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Abstract

Background: The application of next-generation sequencing in cancer has revealed the genomic landscape of
many tumour types and is nowadays routinely used in research and clinical settings. Multiple algorithms have been
developed to detect somatic variation from sequencing data using either paired tumour-blood or tumour-only
samples. Most of these methods have been developed and evaluated for the identification of somatic variation
using Illumina sequencing datasets of moderate coverage. However, a comprehensive evaluation of somatic variant
detection algorithms on Ion Torrent targeted deep sequencing data has not been performed.

Methods: We have applied three somatic detection algorithms, Torrent Variant Caller, MuTect2 and VarScan2, on a
large cohort of ovarian cancer patients comprising of 208 paired tumour-blood samples and 253 tumour-only
samples sequenced deeply on Ion Torrent Proton platform across 330 amplicons. Subsequently, the concordance
and performance of the three somatic variant callers were assessed.

Results: We have observed low concordance across the algorithms with only 0.5% of SNV and 0.02% of INDEL calls
in common across all three methods. The intersection of all methods showed better performance when assessed
using correlation with known mutational signatures, overlap with COSMIC variation and by examining the variant
characteristics. The Torrent Variant Caller also performed well with the advantage of not eliminating a high number
of variants that could lead to high type II error.

Conclusions: Our results suggest that caution should be taken when applying state-of-the-art somatic variant
algorithms to Ion Torrent targeted deep sequencing data. Better quality control procedures and strategies that
combine results from multiple methods should ensure that higher accuracy is achieved. This is essential to ensure
that results from bioinformatics pipelines using Ion Torrent deep sequencing can be robustly applied in cancer
research and in the clinic.
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Background
Somatic cells in the tissues of our body carry the inher-
ited diploid genotype, called the germline, with its varia-
tions described in recent large population genetics
studies [1–3]. However, somatic cells also acquire gen-
omic variants during life [4], which, in distinction to the
germline, are called somatic variants. Regularly dividing
progenitor cells for tissue renewal are particularly prone
to the acquisition of somatic variants [5], i.e., single nu-
cleotide variants (SNVs) and insertions/deletions
(INDELs), as well as large structural variants and com-
plex rearrangements. Accumulation of such variants in
somatic cells, especially combinations with variants of
deleterious potential for the function of key molecular
pathways, may lead to the development of cancer [6].
The detection of tumour-specific variants is routinely
performed in cancer research to investigate tumour biol-
ogy and treatment options, and in the clinical setting to
improve patient care in the context of personalised
medicine. The most common strategy for the detection
of somatic variation is through the application of next-
generation sequencing (NGS) that allows an efficient,
high-throughput characterisation of all types of genomic
variation [7].
However, identifying somatic variants still remains a

challenge due to their low allelic fraction as well as bio-
logical and technical issues such as contamination of the
sample by non-malignant cells, tumour genetic hetero-
geneity and template degradation due to formalin-fixed
and paraffin-embedded specimens (FFPE) [7, 8]. Among
the various NGS platforms, Ion Torrent Targeted
(IONT) sequencing is one of the commonly used tech-
nologies for targeted deep sequencing [9–11]. IONT se-
quencing typically reaches depth of more than 1000X
even with FFPE templates, which makes it an ideal plat-
form to identify somatic variants with variable allelic
fraction. Yet, like all sequencing technologies, IONT has
its drawbacks. It is PCR (primer) based for library con-
struction and measures pH changes rather than optical
signals, thus introducing biases and errors different from
technologies that use probe-capture for library construc-
tion and fluorescence reads [12]. For instance, the qual-
ity of base calling accuracy generated by IONT platform
is lower than other sequencing platforms, especially for
INDEL events [13]. In addition, IONT is more vulner-
able to homopolymer errors compared to other plat-
forms [14].
Due to these features, to identify high-confidence som-

atic variants in IONT data, robust and accurate analyt-
ical methods need to be utilised. Multiple algorithms
have been developed to detect somatic variation from se-
quencing data using either paired tumour-blood or
tumour-only samples [15]. The performance of these
methods has been extensively assessed in many

benchmarking studies [16–22]. However, most somatic
variant callers have been developed and often evaluated
for the identification of somatic variation using Illumina
sequencing datasets of moderate coverage. Although a
previous effort has been made to evaluate some somatic
variant callers on IONT data, the analysis only focused
on SNVs and had a small sample size with only four
cancer patients [23]. In our study, we applied three som-
atic mutation calling tools, Torrent Variant Caller
(TVC), MuTect2 [24] and VarScan2 [25], on a large
dataset derived from 208 paired blood – ovarian FFPE
tumour and 253 ovarian FFPE tumour-only samples
which were sequenced on an IONT platform with an
AmpliSeq panel covering ~ 37 kb of the reference gen-
ome. We compared the variant calls returned by these
methods for both SNVs and INDELs and investigated
characteristics that affect the method concordance such
as read depth and allelic fraction. Our study aims to pro-
vide recommendations for best practices for identifying
somatic variation from IONT data.

