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Abstract: Kidneys have an important role in regulating water volume, blood pressure, secretion of
hormones and acid-base and electrolyte balance. Kidney dysfunction derived from acute injury can,
under certain conditions, progress to chronic kidney disease. In the late stages of kidney disease,
treatment is limited to replacement therapy: Dialysis and transplantation. After renal transplant,
grafts suffer from activation of immune cells and generation of oxidant molecules. Anesthetic
preconditioning has emerged as a promising strategy to ameliorate ischemia reperfusion injury. This
review compiles some significant aspects of renal physiology and discusses current understanding
of the effects of anesthetic preconditioning upon renal function and ischemia reperfusion injury,
focusing on opioids and its properties ameliorating renal injury. According to the available evidence,
opioid preconditioning appears to reduce inflammation and reactive oxygen species generation after
ischemia reperfusion. Therefore, opioid preconditioning represents a promising strategy to reduce
renal ischemia reperfusion injury and, its application on current clinical practice could be beneficial
in events such as acute renal injury and kidney transplantation.
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1. Introduction

1.1. Essential Concepts of Renal Physiology

The kidneys are involved in several important bodily functions, including blood filtering, resulting
in excretion of toxins and metabolic end products, regulating water volume, blood pressure control,
secretion of hormones, and acid-base and electrolyte balance [1]. Blood pressure control is directly
related to the kidney function. Kidneys maintain adequate blood pressure by regulating sodium and
water balance, activation of the renin-angiotensin-aldosterone system and release of endothelin and
prostaglandins [2].

Glomerular filtration is one of the major purposes of the kidney. The glomerulus filtrates through
three specific layers: The fenestrated endothelium, the glomerular basement membrane, and epithelial
podocytes with foot processes [3]. Molecular size and electric charge are two essential factors in
glomerular filtration. The most important requirement for kidneys is to preserve a high rate of
glomerular filtration through high renal blood flow and oxygen consumption [4]. Oxygen delivery
varies throughout the kidney. The renal cortex is considered to be a highly perfused region of the
kidney. Much of the renal medulla performs under low PO2 conditions, specifically the outer renal
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medulla [4]. This segment is highly susceptible to the hypoxic injury, making it a widely affected area
in the ischemia reperfusion injury (IRI) explained below.

Evaluation of the renal function is vital to determine renal conditions in several pathologies.
The glomerular filtration rate (GFR) is used to assess the renal function and indicates the amount of
fluid filtered by the kidneys, which is dependent on the hydrostatic and osmotic pressure. GFR is
equal to the product of the net filtration pressure, hydraulic permeability, and filtration area. Several
equations have been established to obtain the GFR such as Cockroft-Gault and MDRD (Modification of
Diet in Renal Disease Study Group) equations (Table 1). KDOQI (Kidney Disease Outcomes Quality
Initiative) and KDIGO (Kidney Disease Improving Global Outcome Organization) classifies the stage
of chronic kidney disease (CKD) based on the GFR estimated by MDRD (see Table 2) [5]. Urinary
output is another way to evaluate the renal function. It is the volume of urine produced in an hour
depending on the patient’s weight with ≥5 mL/kg/h of urine being the normal value.

Table 1. Glomerular filtration rate (GFR) formulas.

GFR Estimation Formula

Cockroft-Gault Formula CrCl (mL/min) = 140 − age × Lean Body Weight(kg)
Scr(mg/dL) × 72 ( × 0.85 if female)

MDRD Formula GFR
(
mL/min/1.73 m2

)
= 186× SCr(mg/dL)−1.154

× age−0.203
× 0.742(if woman)

× 1.21(if Black−American)

CrCl: Creatinine clearance, mL: Milliliters, min: Minutes, kg: Kilograms, SCr: Serum creatinine, mg: Milligrams,
dL: Deciliters, m: Meters.

Table 2. Classification of the glomerular filtration rate (GFR) stages used by KDOQI (Kidney Disease
Outcomes Quality Initiative) and KDIGO (Kidney Disease Improving Global Outcome Organization).

Stage Classification GFR Range

G1 Normal or high ≥90 mL/min/1.73 m2

G2 Mildly decreased 60–90 mL/min/1.73 m2

G3a Mildly to moderately decreased 45–59 mL/min/1.73 m2

G3b Moderately to severely decreased 30–44 mL/min/1.73 m2

G4 Severely decreased 15–29 mL/min/1.73 m2

G5 Kidney failure <15 mL/min/1.73 m2

mL: Milliliters, min: Minutes, m: Meters.

