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Abstract: Background and Objectives: Cardiovascular morbidity and mortality are increased in patients
with chronic kidney disease (CKD). It is likely that the accumulation of uremic toxins resulting in
increased oxidative stress (OS) is a major contributing factor, but no clear link has been identified.
The purpose of this research is to establish if advanced oxidation protein product (AOPP) levels in
the serum of predialysis patients are a contributing factor to vascular calcification and increased
arterial stiffness. Materials and Methods: After obtaining the informed consent, 46 predialysis patients
(CKD stages G3–G5) were included in the study. In order to identify vascular calcifications, hand and
pelvic radiographs were performed. Valvular calcifications were identified using cardiac ultrasound.
AOPP were measured using a commercially available ELISA kit. The relationships between serum
AOPP values and biochemical parameters relevant in the evaluation of CKD patients were analyzed.
In addition to identifying the differences in AOPP levels between patients with/without vascular or
valvular calcifications, the research focused on describing the relationship between OS and arterial
stiffness assessed by oscillometric pulse-wave velocity (PWV) measurement. Results: No significant
relationship between serum AOPP and vascular or valvular calcifications was highlighted, but
significant correlations of AOPP with C-reactive protein (p = 0.025), HDL-cholesterol levels (p = 0.04),
HbA1c (p = 0.05) and PWV values (p = 0.02) were identified. Conclusions: The usefulness of (OS)
measurement in clinical practice remains debatable; however, the relationship between AOPP and
arterial stiffness could be valuable in improving cardiovascular risk assessment of patients with CKD.

Keywords: CKD; arterial stiffness; oxidative stress; AOPP; vascular calcification

1. Introduction

Oxidative stress (OS) is a key pathological feature of chronic kidney disease (CKD)
that results, partly, from prolonged exposure to uremic toxins and contributes to patient
morbidity and mortality. Until recently, the quantification of reactive oxygen species
(ROS) could only be performed in vitro studies, because ROS have very short half-lives
and usually react with other molecules near the site where they are produced, making it
difficult to isolate and adequately analyze them [1]. Free radicals oxidize lipids, proteins
and nucleic acids, producing more stable compounds that can be assessed as biological
markers of OS [1].

Currently, the available markers indirectly evaluate the levels of ROS and are not able
to identify the source of free radicals [2]. The pathologies most frequently associated with
CKD (i.e., diabetes mellitus, hypertension, atherosclerosis) are themselves major disruptors
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of redox homeostasis and prevent researchers from adequately evaluating the role of ROS
in CKD pathogenesis [3]. These assessments could provide valuable insight regarding the
severity and progression of CKD and its complications.

Among the markers relevant for CKD are: malondialdehyde (MDA), thiobarbituric
acid reactive substances (TBARS), F2-isoprostanes, lipid hydroperoxides (LOOH), asymmet-
ric dimethylarginine (ADMA), homocysteine, protein carbonyls and advanced oxidation
protein products (AOPP) [2].

AOPP result from albumin exposure to chlorinated oxidants that result during
macrophage or neutrophil activation, and can be found in the serum of CKD patients
as dityrosine or disulfide protein aggregates [4,5].

AOPP levels correlate with CKD severity and progression and vary according to
dialysis modality, with hemodialysis patients having the highest concentrations [4]. As
Cao et al. have shown, AOPP are biologically active molecules that can contribute to
kidney disease progression by local activation of the renin–angiotensin–aldosterone axis,
and exhibit indirect oxidant activity by the stimulation of NADPH-oxidase in proximal
tubular cells [6].

Zhou et al. concluded that AOPP promote podocyte apoptosis by interacting with the
receptor for advanced glycation-end products (RAGE) with subsequent NADPH-oxidase
activation. Podocytes exposed to oxidized albumin express molecules correlated with the
p53/Bax/caspase-3 signaling pathway (associated with apoptosis) [7].

Descamp-Latscha et al. have demonstrated that AOPP and acute phase reactants
(i.e., C-reactive protein and fibrinogen) have a significant predictive capacity for adverse
cardiovascular events in predialytic CKD patients [8]. Among type 2 diabetic patients,
elevated levels of AOPP were associated with endothelial dysfunction caused by depletion
of vasodilator substances (i.e., nitrous oxide) and impaired adaptation of small vessel
caliber to tissue perfusion requirements [9], with possible negative effects on the process of
arteriovenous fistula maturation [10].

Vascular calcification can be defined as the pathological process through which miner-
als (i.e., calcium phosphate salts) actively deposit within the layers of the vascular walls,
frequently associated with aging, diabetes, cardiovascular disease and CKD [11]. Generally,
two types of vascular calcifications have been recognized: intimal and medial. Intimal
vascular calcifications are encountered both in CKD patients and in the general popu-
lation, and usually manifest in the form of atherosclerotic plaques that can be entirely
calcified and less prone to rupture, or plaques with microcalcifications that are more likely
to rupture and cause thromboembolic events [12]. Irrespective of the level of calcification,
atherosclerotic plaques are usually associated with luminal obstruction and impaired organ
perfusion [13]. In CKD, atherosclerotic plaques evolve at an accelerated rate, owing to the
various metabolic disturbances and associated comorbidities [14].