Results
We incorporated the three variants callers Torrent Vari-
ant Caller (TVC), MuTect2 and VarScan2 in a pipeline
that normalises all resulting variants so that variants are
left aligned and represented using the most parsimoni-
ous alleles [26], which allows comparison of both SNVs
and INDELs. The details of the methods used are shown
in Table 1. For tumour-only unpaired samples, only
TVC and MuTect2 were compared as VarScan2 requires
a paired tumour-normal input.

Discrepancies of the three somatic variant callers
We observed low concordance among the three somatic
callers, TVC, MuTect2 and VarScan2 for both SNVs and
INDELS (Fig. 1a and b). In total, 313,641 SNVs were
identified by the three variant calling methods in ovarian
tumours and matched blood paired samples from 208
patients. There was large variation in the number of
SNV calls returned by the three callers (Fig. 1a). In brief,
301,959 SNVs were detected by MuTect2, while VarS-
can2 called 12,119 SNVs and TVC called 7634 SNVs
across all samples. MuTect2 had the largest number of
unique variants (295,746, 94.3%) that did not overlap
with other methods, whereas VarScan2 had 8929 unique
variants (2.8%) and TVC called 2419 unique variants
(0.8%). The common variants for all three methods were
1524, only 0.5% of the total SNVs. Though TVC had the
lowest number of variant calls, it had the largest per-
centage of calls that agreed to other methods (20%).
For INDELs, fewer variants (278,846) were called by

all the three algorithms in total (Fig. 1b). Similar to
SNVs, MuTect2 had the highest number of both unique
calls (268,642) and overall calls (272,063). Moreover,
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16% of TVC calls were common calls whereas merely
0.02% of MuTect2 calls and 0.5% of VarScan2 calls were
shared by the other two methods. In comparison to SNV
calling, lower concordance across different algorithms
was revealed with roughly 0.02% of all the variants being
common across all three methods.
For the unpaired tumour-only samples, only TVC and

MuTect2 algorithms could be applied as VarScan2 re-
quires a matched normal (germline) sample for somatic
variant calling. Variants previously considered as somatic
may in fact be present at low frequency in the human
population [27]. The 1000 Genomes Project shows that
more than 95% of an individual’s germline mutations
variants including SNVs and INDELs occur at a fre-
quency of more than 0.5% in the general population

[28]. Such variants are considered common variants and
are mostly not associated with cancer development. To
identify potential somatic variants in this series, we se-
lected all variants that are rare in control population da-
tabases (Minor Allele Frequency (MAF) < 0.1% across
1000Genomes, ExAC and gnomAD) [1–3] after func-
tional annotation with ANNOVAR [29]. Overall, 607,
891 SNV variants and 373,058 INDEL variants were dis-
covered. Likewise, MuTect2 still had the largest amount
of SNV calls, more than 98% of which were not returned
by TVC (Fig. 1c). For SNV and INDEL calling, the com-
mon variants were 71 and 44% of TVC calls, respect-
ively. In comparison with SNV calling, lower agreement
was revealed in INDEL detection (Fig. 1d). Specifically,
approximately 0.1% of the INDEL candidates were

Table 1 Features of the variant calling tools that were compared for somatic variant detection from IONT data

Somatic variant caller Statistical
Method

Version Variant Types Somatic Variation Identification strategy Input Output

Torrent Variant Caller
(TVC)

Subtraction 4.2 Somatic,
germline

Call tumour and normal sample separately Original BAM file VCF
file

MuTect2 Bayesian
classifier

4.0 Somatic Call paired tumour-normal or tumour-only
samples

Sorted, indexed BAM
file

VCF
file

VarScan2 Fisher’s Exact
Test

2.2.3 Somatic,
germline

Call paired tumour-normal sample only Pileup BAM file VCF
file

Fig. 1 Concordance and discrepancy of the three somatic variant callers. The Venn diagrams illustrate the total counts and comparison of
somatic mutations called by each of the somatic variant callers for a SNVs and b INDELs identified from paired tumour-blood samples as well as
c SNVs and d INDELs from unpaired tumour-only samples. The numbers in the parenthesis reveal the percentage of variants against all
the variants
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common calls whereas 0.9% of the SNV calls were com-
mon calls between these two algorithms.