Many different conditions can affect the kidney and its function in a short or long term. The most
significant pathologies are acute kidney injury (AKI) and CKD.

1.2. Acute Kidney Injury (AKI)

AKI is defined as a reduction in the kidney function with a decreased GFR [6]. It results in: A
decrease in urine output (less than 0.5 mL/kg per hour for six hours), an increase of serum creatinine
and blood urea nitrogen, and an inappropriate balance of electrolytes [7]. Other abnormalities include
pH changes and fluid management alterations. The Acute Kidney Injury Network (AKIN) defines
AKI as an abrupt (<48 hours) decrease in the kidney function with an increase in serum creatinine by
≥0.3 mg/dL or ≥50% from the baseline, or a reduction of urine output in less than 0.5 mL/kg per hour
for more than six hours [8].

One of the major causes of AKI is ischemia due to partial or total obstruction of the vessels
inflow. [9]. Lack of oxygen creates a low energy condition that predisposes to exacerbated oxidative
stress and intense inflammation after the restoration of normal blood flow, otherwise known as
Ischemia-Reperfusion Injury (IRI). Interestingly, the kidney is one of the most susceptible organs to
IRI [10,11]. Segments S2 and S3 of the proximal tubule are vulnerable to oxygen tension changes due to
their vast number of mitochondria. Dysregulation of the Na+/K+ ATPase enzyme and depletion of ATP
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produce uncoupling of the respiratory chain, free radical production, loss of epithelial cell adhesion, and
cell death [12–14]. In response to a decrease in renal perfusion, vasodilatation, and vasoconstriction take
place by the afferent and efferent arterioles, respectively. Hemodynamic alterations relate to endothelial
cell injury resulting in an imbalance of vasoactive substances [15]. Vasodilation is mediated by
prostaglandins, bradykinin, and nitric oxide [6,16]. Vasoconstriction is the result of a sympathetic nerve
activation, endothelin action, and renin-angiotensin system regulation [17–19]. These mechanisms
ensure a renal blood flow for an adequate GFR. Other causes of AKI include sepsis, changes in
hemodynamic stability, inflammation, nephrotoxicity, and blockage in the passage of urine [6].

One of the most critical mechanisms of AKI is IRI [14]. Kidneys have a high metabolic activity
with a high oxygen requirement. The oxygen deficit and nutrient shortage, given by ischemia, result
in the loss of cellular adhesion, integrity, and stability. AKI progression involves several sequential
phases. The initiation phase starts with the primary ischemic insult, followed by a cascade of necrosis
and apoptosis [20]. Clinical and histological manifestations include an increase in serum creatinine, a
reduction in urinary volume, a loss of tubule brush order, the formation of tubular casts or dilatation
of distal tubule [15]. In the second phase, the damage remains due to inflammation and reperfusion.
Then, a release of cytokines takes place accompanied by neutrophil infiltration; stimulating the
generation of reactive oxygen and nitrogen species (ROS and NOS), chemotaxis, and phagocytosis [21].
During the third phase, the maintenance phase, GFR is relatively stable, and urinary volume starts
to normalize. The last phase is the recovery in which creatinine falls, tubular function increases and
renal architecture improves. The types of injury or mechanism causing kidney damage will predict the
clinical presentation.

AKI is an entity that if left untreated, can cause irreversible kidney damage, which can progress
into CKD or even end-stage renal disease (ESRD). The postoperative development of AKI occurs in
40% of the cases and is related to increased morbidity and high mortality [22–24]. The clinical course
of postoperative AKI depends on age, comorbidities, and overall health.

Several biomarkers besides creatinine, GFR, and urinary output are currently under study as
novel diagnostic approaches for AKI. Examples of these are NGAL (Neutrophil Gelatinase-Associated
Lipocalin) and KIM-1 (Kidney Injury Molecule), which are involved in acute responses to injury [25].