Medial calcifications occur by abnormal calcium phosphate deposition in the arterial
media and through subsequent changes in vascular smooth muscle cells (VSMCs) phe-
notypes under the influence of inflammatory cells and mediators [15–18]. This type of
pathological mineralization is frequently encountered in patients with CKD and is more
pronounced in dialysis-dependent end-stage renal disease, in part as a consequence of
dysregulated calcium phosphate metabolism [15,19]. Unlike intimal calcifications, me-
dial calcification does not obstruct the vascular lumen, but it promotes arterial stiffening,
increased pulse pressure and increased shear-stress [15].

AOPP seem to favor vascular mineralization by acting upon VSMCs, inducing the
transition to an osteoblastic phenotype. VSMCs have increased cytosolic calcium concen-
trations and express elevated levels of CBF-α1 (core binding factor) mRNA involved in the
synthesis of osteocalcin and alkaline phosphatase [20]. There are reports that confirmed
that AOPP promote cardiomyocyte apoptosis and defective cardiac remodeling in CKD
by activating the JNK pathway (c-Jun N-terminal kinase pathway) [21]. Lin et al. have
identified increased levels of AOPP in patients with coronary calcifications [22].
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Many of the studies involving the effects of AOPP in CKD have been performed
in vitro; these studies did not focus on analyzing AOPP as a useful clinical marker. There-
fore, the aim of the present study was to investigate the relationship between AOPP,
vascular calcifications and other cardiovascular assessment tools, routinely used for the
evaluation of CKD patients.

2. Materials and Methods

This research represents a cross-sectional study performed on a prevalent cohort of
Caucasian inpatients with CKD stages G3–G5 admitted between July 2018 and January
2019 in the Department of Nephrology of an emergency hospital for routine evaluation and
not undergoing hemodialysis at the time of inclusion. Most of the patients included were
diagnosed with hypertension, diabetes or both, were undergoing chronic treatment for
these pathologies and were hemodynamically stable and had relatively adequate glycemic
control at the time of inclusion. Exclusion criteria were: cerebrovascular events during the
6 months prior to the inclusion in the study (i.e., ischemic or hemorrhagic stroke, acute
myocardial infarction), severe heart failure, acute hepatitis or liver failure, cirrhosis, active
neoplasia and patients on chronic hemodialysis. The study was approved by the Hospital
Local Ethics Committee and was conducted in accordance with the Declaration of Helsinki.

2.1. Demographic and Clinical Parameters

After the informed consent was obtained, information regarding age, gender, history
of CKD disease, the presence of diabetes mellitus, arterial hypertension, coronary and
peripheral artery disease, as well as other comorbidities were retrieved from patients’
medical records. At the moment of inclusion, the patients were weighed and measured.
Systolic and diastolic blood pressures were measured at the upper arm after 10 min of
rest, and pulse-wave analysis was performed using Mobil-O-Graph® NG, offering informa-
tion regarding pulse-wave velocity (PWV), augmentation index (AIX) and augmentation
pressure (AugP).

2.2. Laboratory Parameters

Blood samples were taken, assessing: complete blood count, glycemia, glycated
hemoglobin for diabetic patients (HbA1c), serum urea, creatinine and uric acid, full
lipid profile (total cholesterol, LDL-cholesterol (low-density lipoprotein cholesterol), HDL-
cholesterol (high-density lipoprotein), triglyceride), inflammatory markers (erythrocyte
sedimentation rate (ESR), fibrinogen, C-reactive protein (CRP)), phosphocalcic metabolism
parameters (total serum calcium, serum phosphate, intact parathormone (iPTH)), total
serum proteins, and albumin, proteinuria and albuminuria. Estimated glomerular filtration
rate (eGFR) was calculated using the CKD-EPI formula [23]. Analyses were performed
by the accredited hospital laboratory. For AOPP evaluation: blood was drawn in 2 mL
EDTA tubes and centrifuged for 15 min at 7000 RPM, then the plasma was transferred
into plain test tubes and stored at −24 ◦C. The samples were analyzed by a spectropho-
tometric method using a commercially available AOPP kit (Immundiagnostik, Bensheim,
Germany). Samples were prepared according to manufacturer’s instructions: the samples
and reagents were brought to room temperature (20–30 ◦C), and the EDTA-plasma samples
were centrifuged in 1.5 mL test tubes at 3000× g for 30 s. Then, 125 µL of centrifuged
EDTA-plasma was treated with 25 µL of delipidation reagent and left to incubate for 10 min
at room temperature. After centrifuging again for 5 min at 3000× g, 100 µL delipidated
EDTA-plasma was mixed with 400 µL assay buffer, resulting in a final dilution of 1:6. The
absorbance of the standards, controls and patient samples was read at 340 nm, expressing
AOPP concentrations as chloramine T(CT)-equivalents. The resulting AOPP concentration
was multiplied by a dilution factor of 6.
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2.3. Imaging Studies

For valvular calcification assessment: a Doppler echocardiogram was performed (by
the same operator) using a Samsung HS40 system with a 4 GHz Samsung Medison PN2-4
probe (Samsung Medison, Seoul, Korea) for cardiac ultrasound (a standardized protocol
was followed to minimize result variability). The focus of the examination was on the
mitral and aortic valves.