Distribution of variant allele frequency (VAF) and read
depth of SNVs
To further compare the performance of the variant cal-
lers, we investigated the relationship between variant al-
lele frequency (VAF) and read depth for each set of
algorithm-specific SNVs as well as the common SNVs
across two or all three callers in the 208 paired tumour-
blood samples (Fig. 2). The unique variants identified by
each method show distinct VAF distribution. MuTect2
identified variants with lower VAF (mean = 0.019, sd =
0.04) compared to TVC (mean = 0.16, sd = 0.18) and
VarScan2 (mean = 0.42, sd = 0.21). The latter by default
does not identify any somatic variation with VAF < 0.2.
The somatic variation detected by TVC showed a higher
uniformity across VAF levels. We observed a high in-
verse correlation between the read depth and VAF in
somatic variants called by MuTect2 only (Spearman
rho = − 0.53, p-value < 2.2 × 10− 16), moderate inverse
correlation for somatic variants called by IONT only
(Spearman rho = − 0.34, p-value < 2.2 × 10− 16), while the
somatic variants identified by VarScan2 only did not

exhibit such correlation (Spearman rho = − 0.02, p-value
=0.053).
The majority of the variants called only by MuTect2

had low VAF (98% of variants had VAF < 0.1). Con-
versely, the set of calls detected by TVC had widespread
allele frequency at lower sequencing depth. This depicts
that TVC performed well in a variable range of VAF and
did not overcall in regions of high read depth. Though
of similar read depth to TVC, VarScan2 missed muta-
tions that have allele frequency from 0 to 0.2 due to the
default settings of the algorithm. In contrast to the other
two callers, VarScan2 identified more variants with
higher allele fraction (27.0% of the variants with VAF >
0.5 in contrast to IONT with 6.1% and MuTect2 with
0.08%). In terms of the mutations called by any two
methods and called by all methods, large overlap existed
for variable VAF and read depth. All callers identified
variants at a wide VAF range (0.02 to 1.00) and only a
small number of variants in high-depth regions (319
SNVs with read depth higher than 4000).

Mutational signature of variants
To further evaluate the performance of each somatic
variant calling tool, mutational signature analysis was

Fig. 2 Comparison between SNVs identified by the three somatic variant callers. The Y-axis of each scatter plot indicates the read depth of SNVs
in tumour tissue sample, the X-axis shows the VAF of each SNV. The dots represent SNVs from tumour-blood pairs. The colour indicates the
variant calling method. a All callers: SNVs identified by all three callers; Two callers: SNVs identified by any two of the three callers. b MuTect2:
SNVs uniquely identified by MuTect2. c Torrent: SNVs uniquely identified by TVC. d VarScan2: SNVs uniquely identified by VarScan2
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performed. The patterns of somatic variants called by dif-
ferent variant callers were described by mutational signa-
tures according to 96 possible substitution types defined
by the bases 5′ and 3′ to the mutated base [30]. Four
novel mutational signatures were inferred from caller-
unique variants as well as common variants identified in
208 paired tumour-blood ovarian samples (Fig. 3). The
somatic signature of MuTect2 calls (Signature M) was
dominated by C > T substitutions. TVC calls and common
calls also featured with high proportions of C > T substitu-
tions in their mutational signatures (Signature T and Sig-
nature A). However, unlike MuTect2, they also exhibited
some lower representation of other substitution types
(such as T > C, C > A and T >G). Conversely, the muta-
tional signature of the variants called only by VarScan2
(Signature V) was enriched for T > A and T > C substitu-
tions and peaked at T > C at TNC trinucleotides.
We examined the correlations between each muta-