1.3. Chronic Kidney Disease (CKD)

CKD is a consequence of several chronic diseases such as diabetes or hypertension [26]. Risk factors
in developing CKD and nephron loss include male sex, older age, diabetes, proteinuria, hypertension,
and hyperuricemia [27]. Nevertheless, a previous episode of AKI can lead to the development of
CKD or permanent glomerular damage [28]. The KDIGO and the National Kidney Foundation (NKF)
KDOQI guidelines define CKD as abnormalities of kidney structure or function for more than three
months or a GFR of <60 mL/min/1.73 m2 [29,30]. This damage presents as proteinuria or albuminuria,
abnormalities of the urinary sediment or structural abnormalities detected by imaging or histology [31].
The CKD staging can be done whether by GFR or albuminuria category. Based on GFR, CKD is
classified in five stages from G1 to G5, also known as ESRD (see Table 2, [29]).

Different pathological conditions affecting the glomerulus, vasculature, or tubulointerstitium can
result in kidney structural deterioration. Renal fibrosis is the most common pathological factor in
advanced kidney diseases and has shown to be the most reliable predictor of CKD progression to
ESRD [32]. The constant insult that causes CKD activates a profibrotic state mediated by myofibroblasts.
As a result, there is a tubular cell loss along with collagen deposits [33]. Fibrosis is the result of
excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin
secreted by myofibroblasts in response to cell damage [34]. The formation of the fibrotic tissue is
the final manifestation in diverse renal pathologies such as glomerulosclerosis, tubular atrophy, and
interstitial fibrosis [26]. These entities are characterized by prolonged tissue insult, inadequate repair
mechanisms, fibroblasts activation, and macrophage infiltrates.
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Signaling pathways involved in renal fibrosis are complex and not completely elucidated. Several
mechanisms underlying fibrogenesis have debuted, all of them with important characteristics that result
in a multifaceted process. Representative molecules that participate in fibrosis are hypoxia-inducible
factor 1, transforming growth factor-beta, nuclear factor-kappa b (NF-κb), angiotensin II, reactive
oxygen species (ROS), interleukin 6 (IL-6), interleukin 8 and kidney injury molecule 1 [32].

Patients that develop CKD exhibit numerous factors that contribute to the decline of the kidney
function and the following clinical symptoms as hypertension, proteinuria, and mineral misbalance.
Progression to ESRD is almost inevitable and chronic inflammation appears to be the main trigger.
Macrophages and the interstitial fibroblast support the production of cytokines and collagen that
modify and accumulate in the extracellular matrix. Finally, pharmacological approaches are minimal
and based on controlling symptoms, leaving replacement therapies such as dialysis and transplantation
as the best options to patients suffering from ESRD.

1.4. Transplantation

Kidney transplant is considered one of the most suitable treatments for ESRD patients. However,
during the transplant surgery, there is a cessation of renal blood flow with a posterior reestablishment,
and therefore, the IRI phenomenon always takes place. Other conditions, such as trauma or vascular
and heart surgery also cause IRI. Hypoxia and nutrient deprivation due to ischemia results in an
excessive generation of ROS, which cause cell death and inflammatory responses [35]. Biochemical
changes in cells include suppression of oxidative phosphorylation, ATP reduction, activation of
anaerobic respiration, and inhibition of the Na+/K+ ATPase pump [36]. The organism answers with the
production of cytoprotective molecules. Reperfusion, consisting of a reinstitution of blood flow, confers
a second wave of cellular damage after ischemia. Tissue injury increases as a result of generalized
inflammation and the activation of harmful cell responses. ATP production normalizes due to aerobic
metabolism initiation, but reoxygenation causes a rise in ROS formation. Both the superoxide anion
and hydrogen peroxide induce hydroxyl radicals and disturb the cell membrane integrity [37].

The IRI mechanism involves the activation of the immune system by neutrophils, macrophages,
and dendritic cells in kidneys. Endothelial and tubular epithelial cells also play an essential role in
the inflammation induced by IRI [38,39]. Ischemia affects tubular epithelial cells by damaging their
structure and function; and leads to apoptosis, necrosis, and interstitial inflammation. Hypoperfusion
induces endothelial cell swelling, capillary deterioration, increased permeability, and expression of
intracellular adhesion molecule-1 (ICAM-1) and E- and P-selectins [35,40,41]. The ischemic process
liberates compounds from the injured tissue such as fibronectin, heat shock proteins, and DNA that
activates toll-like receptors (TLRs). TLRs enable the production of proinflammatory cytokines such as
tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 through NF-κb activation [42].

