcriptome
analysis and shRNA loss-of-function screens, Sullivan et al.
(2016) have reinvigorated the idea of aberrant IFN signaling in
DS as a potential mechanism for the comorbidities found in DS.
In a similar vein, we believe that disruption in Kyn metabolism
may be a marker for chronic pro-inflammatory (elevated TNFα,
IL-1β, and IFNγ) signaling caused by the triplication of IFN
receptors in individuals with DS and may provide a therapeutic
target.

A recent study employed an electrochemical (amperometric)
detection method coupled with HPLC to analyze monoamine
metabolites in the dopaminergic, serotonergic, and
(nor)adrenergic neurotransmission systems in brains from
a mouse model of DS (Dekker et al., 2017). They report changes
mainly associated with aging, rather than aneuploidy, consistent
with the changes we observed in our analysis. Another study
using HPLC-EC to compare CSF samples from patients with AD,
or mild cognitive impairment (MCI) subjects to control subjects
showed several changes in metabolites involved in tryptophan,
tyrosine, and purine metabolism (Kaddurah-Daouk et al., 2013).
The pathways affected are consistent with those affected in the
Ts65Dn mice. Tryptophan, tyrosine and purine metabolism are
integrated with Kyn, serotonin, and DA metabolism.

Effects of Rapamycin Treatment
Rapamycin treatment has been shown to extend lifespan and
improve health in evolutionarily divergent species, including
some models of neurodegeneration (Kaeberlein et al., 2005b;
Bjedov et al., 2010; Miller et al., 2011; Wilkinson et al., 2012),
and it has a positive effect on cognition in aging models and
has shown promise as an intervention to improve health and
cognition (Caccamo et al., 2010; Spilman et al., 2010; Halloran
et al., 2012; Majumder et al., 2012). In addition to the benefits
of rapamycin, potentially via immunomodulation, there are side-
effects associated with short-term treatment, which diminish
after prolonged treatment (Fang et al., 2013; Flynn et al., 2013).
Our results show rapamycin treatment in young mice elevates
the levels of Kyn, DA, and ortho-hydroxyphenylacetic acid (DA
derivative), and lowers pyridoxal, the biologically active form,
pyridoxal phosphate, is required for Kyn metabolism (Majewski
et al., 2016), in both disomic and trisomic mice, potentially due
to the normalization of upstream inflammatory responses.

In aged trisomic mice, we detected elevated levels of HVA,
NE, and other deleterious metabolites (6HD and HK), and these
may be indicative of dysregulated inflammation and elevated
levels of oxidative radicals in the brain. Long-term rapamycin
treatment in aged trisomic mice corrected the level of these
metabolites, which may reduce chronic inflammation. Long-
term rapamycin treatment in 18-months old C57BL6/129svJ
mice was shown to reduce age-related cognitive deficits by
reducing the pro-inflammatory cytokine IL-1β and enhancing
N-methyl-D-aspartate (NMDA) signaling (Majumder et al.,
2012). Furthermore, rapamycin treatment has been shown
to be protective against PD associated neuronal cell loss by
reducing L-DOPA associated dyskinesia by enhancing gamma-
aminobutyric acid (GABA) signaling in the basal ganglia (Santini
et al., 2009; Malagelada et al., 2010).

The DA and Kyn systems play an important role in
neurotoxicity and neurodegeneration. Reductions in DA and
the dopaminergic system have been implicated in neurological
disorders such as PD, HD, and multiple sclerosis (MS) and may
play a critical role in aging-related neurodegeneration (Yates
et al., 1983; LeWitt et al., 1992; Havelund et al., 2017). Rapamycin
has been shown to elevate midbrain DA (and other monoamine)
levels after prolonged treatment in C57Bl/6 mice (Halloran et al.,
2012). Alterations in Kyn metabolism that have been implicated
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in AD, HD, and PD may play a role in other psychiatric
disorders, such as depression and schizophrenia (Beal et al., 1992;
Guillemin et al., 2003; Nemeth et al., 2006; Myint et al., 2007;
Schwarz et al., 2013). The Kyn pathway may act as a rheostat for
inflammation and immune response and may have both systemic
and CNS implications in aging (Amaral et al., 2013; van der
Goot and Nollen, 2013; Capuron et al., 2014; Cervenka et al.,
2017).

Due to a lack of metabolomics studies in young individuals
with DS, or longitudinal studies as individuals age, it remains
to be determined how well our results recapitulate the DS
metabolome. However, we identified metabolic pathways that
may serve as biosensors for neurotoxic events, perhaps induced
by elevated neuroinflammation and oxidative stress. In addition
to metabolic changes associated with aging, our results show
that long-term rapamycin treatment corrects the levels of these
metabolites. Understanding the connection, if any, with recent
studies indicating interferon signaling as a major causative
factor in DS related pathologies will be important (Sullivan
et al., 2016). Interferons may be causing chronic inflammation
in DS by disrupting the brain metabolome. Interferons have
been shown to modulate Kyn metabolism through KMO and
IDO, causing inflammation induced catabolism of tryptophan
and accumulation of neurotoxic Kyn intermediates. Rapamycin,
an immunosuppressant, would likely reduce interferon induced
inflammation caused by triplication of interferon receptors
in DS. An analysis of interferon activity in the Ts65Dn and
DS brain may provide insights into inflammation and the
role of the mTOR pathway in inflammatory events in the
aging brain. Our results may be informative for developing
new therapies, and for further investigation of rapamycin and
rapalogs.
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