tional signature predicted in our study and the ones

reported for ovarian cancer from the Catalogue Of Som-
atic Mutations In Cancer (COSMIC) (Signature 1, Signa-
ture 3, Signature 5) [31]. COSMIC is the world’s largest
and most comprehensive resource for exploring the im-
pact of somatic variants across a broad range of human
cancers [31]. Signature 1 has been found in all cancer
types and in most cancer samples and is the result of an
endogenous mutational process initiated by spontaneous
deamination of 5-methylcytosine. Signature 3 has been
found in breast, ovarian, and pancreatic cancers and is
associated with failure of DNA double-strand break-
repair by homologous recombination. Signature 5 has
been found in all cancer types and most cancer samples,
but it is aetiology is unknown.
The correlation between our predicted mutational sig-

nature patterns and the reference Signature 1 was found
to be the highest for Signature A (Table 2, r = 0.44, p-
value< 0.05), followed by Signature T (Table 2, r = 0.34,
p-value< 0.05). Signature V was least correlated with

Fig. 3 Mutational signatures of SNVs called from paired samples. The Y-axis reveals the frequency of each mutation type in the whole human
genome, the X-axis indicates the mutation types according to 96 possible substitution types defined by the bases 5′ and 3′ to the mutated base.
Signature A: mutational signature inferred from SNVs detected by all three callers; Signature M: mutational signature inferred from all the SNVs
detected by MuTect2; Signature T: mutational signature inferred from all the SNVs detected by TVC; Signature V: mutational signature inferred
from all the SNVs detected by VarScan2
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Signature 1 (Table 2, r = 0.04, p-value< 0.05). A similar
pattern was also shown in the correlation between Sig-
nature 5 and the four mutational signatures (Table 2).
Unlike Signature 1 and Signature 5, Signature 3 exhib-
ited weak and nonsignificant correlation with the four
inferred mutational signatures.

Comparison with COSMIC somatic variation
We investigated the overlap of all SNVs identified in the
paired tumour-blood samples with all coding and non-
coding variation reported in COSMIC v87. In this ana-
lysis, the variants present in COSMIC are regarded as
reference for the estimation of sensitivity of the three
variant callers. We found that 3620 of 28,246 (12.8%)
unique somatic variants detected using MuTect2 were
also reported as somatic variants in the COSMIC data-
base, whereas 64 of 732 (8.7%) IONT variants and 95 of
3044 (3.1%) VarScan2 variants were found in the COS-
MIC database. SNVs detected by all variant callers
showed the highest level of overlap with COSMIC data-
base (156 of 592, 26.4%).

Concordance of pathogenic variants in frequently
mutated genes
Finally, we compared the number of potentially patho-
genic variants identified by each variant caller in five
genes that are frequently mutated in cancer, particularly
in ovarian cancer: BRCA1, BRCA2, KRAS, PIK3CA and
TP53 [32, 33]. Variants were considered pathogenic if
they met the following criteria: (1) their minor allele fre-
quency (MAF) was below 0.1% across all three large
control databases 1000 Genomes, ExAC and gnomAD
[1, 2]; (2) the variants were either nonsynonymous, stop-
gain or stoploss or frameshift deletions or insertions and

(3) the variants were reported as pathogenic in ClinVar
[34] or predicted to be deleterious by FATHMM [35] or
have occurred in either breast or ovarian cancer samples
according to COSMIC v88 [31].
The number of pathogenic variants detected by each

variant caller as well as their intersection are shown in
Tables 3 and 4 for paired and unpaired samples respect-
ively. For both categories, MuTect2 identified the high-
est number of pathogenic mutations in all the five genes
and in a larger number of samples compared to the
other callers. However, the number of common variants
identified by all callers was substantially different to the
number of variants identified by MuTect2, which again
supported that the latter might be more prone to false
positive calls. In paired samples, though TVC identified
fewer overall calls compared to VarScan2, it called more
unique pathogenic mutations in most of the five genes
except BRCA2. In unpaired samples, the number of
pathogenic variants identified by TVC was similar to
those identified by both TVC and MuTect2. All algo-
rithms called more variants in BRCA1 and TP53 in tu-
mours than in BRCA2, KRAS and PIK3CA, in line with
the reported incidence for such mutations in ovarian
cancer.

