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ABSTRACT: Computer-aided synthesis planning (CASP) tools
can propose retrosynthetic pathways and forward reaction
conditions for the synthesis of organic compounds, but the limited
availability of context-specific data currently necessitates exper-
imental development to fully specify process details. We plan and
optimize a CASP-proposed and human-refined multistep synthesis
route toward an exemplary small molecule, sonidegib, on a
modular, robotic flow synthesis platform with integrated process
analytical technology (PAT) for data-rich experimentation. Human
insights address catalyst deactivation and improve yield by strategic
choices of order of addition. Multi-objective Bayesian optimization
identifies optimal values for categorical and continuous process variables in the multistep route involving 3 reactions (including
heterogeneous hydrogenation) and 1 separation. The platform’s modularity, robotic reconfigurability, and flexibility for convergent
synthesis are shown to be essential for allowing variation of downstream residence time in multistep flow processes and controlling
the order of addition to minimize undesired reactivity. Overall, the work demonstrates how automation, machine learning, and
robotics enhance manual experimentation through assistance with idea generation, experimental design, execution, and optimization.

■ INTRODUCTION

Machine assistance has helped to automate and accelerate
steps in the synthesis of organic compounds, accelerating the
discovery and development of new medicines and materials.
Going from a molecular structure to a tangible product or a
fully defined synthesis route involves two high-level tasks: (1)
synthesis planning, where the starting materials, reactions, and
reagents that can be used to make the target molecule are
identified, and (2) process development, where the unit
operations and reaction conditions needed to maximize
process performance are specified. Computer-aided synthesis
planning (CASP) tools,1,2 based on human-curated reaction
rules or algorithmically learned transformations from published
reaction data, can automatically generate recommendations for
retrosynthetic routes and reaction conditions, helping to
generate ideas quickly and reducing manual database lookups.
On the process development side, walk-up multistep synthesis
platforms3−11 equipped with reactors, separators, process
analytical technology (PAT), and automation tools (e.g.,
liquid handlers, reaction sampling, code scripts, user interfaces)
enable data-rich experimentation and lighten the manual
workload associated with repetitive reaction execution and
analysis.
There is growing interest in experimentally validating CASP

suggestions and integrating CASP tools with automated
synthesis platforms. Experimental validation of CASP recom-

mendations has been demonstrated via batch synthesis12−14

and on a robotic continuous flow synthesis platform,6 and
disclosed examples still remain rare. The main obstacle to
direct implementation of CASP-designed routes without
human intervention is that synthesis procedures require a
fully defined set of instructions (a recipe) specifying the
sequence of unit operations and corresponding reaction
conditions (e.g., concentrations, temperature, time, stoichiom-
etry) with a level of precision that exceeds what can currently
be learned or extracted from limited data.15 Therefore, human
input was still needed in the reported cases to fill in key
procedural details and manually optimize approximate reaction
conditions generated by CASP.
Algorithm-guided automated optimization of reaction

conditions to maximize a desired objective function (e.g.,
yield) is another example of machine assistance in organic
synthesis.4,16−23 In this approach, an algorithm proposes
reaction conditions to evaluate within a defined search space
(set of values that continuous or categorical process variables
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can take) based on feedback and analysis of results from
previous experiments. Coupling the algorithm with an
automated synthesis platform and inline/online PAT tools
results in closed-loop design and execution of experiments for
efficient reaction development.24−26 Prior applications of
algorithmic optimization to chemistry have focused primarily
on single-step transformations17 involving model reactions,
with recent work on two-step processes.27−29 Furthermore,
only a few reports consider categorical reaction variables18,21,22

(e.g., catalyst) and multiple objectives.19,22 In reality, however,
process development for functional organic compounds often

involves multireaction pathways with categorical reagent
choices and several process metrics of interest (e.g., yield,
productivity).
In this work, we leveraged algorithm-guided multistep

reaction optimization as a tool to identify optimal process
conditions for approximate synthesis recipes generated by
CASP (Figure 1). The open source CASP software
ASKCOS6,30 was used to generate recommendations for
synthesis routes and reaction conditions for an exemplary
small molecule target, sonidegib. After manual assessment of
synthetic feasibility, we selected a high-ranked route to

Figure 1. Overall approach for machine-assisted synthesis planning and process development. Computer-aided synthesis planning (CASP)
recommendations for synthesis routes and reaction conditions to make the target molecule are assessed by humans to create an approximate recipe
with missing process details. A multi-objective Bayesian reaction optimization algorithm coupled to a robotic multistep flow synthesis platform
optimizes continuous and categorical reaction conditions to fully specify the synthesis recipe.