To detect vascular calcifications, hand and pelvic radiographs were performed, and the
films were analyzed by the same operator using the protocol described by Adragao et al.:
the pelvic radiograph was divided into 4 quadrants by two imaginary lines, a horizontal
line just above the femoral heads and a vertical line over the middle of the vertebral column;
the hand radiographs were divided similarly by a horizontal line over the upper limit of the
metacarpal bones and one vertical line between the two hands [24]. If linear calcifications
corresponding to medial calcification of the arteries were noted in any of the 4 quadrants,
the patient received 1 point for every quadrant with visible vascular calcifications; the score
was the sum of positive quadrants, with a minimum of 1 and a maximum of 8.

2.4. Statistical Analysis

Database management and statistical analysis were performed using IBM SPSS 20.
Continuous variables were tested for normality by visually inspecting the frequency distri-
bution plots and by performing the Shapiro–Wilk test. Non-normally distributed data were
log-transformed in order to meet the assumptions of normality for parametric testing. Dis-
persion of continuous variables were characterized using means and standard deviations
(SDs), while those that were not normally distributed were described by their medians and
interquartile ranges (IQR). To assess AOPP, Pearson’s chi-square test was used to compare
dichotomous variables for significant differences. To evaluate the differences between
patients with and without vascular/valvular calcifications, an independent samples t-test
was used (boxplots). A hierarchical multiple linear regression analysis was performed to
examine the relationship between AOPP and vascular stiffness.

3. Results
3.1. Patient Characteristics

74 patients diagnosed with chronic kidney disease (CKD) stages G3–G5 were invited
to participate in this study, but after applying the inclusion and exclusion criteria, a total
of 46 patients were enrolled: 22 females and 24 males, with a mean age of 65.07 ± 13.89
years and a median glomerular filtration rate of 10 mL/min/1.73 m2 (IQR = 9.86, IQR =
interquartile range). Of these, 78.3% were diagnosed with arterial hypertension and 43.5%
with diabetes mellitus. Seven patients did not consent to the radiographs (84.7% consent
rate), and 4 did not consent to the Doppler echocardiogram (91.3% consent rate). AOPP
values ranged from 9.9 to 45.78 µmol/L, with a slightly higher level in females than in
males (Table 1 and Figure 1).

Table 1. Patients’ demographic characteristics, and clinical and biochemical parameters.

Patients’ Characteristics Value

Gender (%) Male 52.2
Female 47.8

Mean age (y) 65.07 (SD = 13.89)

Smoking status (%) Current smoker 23.9
Nonsmoker 76.0

Arterial hypertension (%) Hypertensive 78.3
Non-hypertensive 21.7

Type 2 diabetes mellitus (%) Diabetic 43.5
Nondiabetic 56.5

Vascular calcifications (%) With calcification 74.3
Without calcification 25.6

Valvular calcifications (%) With calcification 57.1
Without calcification 42.8
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Table 1. Cont.

Patients’ Characteristics Value

Pulse-Wave Analysis

PWV (m/s, M ± SD) 9.52 ± 1.83
Median augmentation pressure

(mmHg) 9.5

IQR (mmHg) 16.25
Mean augmentation index

(%, M ± SD) 25.3 ± 14.6

Mean pulse pressure
(mmHg, M ± SD) 56.6 ± 18.6

Advanced Oxidation Protein Products (µmol/L)

Male (M ± SD) 26.4 ± 8.4
Female (M ± SD) 27.6 ± 11.09

Total (M ± SD) 26.9 ± 9.7

Renal Function Tests

Median serum creatinine
(mg/dL) 5.0

IQR (mg/dL) 2.65
Serum urea (mg/dL, M ± SD) 142.0 ± 52.52

Median serum uric acid (mg/dL) 7.22
IQR (mg/dL) 3.40

Median eGFR (mL/min/1.73 m2) 10.0
IQR (mL/min/1.73 m2) 9.86

Calcium Phosphate Metabolism

Serum calcium (mg/dL, M ± SD) 9.28 ± 0.77
Serum phosphate
(mg/dL, M ± SD) 4.68 ± 1.07

iPTH (pg/mL, Median) 184.0
IQR (pg/mL) 230.2

Ca × PO4
− (mg2/dL2, M ± SD) 42.9 ± 9.8

Lipid Profile

Cholesterol (mg/dL, M ± SD) 186.0 ± 53.1
LDL-cholesterol

(mg/dL, M ± SD) 122.7 ± 42.85

HDL-cholesterol
(mg/dL, M ± SD) 44.7 ± 13.2

Total cholesterol/HDLc ratio
(M ± SD) 4.65 ± 1.5

LDLc/HDLc ratio (M ± SD) 2.92 ± 1.17

Markers of Inflammation

Erythrocyte sedimentation rate
(mm/h, M ± SD) 59.13 ± 37.2

Fibrinogen (mg/dL, M ± SD) 503.8 ± 152.6
Mean C-reactive protein

(mg/L, M ± SD) 5.05 ± 12.22

Other Tests

Serum albumin (mg/dL, M ± SD) 3.83 ± 0.78
Serum total proteins

(mg/dL, Median) 7.11

IQR (mg/dL) 1.35
Albuminuria (mg/24 h, Median) 819.6

IQR (mg/24 h) 1881.94
Proteinuria (mg/24 h, Median) 776.0

IQR (mg/24 h) 1153.4
Legend: y = years; SD = standard deviation; PWV = pulse-wave velocity; M = mean value; IQR = interquartile
range; eGFR = estimated glomerular filtration rate; iPTH = intact parathyroid hormone; Ca = serum calcium; PO4