Discussion
Somatic variant detection is a fundamental step and thus
extremely crucial in most cancer sequencing projects.
The main challenge falls in identifying potential false
positive and false negative calls. In our study, we utilized
a large IONT sequencing dataset of ovarian tumours to
comprehensively evaluate three somatic mutation callers.
We found that different callers considerably varied on
variant detection and that aggregating results from

Table 2 Correlation between detected mutational signatures and the COSMIC ovarian cancer mutational signatures

Signature 1
Spearman rho (p-value)

Signature 3
Spearman rho (p-value)

Signature 5
Spearman rho (p-value)

Signature A (All) 0.44 (< 0.05) 0.06 (0.59) 0.64 (< 0.05)

Signature M (MuTect2) 0.27 (< 0.05) 0.09 (0.37) 0.46 (< 0.05)

Signature T (TVC) 0.34 (< 0.05) 0.08 (0.43) 0.57 (< 0.05)

Signature V (VarScan2) 0.04 (< 0.05) −0.01 (0.90) 0.24 (< 0.05)

Table 3 The number of pathogenic mutations identified in 208 paired tumour-blood samples in five genes that are frequently
mutated in ovarian cancer. The number of unique mutations is shown and in brackets the number of samples with at least one
mutation is shown

BRCA1 BRCA2 KRAS PIK3CA TP53

MuTect2 1056 (n = 207) 364 (n = 207) 51 (n = 157) 45 (n = 137) 738 (n = 208)

TVC 126 (n = 83) 30 (n = 38) 10 (n = 31) 16 (n = 27) 139 (n = 139)

VarScan2 94 (n = 188) 57 (n = 194) 7 (n = 19) 10 (20) 111 (n = 161)

Common 33 (n = 77) 8 (n = 34) 7 (n = 17) 7 (n = 15) 81 (n = 122)

Common (%) 2.9% (37%) 2.1% (16.4%) 13.7% (10.8%) 14.9% (10.6%) 10.7% (57.8%)
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various tools offered improvement in the variant calling
performance.
Our study reported low concordance across the

methods for somatic SNVs calling, which has also been
highlighted in several previous studies for other types of
NGS datasets [19, 20, 36]. Among the three callers,
MuTect2 identified the largest number of somatic SNVs,
but they were in poor agreement with other tools. This
suggests that MuTect2 is less stringent and most of the
calls are likely to be false positives for IONT data.
MuTect2 utilises the somatic genotyping engine of the
original MuTect algorithm which was developed to have
higher sensitivity for mutations with allelic fractions as
low as 0.1 and below [24]. However, it is questionable
whether such sensitivity is practically needed when in-
terrogating diagnostic and actionable variants in tumour
tissues [37]. For example, in a tissue sample with malig-
nant cell DNA content of 50%, the rest comes from
non-malignant cells. Detecting a pathogenic or action-
able variant at an allelic fraction of 0.1 or even 1, does
not necessarily determine whether it is present in malig-
nant or non-malignant cells. In comparison to MuTect2,
TVC returned the lowest number of SNV calls, most of
which overlapped with calls from other tools. This con-
firmed the observation reported in a previous study
which suggested the reasonable trade-off between sensi-
tivity and specificity of TVC [23]. One advantage of our
study is that we also investigate the discrepancies in
INDEL calling. MuTect2 also showed the least concord-
ance among methods in detecting INDELs. Additionally,
lower agreement among all three tools was also revealed,
which indicated a greater challenge to call INDELs com-
pared to SNVs. Another strength of our study is that we
also compared the performance of callers in unpaired
tumour-only samples, as most of the clinical samples
submitted for NGS are tumour-only FFPE samples [38].
We observed similar performance of MuTect2 and TVC
in detecting both SNVs and INDELs in unpaired sam-
ples. For unpaired samples, the inference on whether a
mutation is somatic was based on their frequency in the
population. Although this was an approximation, this
gave us a way to compare the two methods in their abil-
ity to call somatic variants. The discrepancies we ob-
served among all somatic variant callers might be due to

the different statistical models and assumptions of these
methods. More importantly, both MuTect2 and VarS-
can2 were developed and optimised for Illumina NGS
datasets rather than IONT deep sequencing data that ex-
hibit much higher coverage and a different error
structure.
Merely comparing the number of variant calls is not