Scheme 1. Computer-Aided Synthesis Planning Recommendations for Sonidegib 6a

a(A) Top-ranked retrosynthetic pathways. (B) Proposed forward reaction conditions with continuous variables in red and categorical variables in
blue. Abbreviations: EDG (electron donating group), EWG (electron withdrawing group), HATU (hexafluorophosphate azabenzotriazole
tetramethyl uronium), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), HOBt (1-hydroxybenzotriazole).
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optimize involving three reactions and one phase separation.
While ASKCOS recommendations and manual solubility
testing populated some reaction conditions (solvent, base,
catalyst, concentration) in the approximate recipe, specification
of critical process parameters was left to a multi-objective
Bayesian algorithm that optimized both continuous and
categorical variables with respect to multiple process metrics.
Experiments proposed by the algorithm were executed on a
modular, robotically reconfigurable, continuous flow synthesis
platform equipped with multiple PAT tools for reaction
analysis and feedback. We consider the chemical and physical
interdependencies that arise when optimizing multiple tele-
scoped steps simultaneously and show how the synthesis
platform’s modularity unlocks an independent degree of
freedom for varying downstream reaction time.

■ RESULTS AND DISCUSSION
Computer-Aided Synthesis Planning for Sonidegib.

The active pharmaceutical ingredient sonidegib 6 (Odom-
zo)31,32 was chosen as an exemplary target molecule for
multistep synthesis. The open source CASP software ASKCOS
was used to generate retrosynthetic pathways and forward
reaction conditions (Scheme 1, full details in SI). In the rank
#1 pathway, the first retrosynthetic disconnection of 6 occurs
at the central amide bond, resulting in substituted amino-
pyridine 4 and biaryl 5 (Scheme 1A). Aminopyridine 4 may be
constructed either in one step via the rank #1 SNAr reaction of
morpholine 1 with a haloaminopyridine 7 or in two steps via
the rank #2 pathway involving reduction of 3 and SNAr starting
with halonitropyridine 2. The software further proposed that
chlorinated 2a, brominated 2b, and fluorinated 2c were viable
starting materials. Structure−reactivity principles suggested
that the SNAr reaction of 1 and 7 would be disfavored while
the same reaction of 1 and 2 would proceed smoothly.
Therefore, we decided to proceed with the 3-step route
starting from 1 and 2.
In the forward reaction conditions for the 3-step route

(Scheme 1B, shown under the arrows), dimethylformamide
(DMF) was recommended as the rank #1 solvent for both the
SNAr and amide coupling reactions. For the SNAr reaction,
both inorganic and organic amine bases were recommended
but solubility testing revealed that DIPEA (N,N-diisopropyle-
thylamine, or Hünig’s base) was necessary to fully solubilize
the ammonium halide salt byproduct. The need to verify that
all components are soluble at the reaction concentration before
flow synthesis is a step where human insight is still needed in
the current approach. A heterogeneous palladium(0) (Pd0)
catalyst with H2 as the terminal reductant was proposed for the

reduction of 3. While these details partially populated the
synthesis recipe, there were both continuous and categorical
reaction conditions (red and blue, respectively, in Scheme 1B)
that were left to experimental optimization. These included
continuous variables such as temperature, residence time, and
stoichiometry, but also categorical choices recommended by
ASKCOS such as the SNAr halide leaving group (Cl, Br, or F)
and the amide coupling reagent (HATU or EDC/HOBt).