−

= serum phosphate; LDL = low-density lipoprotein; HDL = high-density lipoprotein; HDLc = HDL-cholesterol;
LDLc = LDL-cholesterol.
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Figure 1. Design of the study.
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3.2. Vascular and Valvular Calcifications

Of the 46 patients included in the study, 29 (63%) presented vascular calcifications
visible on the performed radiographs, 24 (52.1%) had valvular calcifications seen on cardiac
ultrasound, 16 had both vascular and valvular calcifications and 2 had none. There were
no statistically significant differences between genders regarding vascular (n = 39, χ2 = 0.07,
p = 0.9) and valvular calcifications (n = 42, χ2 = 0.07, p = 0.791). There were no differences
in mean age between the patients that had (M1) or did not have (M2) vascular calcifications
(M1 = 67.7 ± 13.9 yrs. vs. M2 = 62.2 ± 16.15 yrs., t(37) = 1.051, p = 0.3) or valvular
calcifications (M1 = 69.3 ± 14.39 yrs. vs. M2 = 61.44 ± 12.64 yrs., t(40) = 1.850, p = 0.07)
(Table 2).

Mean AOPP values were not significantly different between groups with or without
vascular calcifications (M1 = 25.96 ± 10.9 µmol/L vs. M2 = 29.8 ± 8.58 µmol/L, t(37) =
−1.013, p = 0.31) or valvular calcifications (M1 = 27.3 ± 10.3 µmol/L vs. M2 = 26.9 ± 10.07
µmol/L, t(40) = 0.136, p = 0.89) (Figure 2a,b, Table 2).

Table 2. Patients’ characteristics outlined according to the presence/absence of vascular or valvular
calcifications.

Vascular Calcifications Valvular Calcifications

Present Absent p-Value Present Absent p-Value

Gender
(Male/Female) 13/6 6/4 0.79 13/11 10/8 0.92

Age
(M ± SD, y) 67.7 ± 13.9 62.2 ± 16.15 0.6 69.3 ± 14.3 61.4 ± 12.6 0.07

Diabetes
mellitus

(%)
14 (70%) 4 (25%) 0.65 10 (50%) 9 (45%) 0.59

Hypertension
(%) 22 (61%) 8 (22%) 0.78 19 (52%) 14 (38%) 0.91

AOPP
(M ± SD) 25.9 ± 10.9 29.8 ± 8.5 0.31 27.3 ± 10.3 26.9 ± 10.07 0.89

PWV
(M ± SD) 9.8 ± 1.8 9.04 ± 1.9 0.24 10.04 ± 1.83 9.06 ± 1.7 0.08

Legend: M = mean value; SD = standard deviation; y = years; AOPP = advanced oxidation protein
products; PWV = pulse wave velocity.

Figure 2. Differences in AOPP values between patients with and without vascular calcifications visible on (a) pelvic and
hand radiographs and (b) cardiac ultrasound. Legend: AOPP = advanced oxidation protein products.



Medicina 2021, 57, 452 8 of 15

3.3. Pulse-Wave Analysis and Arterial Stiffness

Mean systolic blood pressure was significantly higher in men (MsysM) than in women
(MsysF): MsysM = 144 ± 15.71 mmHg, MsysF = 129 ± 16.56 mmHg, t(44) = 3.075, p = 0.004.
Mean arterial pressure was significantly higher in men (MmapM) than in women (MmapF):
MmapM = 109.29 ± 11.74 mmHg, MmapF = 98.5 ± 12.56 mmHg, t(44) = 3.012, p = 0.004;
however, it had no relationship with serum AOPP (r = −0.16, p = 0.13) or PWV (r =
−0.31, p = 0.42). There were no significant differences regarding PWV values between
male (MpwvM) and female (MpwvF) gender (MpwvM = 9.81 ± 1.86 m/s, MpwvF = 9.24
± 1.85 m/s, t(44) = 1.042, p = 0.303). Zero-order correlation between AOPP and PWV
was statistically significant but rather weak (n = 46, r = 0.29, p = 0.02). Performing the
analysis while controlling for the effects of eGFR (n = 46, r = 0.332, p = 0.02) and creatinine
(n = 46, r = 0.43, p = 0.01) revealed that serum creatinine levels had a greater influence on
the relationship between PWV and AOPP than eGFR (Figure 3a,b). Unlike PWV, pulse
pressure did not correlate with AOPP (r = 0.13, p = 0.19).

Figure 3. Scatterplots illustrating the positive correlation between PWV (m/s) and AOPP (µmol/L)
after adjusting for the effect of serum creatinine (a) and eGFR (b). As shown by the differences
in the r-value, serum creatinine improved the relationship between AOPP and PWV more than
eGFR. Legend: PWV = pulse wave velocity; AOPP = advanced oxidation protein products; eGFR =
estimated glomerular filtration rate.