sufficient and previous studies have indicated that dis-
crepancies across various variant callers are largely due
to the variant characteristics identified in the tumour
samples [21]. Therefore, we also focused on the proper-
ties (VAF and read depth) of both common and unique
variants across different methods in paired tumour-
normal samples. By investigating the relationship be-
tween VAF and read depth of somatic SNVs, it was re-
vealed that the algorithms show distinct distributions.
MuTect2 favoured calling variants at low depth and low
VAF as it has also been reported previously [21]. Due to
the deep read depth of IONT data, MuTect2 also
returned a large number of mutations with high cover-
age. Hence, MuTect2 is relatively more sensitive to
coverage change and the number of calls predicted is
dependent on the read depth. Although higher sequen-
cing depth allows detection of variants with lower VAF,
the strong correlation observed in calls only by MuTect2
indicates that these are potentially false positive calls
and the algorithm is very sensitive to base mismatches
present in the mapped reads. Assuming adequate cover-
age to identify all true somatic variation within a sample,
such a correlation is not expected. Both TVC and VarS-
can2 called variants with relatively lower tumour read
depth compared with MuTect2. Nevertheless, VarScan2
showed advantage in identifying somatic SNVs with rela-
tively high allelic frequency, which is also confirmed in
other studies [18, 21]. In terms of variant allele fre-
quency, VarScan2 was unable to detect variants with al-
lelic fraction lower than 0.2, based on its default design,
and thus any mutations below this threshold were sup-
pressed [25]. It has also been reported that VarScan2
outperformed other variant calling tools when allele fre-
quency is higher than 0.35 and MuTect2 performs better
for variants with allele frequency lower than 0.35 [16].
As a result, this makes VarScan2 a good method to com-
plement the other two callers. Finally, by investigating

Table 4 The number of pathogenic mutations identified in 253 unpaired tumour samples in five genes that are frequently mutated
in ovarian cancer. The number of unique mutations is shown and in brackets the number of samples with at least one mutation is
shown

BRCA1 BRCA2 KRAS PIK3CA TP53

MuTect2 1190 (n = 243) 390 (n = 248) 56 (n = 202) 47 (n = 186) 820 (n = 246)

TVC 164 (n = 89) 54 (n = 42) 11 (n = 34) 18 (n = 27) 215 (n = 175)

Common 163 (n = 85) 52 (n = 42) 11 (n = 34) 14 (n = 24) 210 (n = 173)

Common (%) 13.7% (34.4%) 13.3% (16.9%) 19.6% (16.8%) 27.5% (12.7%) 25.5% (69.8%)
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the relationship between VAF and read depth it was also
revealed that the common variants across all methods
exhibit a wide range of VAF as well as relatively high
coverage. This suggests that by combining the results of
all three callers we can exploit the advantages of each
caller and thus possibly provide a more reliable output.
One limitation of our study is the lack of experimental

validation datasets and ground truth. As a proxy, we ap-
plied mutational signature analysis on unique and com-
mon variants from each method to explore the reliability
of somatic variant calling by correlating with known sig-
natures of ovarian cancer. Somatic mutations reflect mu-
tagenic processes caused by carcinogenic agents which
accumulate during the development of cancer [30]. By
far, up to 30 mutational signatures have been derived
from public dataset across 40 different types of human
cancers to characterize these mutagenic events [31]. As
only validated mutational signatures were included, the
publicly available somatic mutation signatures were
regarded as “gold standard” and were employed to com-
pare the performance of different callers.
The signature plots provided a brief overview of the

performance of each variant calling tool on identifying
variants. The prominence of C > T substitutions in
MuTect2 calls suggested that MuTect2 might have dis-
tinctive specificity of certain mutation types and fail to
detect other substitution types from IONT data. The
mutational signatures from TVC and common calls had
similar features. As also illustrated from our previous
concordance comparison, TVC had the highest agree-
ment with other tools. VarScan2 showed a unique pat-
tern of substitution, which also confirmed its low
concordance with other callers from previous results in
our study. We should note that the signature observed
in our samples could be influenced by the fact that our
samples are FFPE which lowers DNA quality and in-
creases deamination mutation signature [39].
In COSMIC, ovarian cancer is characterized by Signa-

ture 1, Signature 3 and Signature 5. Signature 1 and Sig-
nature 5 have been observed in 25 cancer types and
feature age-related mutagenesis, whereas Signature 3 is
more cancer-type specific and has been identified in
breast, ovarian and pancreatic cancer [30]. The strongest
positive correlation displayed between Signature A and
both Signature 1 and Signature 5 agreed with our results
as well as previous research showing that the combin-
ation of three callers perhaps captures the most accurate
variants [21, 40]. The second highest correlation with
Signature 1 and Signature 5 was revealed in Signature T
from TVC calls. This indicated that TVC is more likely
to produce reliable results than the other callers. VarS-
can2 calls exhibited the lowest correlation with any of
the ovarian cancer signatures, possibly due to its failure
to call variants with VAF lower than 0.2. Thus, it missed