Kidney injury is worsened by the aggregation of neutrophils to endothelium in tubular capillaries
and kidney interstitium. Neutrophil-endothelium adhesion causes neutrophils to activate, release their
granules and secrete proteases, which generate ROS. That same activation produces interferon-gamma
(INF-γ), interleukin 4 (IL-4), IL-6, interleukin 10 (IL-10), and TNF-α secretion [43]. Neutrophils are the
first cells to be recruited and to cause injury in the reperfusion setting [44]. Macrophages also promote
IRI by releasing chemokines and proinflammatory cytokines such as IL-1β, IL-6, interleukin 12 (IL-12),
and TNF-α [45]. Additionally, dendritic cells activate the natural killer T cells which produce INF-γ,
stimulate macrophages, and intensify the immune response. Both macrophages and dendritic cells
enable sterile inflammation after reperfusion, and their renal infiltration following transplantation is
involved in delayed graft function and acute rejection [46].

2. Preconditioning

Preconditioning refers to the molecular changes that occur at the tissue level, which enable that
same tissue to adapt and overcome later adverse events. Preconditioning includes the physiological
and molecular adaptations in a changing environment. As a minor event, ischemic preconditioning is
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an example of how the body uses adverse conditions to improve tissue response for following incidents.
Ischemic preconditioning is an adaptive mechanism that takes place in multiple organs like the brain,
heart, kidney, liver, and muscle.

Brief intervals of ischemia and early reperfusion have been considered as a beneficial therapeutic
approach to contain the damage caused by further and more prolonged episodes of ischemia [47].
Protective effects have been observed when tissue preconditioning was used to prepare organs before
surgery or pathological insults [48]. For example, in a dog model, several short episodes of ischemia
and reperfusion before causing a more extended ischemic event resulted in a protective memory effect
in myocytes [49].

Preclinical studies have shown evidence about renal protection conferred by a preceding ischemic
event. Classical articles demonstrated that the ischemic preconditioning could reduce IRI improving the
renal function, metabolic homeostasis, and preserving cell integrity and tissue morphology. However,
they do not leave clarity about the mechanism involved [50–52]. Recent evidence confirms the role
of ischemic preconditioning upon the renal function. This procedure influences the ROS production
and lipid peroxidation through the engagement of antioxidant enzymes [53]. Another suggested
mechanism through which ischemic preconditioning attenuates damage is the inhibition of the NF-kβ
pathway, reducing inflammatory responses [54].

The potential clinical use oriented to prevent AKI has already been tested in clinical trials. This
strategy is able to reduce the incidence of AKI in patients undergoing a cardiovascular surgical
procedure [55]. However, it is necessary to contemplate the difficulty of assessing the isolated effect of
ischemic preconditioning in patients undergoing a surgical procedure; considering all factors involved
(anesthesia, surgical procedure, baseline disease). Overall, ischemic preconditioning increases the
probabilities of a good clinical prognosis after a high-risk surgery [56–59].

The molecular responses caused by ischemia and reperfusion can be reached pharmacologically
with different anesthetic substances [60,61]. This is known as anesthetic preconditioning. Experimental
and clinical data have shown that anesthetics have protective effects in several organs against IRI [62].
Back in 1976, Bland et al. used halothane as anesthetic preconditioning in dogs to reduce myocardial
ischemia [63]. Over the years, preconditioning with anesthetics has changed with a variety of drugs
including inhaled and injectable agents. Barbiturates have been used for neuroprotective strategies
aiming for a reduction in the ATP consumption in brain tissue. However, no conclusive evidence has
been provided for this anesthetic method of protection [64]. Volatile anesthetics like sevoflurane and
isoflurane have also been tested trying to demonstrate beneficial results of their usage [65]. Propofol
and opioids are other examples of anesthetic agents used to achieve preconditioning with protective
effects; we will review them in more detail below.

In summary, tissue exposure to an ischemic condition can enable cells to adapt rather than suffer
damage. Therefore, cells under those conditions are able to manage further challenging situations
more effectively.

3. Opioids

A comprehensive understanding of the nature of opioids and its influence on kidney
pathophysiology may improve morbidity and mortality in patients undergoing surgical procedures as
transplantation, and consequently, has the potential to modify clinical practice. Furthermore, opioids
are commonly used to manage pain in CKD and post-transplant patients [66].