To identify the strongest PWV predictors, 3 linear regression models were tested using
eGFR and AOPP as common independent variables and adding one of the three additional
variables (systolic blood pressure (SysBP), pulse pressure (PP), augmentation pressure
(AugP)) to avoid multiple collinearity (Table 3). As shown, the model including the pulse
pressure explained 34% of PWV variability in the studied population, with PP (β = 0.46)
and AOPP (β = 0.24) being the largest contributors to the model.

Fourteen patients exhibited isolated systolic hypertension, defined as systolic blood
pressure > 140 mmHg and diastolic pressure below 90 mmHg, without a notable difference
in AOPP levels (t(44) = −0.445, p = 0.658). The statistical analysis revealed significantly
higher proteinuria (t(37) = 2.67, p = 0.01) and PWV values (t(44) = 2.16, p = 0.036).

3.4. Metabolic Parameters and their Relationship with AOPP

Statistical analysis of the relationship between AOPP levels and various metabolic
parameters used in the routine evaluation of patients with CKD is outlined in Table 4.
Apparently, AOPP levels do not correlate with serum creatinine, serum urea, uric acid or
eGFR (Table 4).
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Table 3. Linear regression models for the prediction of PWV.

Model Correlation Statistics

Standardized β T-Value p-Value r-Value F-Value p-Value

MODEL 1
AOPP 0.316 2.306 0.02

0.446 4.858 0.03eGFR 0.336 2.457 0.018

MODEL 2
AOPP 0.245 2.003 0.05

0.62 8.87 <0.01eGFR 0.20 1.579 NS
PP 0.466 3.605 0.01

MODEL 3
AOPP 0.318 2.4 0.01

0.537 5.671 0.002eGFR 0.283 2.1 0.03
SysBP 0.304 2.3 0.02

MODEL 4
AOPP 0.27 2.05 0.04

0.539 5.720 0.02eGFR 0.35 2.684 0.06
AugP 0.306 2.327 0.02

Legend: AOPP = advanced oxidation protein products; eGFR = estimated glomerular filtration rate; NS = not
statistically significant; PP = pulse pressure; SySBP = systolic blood pressure; AugP = augmentation pressure.

Table 4. Correlations between AOPP levels and various metabolic serum parameters or markers of
acute inflammation.

Pearson’s R/Spearman’s Rho * p-Value

Renal parameters (N = 46)

Creatinine 0.05 * 0.368
eGFR −0.66 * 0.33
Urea 0.19 0.10

Uric acid 0.15 * 0.15

Glycemic profile (N = 22)

Glycemia −0.09 0.25
HbA1c 0.35 0.05

Lipid profile (N = 41)

Total cholesterol 0.03 0.40
HDL-cholesterol −0.27 0.04
LDL-cholesterol 0.18 0.12

Total cholesterol/HDLc ratio 0.28 0.03
LDLc/HDLc ratio 0.35 0.01

Calcium and phosphate metabolism (N = 46)

Calcium −0.15 0.15
Phosphate 0.05 0.36

Ca × Phosphate product −0.12 0.22

Markers of acute inflammation (N = 46)

Erythrocyte sedimentation rate −0.03 0.39
Fibrinogen −0.37 0.40

C-reactive protein 0.30 0.025
NLR 0.17 0.14
PLR −0.14 0.19

Legend: eGFR = estimated glomerular filtration rate; HbA1c = hemoglobin A1c (glycated hemoglobin); HDL =
high-density lipoprotein; LDL = low-density lipoprotein; HDLc = HDL-cholesterol; LDLc = LDL-cholesterol; Ca =
serum calcium; NLR = neutrophil-to-lymphocyte ratio; PLR = platelet-to-lymphocyte ratio; p-values in bold are
considered statistically significant; * = Spearman correlation coefficient.

Serum AOPP did not correlate with glycemia levels, but exhibited a positive corre-
lation with the value of glycated hemoglobin (Table 4, Figure 4). Total cholesterol (TC)
and LDL-cholesterol levels did not exhibit any significant relationship to AOPP. HDL
cholesterol inversely correlated with serum AOPP levels (Table 4, Figure 5). The total
cholesterol/HDLc and LDLc/HDLc (LDL-cholesterol/HDL-cholesterol) ratios positively
correlated with serum AOPP (Table 4, Figure 6a,b). Neither serum calcium nor phosphate
levels correlated with AOPP in the studied population sample.
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Figure 4. Correlation between AOPP and glycated hemoglobin values. Legend: AOPP = advanced
oxidation protein products.

Figure 5. Correlation between AOPP and HDL-cholesterol. Legend: AOPP = advanced oxidation
protein products; HDL = high-density lipoprotein.

Figure 6. Correlation between AOPP and (a) TC/HDL-cholesterol ratio, and (b) LDL/HDL-cholesterol ratio. Legend: AOPP =
advanced oxidation protein products; TC = total cholesterol; HDL = high-density lipoprotein; LDL = low-density lipoprotein.
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3.5. Relationship between Serum AOPP and Inflammation Markers

AOPP correlated with C-reactive protein values but not with the other markers
(Table 4, Figure 7). Neutrophil-to-lymphocyte ratio (NLR) exhibited a positive correla-
tion with age, PWV, PCR and platelet-to-lymphocyte ratio (PLR). PLR correlated with NLR
and erythrocyte sedimentation rate. There were no significant differences between patients
with or without vascular/valvular calcifications regarding the mentioned inflammation
markers.