the somatic variants which have low allele frequency.
Signature 3 is not found to be significantly correlated
with the signatures we modelled, which might be caused
by the different ovarian cancer types in our cohort.
In addition, we also compared the SNVs detected by

different variant callers with the variation in COSMIC
v87. For this analysis, the variants present in this data-
base are regarded as reference for the estimation of sen-
sitivity of the three variant callers as somatic variation
can be recurrent across samples. Similarly to other re-
sults, variants called by all three callers represented the
highest agreement with COSMIC. This offers additional
evidence that the consensus of variant calling algorithms
provides more true positive calls.
Finally, we compared the number of pathogenic vari-

ants in five genes that are frequently mutated in ovarian
cancer BRCA1, BRCA2, KRAS, PIK3CA and TP53. This
analysis highlighted that care should be taken in identi-
fying pathogenic mutations using the state-of-the-art
variant callers as their concordance in the number and
type of mutations identified per gene and per tumour
was very low. Strict quality control procedures should be
applied to eliminate false positives given that mutations
in these genes can drive treatment decisions in the
clinic.
A further limitation of our study is that in order to ob-

tain comparable outputs as well as satisfying the devel-
oper’s original purpose, the default settings of the
variant calling tools were accepted. The only modifica-
tions in the default parameters of MuTect2 and VarS-
can2 were made to allow input samples of high
coverage, which is characteristic of IONT data. However,
if the features of the dataset and the specific goal of the
project are available, further tuning the parameters
should not be neglected to improve the reliability of the
results [15]. Thus, additional caller tuning and filtering
is crucial to control false positive results and optimize
somatic mutation discovery for future cancer research.
In addition, automation does not cover the final variant
evaluation for clinical purposes, even with validated
panels.
The advantage of our study is that several approaches

were utilised to comprehensively evaluate the somatic
variant callers. Nonetheless, rather than simulated data,
we used real datasets, which illustrates the true bio-
logical characteristics of the sample and sequencing er-
rors and illustrates the performance of the variant callers
in a real setting. Moreover, our sample size is larger than
most existing variant calling tool evaluation studies with
208 paired and 253 unpaired samples [23].

Conclusion
In conclusion, our study first characterized the discrep-
ancies among popular somatic variant callers in IONT
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data in a large ovarian cancer cohort. The consensus of
different somatic variant callers was suggested to have
the most reliable output. TVC showed the highest con-
cordance with the other methods indicating a good per-
formance. Our study points out the insights of
combined strategies to achieve higher sensitivity, which
can be crucial in future cancer research and in personal-
ized medicine. It also highlights that caution should be
taken when applying methods developed for analysing
data produced by a specific sequencing technology.

Methods
Sequencing
We analysed targeted NGS genotype data from 461
FFPE tumor tissues and 208 peripheral blood sample
that had been retrieved from the biorepository by the
Hellenic Cooperative Oncology Group (HeCOG). Sam-
ple processing was accomplished at the Laboratory of
Molecular Oncology (MOL by Hellenic Foundation for
Cancer Research / Aristotle University of Thessaloniki,
Greece). Tissues were histologically reviewed and further
used for the construction of tissue microarrays (TMA)
that included 3 X 1.5 mm diameter cores per tumour.
DNA was extracted with the QIAamp® DNA Mini kit
(Qiagen, Hilden, Germany) from 8um TMA core sec-
tions. Tumor cell DNA content was ≥50% in 75% of the
samples. For sequencing, we used a previously described
custom Ampliseq panel (IAD75668_167; Applied Biosys-
tems / Thermo Fisher Scientific, Paisley, UK) targeting a
total area of 36.8Kb and 330 amplicons including coding
regions in 40 genes [33]. Twenty ng FFPE DNA were
used for library construction and sequencing was ac-
complished with the Ion Torrent Proton sequencing
platform (Thermo Fisher).

Somatic variant calling
The binary alignment map (BAM) files were generated
by the Ion Torrent Proton sequencing platform (Thermo
Fisher) and aligned by Ion Torrent Variant Server (ITV)
with Torrent Suite v5.0.2. The mean read depth was
4250.8 across all samples and amplicons. Three somatic
variant callers Torrent Variant caller (TVC) 4.2,
MuTect2 4.0 and VarScan2 2.2.3 were applied on
tumour and matched blood samples. For the unmatched
samples, only Torrent Variant caller and MuTect2 were
used.
TVC is a genetic variant caller supported by ITV and

deals with the BAM file from the Ion Torrent sequen-
cing platforms directly. Variants were identified by sub-
tracting normal sample calls from tumour sample calls.
Then the tumour and blood VCF output files were
merged by VCFtools [41] and somatic variants were se-
lected by finding mismatches between the genotypes of
tumour and normal samples.