Robotic Flow Synthesis Platform. The CASP-proposed
and human-refined synthesis route was experimentally
optimized on a modular, robotically reconfigurable, continuous
flow synthesis platform (Figure 2) originally developed by our
lab6 and improved with a faster robot and capabilities for
reaction analysis and feedback optimization (see Supplemen-
tary Movie and SI for more details). The enabling features of
continuous synthesis include access to elevated temperatures
and pressures to accelerate reaction rates, tight control over
reaction conditions due to shorter length scales for heat and
mass transfer, ability to model scaling and mixing behavior due
to well-defined reactor geometries, and availability of hardware
for inline separations and reaction monitoring.26,33−35

Continuous telescoped multistep synthesis, i.e., all steps
performed simultaneously in an uninterrupted sequence,36 can
be realized on the platform by fluidically connecting multiple
unit operations together. The platform consists of 2 process
stacks with 8 process bays in total, and process modules can be
placed by a 4-axis gantry robot (3 linear XYZ Cartesian axes +1
rotary θ axis) onto the process bays in any order to access both
linear and convergent sequences. The linear and rotary axes of
the gantry robot facilitate straightforward path planning
(compared to our previous six axis robot) and have a high
repeatability (XYZ axes: 5 μm, θ axis: 5 arc-sec) for consistent
pick-and-place within 1 min per process module. Process
modules available include heated tubular reactors with various
volumes (0.5, 1, and 3 mL of PFA tubing), a packed bed
reactor, and a membrane phase separator for inline liquid−
liquid or gas−liquid separations. The robot also interfaces with
a reagent tubing “switchboard” (akin to a telephone wire
switchboard) to attach inlets and outlets only to the process
bays where they are required. Two of the inlet lines are
connected to selector valves that allow switching between
different reagent candidates during an experiment.
New robotically reconfigurable analytical modules for inline

FT-IR spectroscopy and online LC-MS were integrated into
the platform enabling data-rich experimentation. The analytical
modules (three available in total) contain tubing that directs
the process stream either to an external FT-IR instrument with
a flow cell or to an HPLC sample injection valve connected to

Figure 2.Multistep flow synthesis platform with a library of robotically reconfigurable process modules for reactions, separations, and inline/online
analysis.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.2c00207
ACS Cent. Sci. 2022, 8, 825−836

827

https://pubs.acs.org/doi/10.1021/acscentsci.2c00207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.2c00207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.2c00207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.2c00207?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


an LC-MS, and brings it back to the process stack post-analysis
enabling further reactions to be performed if necessary. The
modular approach allowed analysis at multiple points in a
multistep sequence to quickly obtain critical process perform-
ance information such as conversion, yield, and impurity
profiles.
Interdependencies in Multistep Flow Processes.

Telescoped flow sequences, analogous to one-pot batch
synthesis, are attractive since they minimize the number of
intermediate purification steps required and allow unstable
high-potency intermediates to react shortly after formation.
However, chemical compatibility of the reagents, solvents, and
byproducts must be ensured across all individual unit
operations. Optimization of multiple interconnected reactions
simultaneously, in comparison to separately or sequentially,
reduces the number of optimization campaigns needed,
decreases the time and manual effort spent to isolate
intermediates, and increases the likelihood of identifying a
global system optimum. The process systems engineering
literature shows that when there are interdependencies
between individual subsystems that affect their respective
performance, combining the subsystem optima does not
necessarily lead to the global system optimum.37,38 In the
context of chemical process optimization, examples of
interdependencies include cases where excess reagent improves
the yield of an upstream reaction but adversely affects the yield
of a downstream reaction, or cases in which a certain solvent
may be optimal for one reaction but another provides the best

overall process yield and ensures solubility. It is therefore
beneficial, when possible, to optimize all variables in the overall
process simultaneously to identify any interactions and avoid
reoptimizing steps.
Another type of interdependency that arises in multistep

flow processes is physical constraints on downstream residence
times. In continuous reactors, input flow rate and reactor
volume determine residence time. While the residence time in
the first reactor can be varied independently by changing the
flow rate, downstream flow rates are fully specified by
stoichiometric relationships with upstream reagents. Con-
sequently, downstream residence times cannot be varied
independently. Chatterjee et al. overcame this constraint in
their radial synthesis platform8 by storing intermediate
solutions in an interim vessel until needed for the next
reaction. While this approach decouples residence times, it is
restricted to chemistries that do not produce unstable or
hazardous intermediates that may pose additional challenges
upon accumulation and long-term storage. In this work, we
leveraged the modular nature and robotic reconfigurability of
our synthesis platform to introduce an independent degree of
freedom enabling variation of downstream residence time.
Specifically, the robot was used to automatically reconfigure
downstream reactor volume between a 1 and 3 mL module on
the fly during a multistep optimization campaign. In this way,
both shorter and longer downstream residence times could be
accessed without altering upstream flow rates.