Figure 7. Correlation between AOPP and serum C-reactive protein (after log-10 transformation).
Legend: AOPP = advanced oxidation protein products.

4. Discussion

In summary, our analysis of the CKD-population sample revealed the following:
AOPP levels did not differ significantly among patients with/without vascular or valvular
calcifications; AOPP and PWV were positively correlated, even more so when adjusting for
serum creatinine levels; and AOPP levels and pulse pressure were significant predictors of
PWV. Furthermore, we found no correlation between AOPP and serum creatinine or eGFR.
HbA1c and HDL-cholesterol, but not LDLc and total cholesterol, along with the lipid ratios
(TC/HDLc and LDLc/HDLc), positively correlated with serum AOPP levels.

Systemic vascular calcifications are an important determinant of poor cardiovascular
outcomes in patients with CKD; however, the relationship with uremic toxins and OS has
yet to be highlighted in clinical practice.

The influence of OS and AOPP on vascular/valvular calcification development has
been underlined in several studies over time, but only in experimental ones [25–27]. There
are still some questions regarding the correlation between AOPP and other clinical or
biological parameters routinely associated with poor cardiovascular outcomes (arterial stiff-
ness, lipid profile, markers of inflammation etc.); to our knowledge, no other investigators
have studied these associations.

In the analyzed population sample, only 74.3% of patients had visible vascular cal-
cifications on the performed radiographs, which was surprising, considering that most
of our patients were CKD stages G4 and G5; medial calcifications probably were not as
visible on plain radiographs as would be expected in predialysis patients. It is likely that
the score proposed by Adragao et al. can be useful only in hemodialysis patients [24]. Of
the included patients, 57% had visible valvular calcifications.

When assessing AOPP, no statistically significant differences were noted in patients
with and without vascular calcifications. These results suggest that this OS marker is
not related to the development of visible medial calcifications on radiographs or valvular
calcifications on echocardiography. It is likely that the pathways linking OS and develop-
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ment of vascular medial calcifications do not depend nor relate to the generation of AOPP.
Studies like the one performed by Gryszczyńska et al. demonstrated a significant increase
of AOPP levels in patients with aneurysms of the abdominal aorta and aortoiliac occlusive
disease [28]. Lin et al. have shown a marked increase of AOPP in patients with coronary
artery disease and calcifications of the abdominal aorta [22]. Several differences exist
between these studies and ours: in the study by Gryszczyńska et al., patients diagnosed
with diabetes were excluded. Invasive computed tomography to identify the vascular
calcifications was performed in that research, similar to the study by Lin et al. In order to
reduce overall costs, we opted for plain radiographs and ultrasounds, as some authors have
reported that ultrasound is as effective as computed tomography in identifying valvular
calcifications, as long as the operator is experienced [29].

Aside from the accelerated development of atherosclerotic plaques in CKD, another
feature is medial sclerosis of the arteries, which contributes to loss of wall elasticity and
is associated with poor cardiovascular outcomes [30–32]. In our study, the relationship
between AOPP and PWV was linear and statistically significant, unlike PP, which sur-
prisingly did not correlate with AOPP. Performing the analysis while accounting for the
effects of serum creatinine and eGFR showed that both variables improved the strength of
the AOPP–PWV relationship, though it is likely that eGFR is a more relevant parameter
in this context, since it better describes the renal function, unlike serum creatinine alone,
which can be influenced by other factors (i.e., muscle mass) that have no known bearing on
the amount of oxidative stress. Our linear regression model showed that pulse pressure,
augmentation pressure, systolic blood pressure, AOPP and eGFR are significant predictors
of PWV magnitude, with pulse pressure being the biggest contributor to PWV variability
alongside eGFR and AOPP. The association between OS and arterial stiffness was expected,
as in vitro studies have shown that reactive oxygen species induce phenotypical changes
in vascular smooth muscle cells so that they lose their contractile properties and undergo a
process similar to osteogenesis [25,33].

DeLeeuw et al. have shown that patients with isolated systolic hypertension, a feature
of arterial stiffness, and altered renal function are at risk for significant cardiovascular
morbidity and mortality [34]. In our study, we noticed that even if 24-hour proteinuria and
PWV levels were significantly higher in patients with isolated systolic hypertension, there
were no significant differences in AOPP levels between patients with and without isolated
systolic hypertension.

We found no significant correlation of AOPP with eGFR or serum creatinine. There is
a solid biological foundation for this relationship, since the accumulation of uremic toxins
leads to an increase in the amount of generated reactive oxygen species [35–37]. Information
regarding the relationship between AOPP specifically and renal function parameters is
sparse and conflicting, with some authors reporting a positive relationship between AOPP
and creatinine, while others found no such correlation. The discrepancies among studies
result from a multitude of factors: relatively small sample sizes, differences in patient
selection criteria, various metabolic disturbances inherent to additional comorbidities that
are unaccounted for, differences in reagent characteristics etc. [38–43].