MuTect2 is a somatic SNP and indel caller that com-
bines the somatic genotyping engine of the original
MuTect [24] with the assembly-based machinery of
HaplotypeCaller provided by GATK [42, 43]. It detects
only somatic mutations in NGS data using a Bayesian
classifier approach. The input of MuTect2 requires
BAM files sorted and indexed by SAMtools (v 1.3.1)
[44]. After removing low quality sequenced data, the var-
iants were detected by comparing the likelihood of the
site to be variant to sequencing noise and filtered with a
panel of normal samples to reduce miscalled germline
calls. Finally, a classification of somatic calls is per-
formed using similar classifier as variant detection but
with more stringent threshold [24]. GATK (v3.7)
MuTect2 was run with default parameters. Due to the
deep read depth of IONT data, the -max-reads-per-
alignment-start parameter was set to 0, which disabled
down-sampling and took all the reads into account. The
output is VCF files with only somatic variants.
VarScan2 reads SAMtools mpileup output from the

normal and tumour paired samples simultaneously and
heuristically calls a genotype at every position achieving
the coverage and quality thresholds [25]. Modification
was made with mpileup command to adjust for the deep
depth of IONT data: 1) the parameter –d (the maximum
number of reads to be read at one position in one BAM
file) was set to 50,000; 2) the parameter –L (the thresh-
old of the average per-sample depth to skip INDEL call-
ing) was set to 1000. If a variant is identified in either
normal or tumour sample, Fisher’s exact test was then
used to classify the variant into somatic (enriched in
tumour), germline (enriched in both tumour and nor-
mal), or loss of heterogeneity (LOH) (enriched in nor-
mal). The SNVs and INDELs were called separately by
VarScan2 and then concatenated using VCFTools [41].
Since VarScan2 calls both somatic and germline variants,
the somatic variants were further selected by those la-
belled as “SOMATIC” in the INFO field in the final VCF
files.
For tumour-only unpaired samples, only TVC and

MuTect2 were applied with same settings as paired sam-
ples. To identify somatic mutation in the unpaired
tumour-only samples, we selected all variants that are
rare in control population databases (Minor Allele Fre-
quency (MAF) < 0.1% across 1000Genomes, ExAC and
gnomAD) [1, 2] after functional annotation with ANNO-
VAR [29].

Methods concordance and performance assessment
Before the comparison of somatic variant calling algo-
rithms, the VCF files were normalized by Variant Tools
(Vt) to ensure the variants are parsimonious, left aligned
as well as reordered [26]. In addition, Vt was also used
to decompose multi-allelic variants into bi-allelic or its

Wang et al. BMC Medical Genomics 2019, 12(Suppl 9):181 Page 9 of 11



constituent SNPs to allow further allelic comparison be-
tween different call sets.
Subsequently, to evaluate the concordance of the vari-

ant callers, Venn diagrams were generated for somatic
SNVs and INDELs respectively in both 208 paired sam-
ples and 253 unpaired tumour-only samples by Venny (v
2.1.0) [45]. To further characterize the concordant and
discrepant calls from different algorithms, scatter plots
were generated with variant allele frequency (VAF) and
read depth of each somatic SNV called by only one
caller, any two callers or all the callers.
Finally, mutational signature analysis was also per-

formed to evaluate the variant calling tools. The patterns
of somatic variants called by different variant callers
were described by mutational signatures according to 96
possible substitution types defined by the bases 5′ and
3′ to the mutated base [30]. The mutational signature
was inferred in nonnegative matrix factorization ap-
proach using SomaticSignature R package across all 208
paired samples [30, 46]. Moreover, the Spearman’s cor-
relation was calculated to compare the identified signa-
ture patterns in our study with the ovarian cancer
mutational signatures currently reported in the Cata-
logue Of Somatic Mutations In Cancer (COSMIC) [31].
The variations present in COSMIC were also compared
with the SNVs detected in all paired tumour-blood sam-
ples to estimate the true positive calls.
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