Back to the 1800s, the first known opioid (morphine) was isolated from opium [67]. Four natural
alkaloids can be isolated from opium: Morphine, codeine, papaverine, and thebaine. Semisynthetic
compounds include diamorphine (heroin), buprenorphine, and oxycodone. Fentanyl, methadone,
sufentanil, and remifentanil are examples of synthetic compounds [68]. Another way to categorize
opioids is by the receptors in which they have effects. They can be agonists, partial agonists or
antagonists. Opioid receptors are G-protein coupled receptors, and the three central receptors are µ, κ,
δ (mu, kappa, and delta). The Mu receptor activation causes analgesia, sedation, respiratory depression,
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bradycardia, and nausea. Spinal and supraspinal analgesia is achieved by a delta receptors activation.
Kappa receptors produce spinal analgesia, diuresis, and dysphoria. All three receptors are distributed
in the central and peripheral nervous system as well as the gastrointestinal tract. Endogenous peptides
with similar effects as opioids can be found naturally in our body. They are called enkephalins and
interact with opioid receptors, just like opioids do [69].

Analgesia mediated by opioids is induced by binding to µ receptors in GABAergic neurons.
These neurons inhibit descendent neurons in the brainstem and produce analgesia. The same effect
is also obtained by inhibiting the release of pain mediators such as substance P, nitric oxide, and
glutamate [70]. Along with analgesia come emotional changes caused by opiates probably by the
high concentration of opiate receptors in the limbic system. The solitary tract, an area controlling the
respiratory activity, has abundant µ2 subtype and δ receptors explaining the changes in the respiratory
pattern related to opioids [71]. Constipation is a common side effect of opioid administration. The µ

and κ receptors activation in the small and large intestine increases the resting tone of the intestine
itself and also the sphincter resulting in decreased peristalsis [72].

Opioid receptors can also be found in the kidneys, with the δ receptor broadly expressed and, on
a smaller scale, the κ type [73]. Although its distribution and function in the kidney have not been
fully elucidated, some studies propose that the κ receptor activation stimulates activities such as the
proliferation of mesangial cells [74]. Additionally, evidence suggests that activation of the κ receptor
protects the kidney from IRI through the PI3K/AKT pathway [75].

3.1. Morphine

Morphine is known as the opioid prototype to which other opioids are compared. Both µ and δ

receptors bind morphine to have its effect. These receptors are widely distributed in the human brain,
mainly in the amygdala, hypothalamus, thalamus, and several cortical areas. Morphine has two major
metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G, 60% of metabolites).
M6G has been known to have a higher analgesic effect compared to M3G [76]. Morphine has been used
in the treatment for acute or chronic pain, and also in the pain management of myocardial infarction.
Its administration is variable being intravenously, orally, and subcutaneously. It is metabolized in
the liver and excreted in the urine in 72 h after administration. Its maximum effect is reached in
20 min with an approximated duration of three to seven hours. Decreased respiratory effort, low blood
pressure, somnolence, vomit, and constipation are expected side effects of morphine.

Undoubtedly, the analgesic effects of morphine are supported by abundant scientific and
clinical evidence. However, the properties on non-nervous tissues such as the kidneys are poorly
understood and controversial. Some reports show that morphine has antioxidant properties and is
a potent modulator of immune responses [77,78]. Other reports showed that morphine is capable
of enhancing the severity of damage in a model of nephrotoxicity by cisplatin [79]. Meanwhile, a
different study revealed that the prolonged use of morphine is associated with renal dysfunction in
tumor-bearing mice [80].

3.2. Fentanyl

Fentanyl was developed in 1960 by Paul Janssen as a synthetic opioid drug for pain treatment
and anesthesia. The range of effects consists of analgesia, anxiolysis, euphoria, and drowsiness [81].
It works by full agonism of µ receptors and has approximately 50–100 times more potency than
morphine. This potency can be explained by its high lipophilicity, which permits a rapid diffusion
through cell membranes, the capability of crossing the blood-brain barrier, and high µ receptor affinity.
The elimination half-life is around 219 min conferring a protracted effect [82]. Pain threshold is
increased in the central nervous system by inhibition of ascending pathways. Differences in dosage
administration will make variations of clinical effects. Concentrations of 0.3–0.7 ng/mL will cause
an analgesic effect while concentrations higher than 3 ng/mL can represent respiratory and central
nervous system depression [83]. Common adverse effects include nausea, constipation, pruritus,
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orthostatic hypotension, urinary urgency or retention, dry mouth, asthenia, hallucinations, depression,
and dyspnea. Fentanyl elimination is through biotransformation in the liver into norfentanyl and is
excreted in the urine.