We analyzed the relationship between AOPP and total cholesterol, HDL-cholesterol
and LDL-cholesterol in order to establish whether an atherogenic lipid profile was associ-
ated with increased OS in patients with CKD. We found a negative correlation between the
levels of serum AOPP and HDL-cholesterol, suggesting that AOPP could be associated
with inadequate reverse cholesterol transport and atheroma formation. Significant positive
correlations with lipid ratios underline the relationship between OS and atherogenesis.

Regarding the relationship between AOPP and inflammatory markers, the Pearson
correlation analysis revealed a linear relationship with C-reactive protein, but not with the
other markers. Interestingly enough, our study identified a significant correlation between
NLR and PWV, a finding that has been reported by other authors as well [44]. This suggests
that a state of chronic inflammation can contribute to alterations in vascular wall elasticity,
which can lead to poor cardiovascular outcomes.
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Limitations

While identifying several significant correlations between AOPP levels and routinely
used biochemical parameters, the associations were relatively weak because of the small
sample size. Another limitation was that our research was conducted in an emergency
hospital, where most of the included subjects associated a complex pathology and a
decreased eGFR (CKD stages G4 and/or G5).

5. Conclusions

Although the relationship between chronic inflammation and poor vascular health has
long been established in CKD patients, the role of oxidative stress as a possible mediator
of this relationship has not been sufficiently characterized. The specific OS markers in
CKD have only been studied in vitro and seem to provide little useful information in
clinical practice. While attempting to show the relevance of AOPP in clinical practice,
this study identified a potentially valuable link between AOPP, PWV and several markers
of inflammation, underlying the potential benefit of their use in cardiovascular health
assessment, although further studies are required for adequate validation.

Author Contributions: Conceptualization, I.-V.V., I.P., A.N. and I.A.C.; methodology, I.-V.V., I.P.,
A.N. and I.A.C.; software, I.-V.V.; validation, I.-V.V., I.P., A.N., A.T.T., A.C., D.M. and I.A.C.; formal
analysis, I.-V.V., I.P., A.N. and I.A.C.; investigation, I.-V.V; resources, I.P., A.N., A.T.T., A.C., D.M.
and I.A.C.; data curation, I.-V.V., I.P., A.N., A.T.T., A.C., D.M. and I.A.C.; writing—original draft
preparation, I.-V.V.; writing—review and editing, I.-V.V., I.P., A.N., D.M., I.A.C.; visualization, I.-V.V.,
I.P., A.N., D.M., I.A.C.; supervision, I.P., A.N., I.A.C.; project administration, I.A.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of “St. John” Emergency Clinical
Hospital Bucharest (No. 11659/4, dated 18 May 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data supporting the reported results can be found in the Archive
of Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, Bucharest,
Romania.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Locatelli, F.; Canaud, B.; Eckardt, K.U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An

emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. [CrossRef] [PubMed]
2. Tucker, P.S.; Dalbo, V.J.; Han, T.; Kingsley, M.I. Clinical and research markers of oxidative stress in chronic kidney disease.

Biomarkers 2013, 18, 103–115. [CrossRef] [PubMed]
3. Kaisar, M.; Isbel, N.; Johnson, D.W. Cardiovascular disease in patients with chronic kidney disease. A clinical review. Minerva

Urol. Nefrol. 2007, 59, 281–297. [PubMed]
4. Cao, W.; Hou, F.F.; Nie, J. AOPPs and the progression of kidney disease. Kidney Int. Suppl. 2014, 4, 102–106. [CrossRef]
5. Camilla, R.; Suzuki, H.; Daprà, V.; Loiacono, E.; Peruzzi, L.; Amore, A.; Ghiggeri, G.M.; Mazzucco, G.; Scolari, F.; Gharavi, A.G.;

et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2011,
6, 1903–1911. [CrossRef]

6. Cao, W.; Xu, J.; Zhou, Z.M.; Wang, G.B.; Hou, F.F.; Nie, J. Advanced oxidation protein products activate intrarenal renin-
angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxid. Redox Signal. 2013, 18, 19–35. [CrossRef]

7. Zhou, L.L.; Cao, W.; Xie, C.; Tian, J.; Zhou, Z.; Zhou, Q.; Zhu, P.; Li, A.; Liu, Y.; Miyata, T.; et al. The receptor of advanced
glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney Int. 2012,
82, 759–770. [CrossRef]

8. Descamps-Latscha, B.; Witko-Sarsat, V.; Nguyen-Khoa, T.; Nguyen, A.T.; Gausson, V.; Mothu, N.; London, G.M.; Jungers, P.
Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients.
Am. J. Kidney Dis. 2005, 45, 39–47. [CrossRef]

http://doi.org/10.1093/ndt/gfg074
http://www.ncbi.nlm.nih.gov/pubmed/12808161
http://doi.org/10.3109/1354750X.2012.749302
http://www.ncbi.nlm.nih.gov/pubmed/23339563
http://www.ncbi.nlm.nih.gov/pubmed/17912225
http://doi.org/10.1038/kisup.2014.19
http://doi.org/10.2215/CJN.11571210
http://doi.org/10.1089/ars.2012.4603
http://doi.org/10.1038/ki.2012.184
http://doi.org/10.1053/j.ajkd.2004.09.011