Figure 3. Fully telescoped process experiments for multistep synthesis of sonidegib. (A) Platform configuration. (B) Process scheme. (C) FT-IR
timecourse data. (D) LC chromatograms. (E) Schemes of (a) telescoped and (b) pure nitro reduction. Abbreviations: CSM (catalytic static mixer).
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Bayesian Optimization Algorithm. The open source
Bayesian optimization package, Dragonfly, developed by
Kandasamy et al.39−41 was chosen as the optimization
algorithm (further details in SI). Dragonfly employs a flexible
Gaussian process (GP) surrogate model to mathematically
describe the relationship between input variables and objective
functions. It supports continuous (e.g., temperature), discrete
categorical (e.g., leaving group), and discrete numeric (e.g.,
reactor volume) variables, all of which were present in our
case. Another useful feature in Dragonfly is the capability to
optimize multiple objectives simultaneously, which we took
advantage of to consider multiple process metrics of interest
(yield, productivity, cost).
An optimization campaign begins with an initial space-filling

design of experiments. After fitting the model to initialization
data, the algorithm was queried for one new reaction condition
to evaluate at each refinement iteration. Refinement experi-
ments are generated using the upper confidence bound (UCB)
and Thompson sampling (TS) acquisition functions, which
balance an exploitative strategy (query regions where objective
is expected to be high) with an explorative one (query regions
where uncertainty is high) to increase the likelihood of finding
globally optimal points.39,42 For multi-objective optimization,
the algorithm samples different weights (relative importance)
for each objective function at each refinement iteration and
maximizes the weighted sum.40 If the system contains a Pareto
trade-off front16,43 where one objective cannot be improved
without making another worse, sampling different weights
enables the algorithm to identify multiple Pareto optimal
points.
Hardware set point control and execution of experimental

designs were automated using Python scripts. Once the user
specified the process configuration and optimization variable
bounds in a spreadsheet file, it was loaded into a graphical user
interface (GUI) where the backend code parsed this
information, queried the algorithm for experimental con-
ditions, calculated flow rates, and generated a queue of
commands to set up, execute, and transition between
experiments. The GUI automatically read and converted LC
peak areas to reaction yields using a predetermined calibration
curve, which closed the information feedback loop and allowed
the platform to operate independently once initiated.
Fully Telescoped Process Experiments. The fully

telescoped sonidegib 6 synthesis process was executed on
the platform (Figure 3A,B). The first step was performed in a 1
mL reactor followed by an LC-MS module to determine the
yield of SNAr product 3. The platform switched between the
three different halonitropyridine starting materials 2a, 2b, and

2c via a selector valve. Subsequent reduction to amine 4 was
accomplished using the packed bed reactor module wherein H2
was introduced via a mass flow controller and the resulting
biphasic gas−liquid stream passed through heated tubes
containing a heterogeneous Pd0 catalyst. Hydrogenation
reactions generally benefit from continuous processing due
to enhanced gas−liquid−solid mass transfer and smaller
reaction volumes that improve throughput and safety.44

Immediately after the packed bed, an inline membrane
separator module removed residual hydrogen gas which exited
in the retentate stream, since the downstream amide coupling
step and reaction sampling modules required a homogeneous
liquid stream. The liquid permeate was conveyed to the inline
FT-IR module for real-time monitoring of nitro 3 and amine 4
concentrations. We observed that when exposed to ambient
air, solutions of amine 4 changed from colorless to dark red
because of amine oxidation on the time scale of minutes. The
telescoped flow approach was therefore beneficial in this case
for minimizing exposure to oxygen, obviating the need for
purification, and ensuring that the unstable amine was utilized
promptly after formation. After FT-IR analysis, the reaction
stream was delivered to the second process stack where the
final amide coupling of 4 and 5 was conducted in either a 1 or
3 mL reactor to access different residence times. The overall
yield of sonidegib 6 for the three-step sequence was
determined using the second LC-MS module. Deploying
three analytical modules simultaneously enabled data-rich
process development, since each experiment provided
information about three different reactions.
Before running a multistep optimization campaign, prelimi-