Although much has been studied about the beneficial properties of fentanyl in vivo and in vitro
in the heart and cardiomyocytes [84–86], little is known about the potential protective properties of
fentanyl in renal IRI. However, clinical evidence suggests that its use may be beneficial, and some
authors consider that the fentanyl use may be a safe option in patients undergoing hemodialysis and
in renal transplant recipients [87,88].

4. Opioid Preconditioning and Kidney Protection

There is considerable research interest in potential methods of renal protection against IRI.
Proof from experimental studies shows that anesthetic preconditioning with volatile agents can be
achieved and protect the heart, brain, and kidney from IRI [89]. Several studies in cardiac surgery
have reported improved myocardial mechanical function and reduced myocardial infarct size with
volatile anesthetics as preconditioning [90]. Another anesthetic mechanism by which preconditioning
can be obtained is with opioids. Opioid preconditioning is a phenomenon that results from an
intervention mediated with opioids before an ischemic insult, and that concludes in a reduction
of the affected tissue. The morphine cardioprotective effect is conferred by the activation of the δ

receptor-KATP channel-linked mechanism [91]. There is abundant literature related to opioid-mediated
cardioprotection, though information about the effects of preconditioning on the kidney is limited.

Experimental renal ischemia and reperfusion in rabbits showed that morphine significantly
inhibited superoxide generation by neutrophils, suggesting a potential for reducing the oxidative
stress after hypoxia [92]. Habibey et al. demonstrated that morphine has also a protective effect in
kidneys. The renal function (serum creatinine and BUN) was preserved after 45 min of ischemia
and 24 h of reperfusion, causing a marked ischemic tolerance of the kidneys [93]. Preconditioning
studies have been made in rats in which opioids induce renal protection, which can be diminished with
naloxone [94]. This same research group tested low doses of morphine in an IRI model, concomitantly
with three other medications, to find clinically safe and non-toxic doses of morphine. The results
showed that all the doses used (20 and 30 mg kg/day per five days) resulted in reduced IRI [94].
Morphine and fentanyl may well lessen the caspase 3 activation induced by ischemia. These opioids
delivered improved kidney tubular cell protection when administered before ATP depletion using
in vivo and in vitro models [95].

Morphine, fentanyl, and other opioid medications are strong analgesics used frequently in analgesia
and pain management, despite reported concerns about drug safety. Long-term administration is
commonly associated with the development of side effects including tolerance, dependence, and
addiction. Therefore, it is necessary to discriminate between the long-term effects and the effects of
single uses in a surgical procedure and preconditioning. Pain management is an essential part of the
comprehensive care of patients with CKD at any stage [66]. One of the most used analgesia options in
patients with CKD are opioids [96]. Following special considerations, such as dose and exposure time
depending on the patient conditions and nature of pain [66,96]. However, prolonged use has been
associated with albuminuria and alterations in renal markers indicating kidney dysfunction [97]. This
information correlates with findings from animal studies where morphine is found responsible for
the development of albuminuria through altering the filtration barrier and negatively influencing the
integrity of podocytes [98]. Studies from Lentine et al. showed that the level of use of opioids increased
significantly the risk of post-transplant complications [99]. Similarly, a recent study reports that a high
rate of long-term opioid prescription in the prevalent kidney transplant population associates with an
increased risk of mortality and graft loss [100].

Complex surgical anesthesia schemes in humans make it difficult to dissect the effect of these
drugs on the renal function; however, perioperative use showed positive results. This is how the study
by Terashi et. al. showed that anesthetic management using remifentanil exerted a renal protective
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outcome in perioperative adult patients with CKD for at least two weeks after orthopedic surgery [101].
Conversely, different outcomes were obtained when opioids were used after the transplantation surgery.
Apparently, there is no association between the chronic opioid use and graft dysfunction [102].

5. Extra-Renal Opioid Preconditioning Mechanisms

Actions of opioid drugs in the kidney have not been well characterized. Nonetheless, most of the
information about mechanisms involved in organic protection conferred by opioids come from studies
in organs as heart and brain. We will summarize below some of the molecules involved considering the
overlapping molecular mechanisms between the kidneys and other organs it is important to mention.