Medicina 2021, 57, 452 14 of 15

9. Liang, M.; Wang, J.; Xie, C.; Yang, Y.; Tian, J.W.; Xue, Y.M.; Hou, F.F. Increased plasma advanced oxidation protein products is an
early marker of endothelial dysfunction in type 2 diabetes patients without albuminuria 2. J. Diabetes 2014, 6, 417–426. [CrossRef]

10. Hammes, M. Hemodynamic and biologic determinates of arteriovenous fistula outcomes in renal failure patients. Biomed. Res.
Int. 2015, 2015, 171674. [CrossRef]

11. Wu, M.; Rementer, C.; Giachelli, C.M. Vascular calcification: An update on mechanisms and challenges in treatment. Calcif. Tissue
Int. 2013, 93, 365–373. [CrossRef]

12. Nakahara, T.; Dweck, M.R.; Narula, N.; Pisapia, D.; Narula, J.; Strauss, H.W. Coronary artery calcification: From mechanism to
molecular imaging. JACC Cardiovasc. Imaging 2017, 10, 582–593. [CrossRef]

13. Reiss, A.B.; Miyawaki, N.; Moon, J.; Kasselman, L.J.; Voloshyna, I.; D’Avino, R., Jr.; De Leon, J. CKD, arterial calcification,
atherosclerosis and bone health: Inter-relationships and controversies. Atherosclerosis 2018, 278, 49–59. [CrossRef]

14. Drueke, T.B.; Massy, Z.A. Atherosclerosis in CKD: Differences from the general population. Nat. Rev. Nephrol. 2010, 6, 723–735.
[CrossRef]

15. Lanzer, P.; Boehm, M.; Sorribas, V.; Thiriet, M.; Janzen, J.; Zeller, T.; St Hilaire, C.; Shanahan, C. Medial vascular calcification
revisited: Review and perspectives. Eur. Heart J. 2014, 35, 1515–1525. [CrossRef]

16. Ibels, L.S.; Alfrey, A.C.; Huffer, W.E.; Craswell, P.W.; Anderson, J.T.; Weil, R., III. Arterial calcification and pathology in uremic
patients undergoing dialysis. Am. J. Med. 1979, 66, 790–796. [CrossRef]

17. Kirsch, A.H.; Kirsch, A.; Artinger, K.; Schabhüttl, C.; Goessler, W.; Klymiuk, I.; Gülly, C.; Fritz, G.A.; Frank, S.; Wimmer, R.; et al.
Heterogeneous susceptibility for uraemic media calcification and concomitant inflammation within the arterial tree. Nephrol. Dial.
Transplant. 2015, 30, 1995–2005. [CrossRef]

18. Benz, K.; Varga, I.; Neureiter, D.; Campean, V.; Daniel, C.; Heim, C.; Reimann, A.; Weyand, M.; Hilgers, K.F.; Amann, K. Vascular
inflammation and media calcification are already present in early stages of chronic kidney disease. Cardiovasc. Pathol. 2017, 27,
57–67. [CrossRef]

19. London, G.M.; Guérin, A.P.; Marchais, S.J.; Métivier, F.; Pannier, B.; Adda, H. Arterial media calcification in end-stage renal
disease: Impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 2003, 18, 1731–1740. [CrossRef]

20. You, H.; Yang, H.; Zhu, Q.; Li, M.; Xue, J.; Gu, Y.; Lin, S.; Ding, F. Advanced oxidation protein products induce vascular
calcification by promoting osteoblastic trans-differentiation of smooth muscle cells via oxidative stress and ERK pathway. Ren.
Fail. 2009, 31, 313–319. [CrossRef]

21. Feng, W.; Zhang, K.; Liu, Y.; Chen, J.; Cai, Q.; He, W.; Zhang, Y.; Wang, M.H.; Wang, J.; Huang, H. Advanced oxidation protein
products aggravate cardiac remodeling via cardiomyocyte apoptosis in chronic kidney disease. Am. J. Physiol. Heart Circ. Physiol.
2018, 314, H475–H483. [CrossRef] [PubMed]

22. Lin, L.; Zhao, G.J.; Qin, L.L. Association between advanced oxidation protein products (AOPP) and vascular calcification in
uremic patients. Eur. Rev. Med. Pharm. Sci. 2017, 21, 4147–4152.

23. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the
Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 1–150.

24. Adragao, T.; Pires, A.; Lucas, C.; Birne, R.; Magalhaes, L.; Gonçalves, M.; Negrao, A.P. A simple vascular calcification score
predicts cardiovascular risk in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1480–1488. [CrossRef] [PubMed]

25. Byon, C.H.; Javed, A.; Dai, Q.; Kappes, J.C.; Clemens, T.L.; Darley-Usmar, V.M.; McDonald, J.M.; Chen, Y. Oxidative stress induces
vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 2008, 283,
15319–15327. [CrossRef] [PubMed]

26. Kurabayashi, M. Molecular mechanism of vascular calcification. Clin. Calcium 2019, 29, 157–163. [PubMed]
27. Sutra, T.; Morena, M.; Bargnoux, A.S.; Caporiccio, B.; Canaud, B.; Cristol, J.P. Superoxide production: A procalcifying cell

signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcification media. Free Radic. Res.
2008, 42, 789–797. [CrossRef] [PubMed]
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