nary experiments (Table 1) were performed to verify that the
fully telescoped process and Pd0 catalyst activity were stable.
For these preliminary experiments, continuous variable values
were typically set near the midpoint of the intended
optimization range. Two different catalysts, Pd0/silica45,46

and Pd0-electroplated stainless steel catalytic static mixers (Pd-
CSM),47,48 were initially investigated.
The first LC-MS module showed that the SNAr reaction

proceeded to >80% yield with both leaving groups (Table 1,
entries 1−4). However, the inline FT-IR after the reduction
step revealed that Pd catalyst deactivation within the time scale
of an experiment (tens of minutes to an hour) was a major
issue preventing stable operation with either catalyst support.
With Pd/silica, the FT-IR timecourse showed a gradual rise in
unconverted nitro starting material 3 with a concomitant
decrease in amine product 4 (similar to Figure 3C(a)). While
the Cl leaving group in 2a resulted only in deactivation, the F
leaving group in 2c led to disintegration of the silica support

Table 1. Preliminary Experiments with Fully Telescoped Processa

entry
SNAr leaving

group
SNAr yield

[%]b
reduction
catalyst

coupling
reagent

coupling time
[mins] (VR)

overall yield
[%]b observations

1 Cl 84 Pd/silicac HATU 2 (1 mL) 14 Incomplete reduction and catalyst deactivation (even
at 100 °C)

2 F 95 Pd/silicac EDC/
HOBt

2 (1 mL) - SNAr fluoride salt byproduct resulted in disintegration
of silica support

3 F 96 Pd-CSMd EDC/
HOBt

2 (1 mL) 17 SS316L support resistant to fluoride

4 F 96 Pd-CSMd HATU 6 (3 mL) 53 Catalyst deactivation eventually observed after few
hours

aFixed process conditions (see Figure 3A): SNAr (T = 70 °C, tres = 5 min, 1 equiv 1, 1 equiv DIPEA), amide coupling (T = 60 °C, 2 equiv DIPEA,
1 equiv coupling reagent). bYield determined by LC with an internal standard. cPd/silica reduction conditions: 0.5 g catalyst, T = 70 °C,
backpressures = 100 psi retentate, 95 psi outlet, H2 flow = 20 sccm (10 equiv). dPd-CSM reduction conditions: two CSMs in series, T = 120 °C,
backpressures = 125 psi retentate, 120 psi outlet, H2 flow = 30 sccm (15 equiv). Abbreviations: CSM (catalytic static mixer), VR (reactor volume).

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.2c00207
ACS Cent. Sci. 2022, 8, 825−836

829

http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Table 1, entries 1−2). A stoichiometric byproduct of the
upstream SNAr reaction is the conjugate acid salt of DIPEA
(Figure 3B), and the disintegration of the silica support can be
attributed to chemical incompatibility with fluoride.
To solve the chemical compatibility issue, we turned our

attention to Pd-CSMs, which are 3D-printed from chemically
resistant stainless steel 316L.47 The nitro reduction was
operated at the platform’s upper limit of 120 °C to suppress
catalyst deactivation.49,50 When we experimentally evaluated
two Pd-CSMs in series with 2c starting material (Table 1,

entries 3−4), the stainless steel scaffold was indeed chemically
resistant to the DIPEA·HF byproduct, but deactivation was
eventually observed after a few hours of operation. An attempt
to regenerate the Pd catalyst in situ46,51 did not restore the
original catalyst activity (Figure 3C(a)).
To investigate the cause of deactivation (see SI for further

details), only the nitro reduction step was carried out with
isolated nitro compound 3. FT-IR and LC-MS data (Figure
3C(b),D(b)) showed complete conversion and stable perform-
ance over multiple hours with both catalysts. While the pure