Experimental and clinical studies showed that opioids can positively influence the cardiac function
and could reduce the size of an infarction resulting from prolonged ischemia [103]. Opioids participate
in a reduction of damage to myocardial intracellular structures, a decrease in the dysfunction of the
cardiac contractile machinery, and a direct reduction in arrhythmias [104]. Opioids activate the δ

and k receptors coupled to the Gi proteins and also can activate the µ receptors, but this has very
low expression in cardiomyocytes [105]. The δ receptor is most important in the preconditioning
phenomena, and this defense can be abolished using the pharmacological antagonist naloxone [104,106].
The δ receptor activation may lead to protection through a reduction of the inflammatory response
comprising neutrophil activation. Meanwhile, activation of the k receptors directly participates in
the stimulation of the NOS/NO signaling pathway [107] and involve protein kinases pathways as
AKT/Pi3K and ERK/MAPK [108]. Morphine or remifentanil administration before myocardial IRI can
induce cardioprotection through the µ receptors via the ERK/GSK-3b signaling pathway [109]. This
receptor has also been postulated as a potential therapeutic target for opioid-induced protection during
heart failure [105,109].

Fentanyl, morphine, and remifentanil are frequently used for neurosurgical procedures. Effects on
the brain and nervous system undergoing an ischemic event have been documented in experimental
models [110]. Preconditioning with morphine protects neurons against IRI. This effect is mediated by
the increased activity of the mammalian Target of Rapamycin, mTOR, pathway resulting in a reduction
of oxidative stress and apoptotic agents [111]. Additionally, recent studies suggested that morphine
could protect the brain from ischemia, decreasing pro-apoptotic molecules production [112]. Similarly,
remifentanil suppresses the apoptotic pathways blocking the association of TNF-α to its receptor [113].
Opioids are also strongly related to the protection from IRI in other tissues such as the liver [114,115],
endothelium [116] and skeletal muscle [117,118] and involve similar mechanisms of action.

6. Other Anesthetics in IRI

Effective and safe anesthesia for successful transplantation depends on an understanding of the
influence and interactions with other anesthetics [119]. Here, we mention some of the most commonly
used in kidney transplant and the effects upon IRI.

Propofol is an intravenous drug widely used in anesthesia as an inducer. It is characterized by
its rapid onset of action and the speedy recovery of the patient from its effects. It has been shown to
have a protective effect at the cardiac and renal level in reperfusion ischemia models [120], this effect is
mediated by various mechanisms, mainly due to the scavenging of oxidative species [121–123]. Li et al.
demonstrated in an IRI experimental model in rats that the administration of propofol previous to
ischemia results in lower levels of creatinine, urea, myeloperoxidase, and malondialdehyde, as well
as, lower expression of pro-apoptotic proteins. They also reported increased levels of superoxide
dismutase, concluding that propofol prevents IRI via inhibiting the oxidative stress pathway [124].

Dexmedetomidine is an alpha-adrenergic receptor agonist drug and extensively used as a sedative.
Dexmedetomidine protects against myocardial infarction [125], ischemic brain [126] and kidney
injury [127]. Previous studies have shown that preconditioning with Dex in rats has a protective
effect on the renal function after I-R through the inhibition of the Janus kinase/signal transducers and
activators of the transcription (JAK/STAT) signaling pathway [128]. According to Lempiainen et al.
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dexmedetomidine preconditioning ameliorates renal IRI and inflammatory response, at least in part,
through the p38-MAPK pathway [127].

Isoflurane is a common volatile anesthetic in the clinic and protects against ischemic brain
injury [129] by suppressing apoptosis [130]. Preconditioning using a clinically relevant concentration
of isoflurane can attenuate renal IRI. These protective effects are mediated by its ability to control
inflammation and apoptosis [131]. Additionally, desflurane preconditioning associated with a reduction
in IRI, preserving the micromorphology of the kidney [132]. By contrast, some volatile anesthetics can
promote IRI. This is the case of halothane. In an experimental model of liver IRI, halothane was shown
to stimulate the release of hepatocellular enzymes, indicating an increase in damage [133].

Finally, barbiturates can also reduce the severity of IRI in cardiac models [134]. The molecular
mechanisms in renal physiology remain to be elucidated.

7. Conclusions

Potential new uses of old well-known drugs as opioids is an emerging field for kidney research.
Anesthetic preconditioning is a promising strategy to reduce renal IRI, and its application on current
clinical practice could be beneficial in events such as acute renal failure and kidney transplantation.
Current evidence suggests that opioids provide organ protection by decreasing reactive oxygen
species and inflammation. However, more experimental evidence is still needed to understand the
physiological and molecular mechanisms involved in the protection of the kidney and to translate our
current knowledge into clinical settings.
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