Figure 4. SNAr multi-objective optimization campaign. (A) Platform configuration. (B) Reaction scheme, optimization variables, and objective
functions. (C) Objective values versus experiment number. (D) 3D plot of objective values. (E) 3D scatter plot showing continuous variable values
explored. (F) Yield response surfaces generated using Gaussian process models fitted to experimental data. Equiv of 1 and DIPEA set to 1.1 to
enable visualization.
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nitro reduction proceeded cleanly, the telescoped reduction
outlet contained a significant amount of hydrazo dimer 8, an
intermediate in the reduction pathway (Figure 3D).52

Therefore, the quick onset of catalyst deactivation observed
with the telescoped process (Figure 3E) was likely due to
catalyst poisoning by the SNAr byproduct salt or by strong
adsorption of condensation intermediates on the Pd surface.51

The ability to integrate analytical modules both within and
at the end of the multistep sequence was crucial for identifying
which reaction was affecting the overall yield and stability of
the fully telescoped process. Due to the catalyst stability issues,
it was necessary to divide the process into a single-step SNAr
optimization with offline purification of SNAr product 3,
followed by a multistep optimization involving reduction of
isolated 3, gas−liquid membrane separation, and amide
coupling to form sonidegib 6.
SNAr Multi-Objective Optimization Campaign. For the

SNAr campaign (Figure 4), five optimization variables and
three objective functions were optimized simultaneously. The
reaction was carried out in a heated 1 mL reactor module
(operated up to the hardware limit of 120 °C) followed by an
LC-MS module for yield quantification and an FT-IR module
for steady-state monitoring (see SI Movie). The optimization
domain consisted of four continuous variables (residence time,
temperature, equiv of 1, equiv of DIPEA) and one categorical
variable (2a, 2b, or 2c). We considered objective functions
related to both reaction performance and raw material costs.
Therefore, in addition to reaction yield and productivity
(grams product/hour), we included cost as a third
optimization objective which was defined as the cost of
reagents used per mole of product made. The reagent cost
accounted for the different costs of the three starting material
candidates (cost 2a < 2b < 2c) as well as the additional cost of
using excess morpholine 1 and DIPEA.
Thirty experiments (Figure 4C−E; tabulated results in SI)

were run continuously over 10 h (3 experiments/hour, ∼0.4 g
starting materials/experiment) in a closed-loop manner
(automated design and execution of experiments, reaction
sampling, data processing, and feedback). The initialization
phase, which aims to conduct a preliminary scan of the design
space, contained 9 experiments evenly divided between the 3
leaving groups (3 each). In the refinement phase, the algorithm
proposed one new experiment at a time with the aim of
experimentation specifically focused in regions where optimal
values for all three objectives could be simultaneously
achieved.
Objective values obtained over the course of the 30

experiments are plotted (Figure 4C,D) with data points
color-coded by leaving group. In the initialization phase
(Figure 4C), yields ranged from 84% to nearly quantitative
(>98%) when 2c was employed as the starting material
(orange points). As a result of the relatively high yields for all
potential starting material candidates, the cost per mole of
product depended primarily on the cost differences between
leaving group identity. This is visually apparent as 2a (∼$400/
mol), 2b (∼$500/mol), and 2c (∼$600/mol) data points are
clustered in the bottom, middle, and top regions of the cost
axis.
The utility of the multi-objective algorithm becomes evident

in the refinement phase. With regard to the productivity
objective, the initialization phase provided throughput values
between 0.6 and 2.6 g/h, whereas the refinement phase led to a
significant improvement (Figure 4C) with most experiments

operating in the 5−6 g/h range. This corresponds to more
points populating the right-hand portion of the 3D scatter plot
(Figure 4D) where productivity is high. Furthermore, in
contrast to the initialization phase where the goal is to scan the
chemical design space, the algorithm’s goal in the refinement
phase is to identify conditions where all three objective values
are optimized simultaneously. Consequently, the majority of
experiments in the refinement phase have high yields as well as
high productivities.
For certain systems, multi-objective optimization can lead to

situations where one objective cannot be improved without
making another one worse off. The set of optimal points for
which this trade-off exists is known as the Pareto front.16,43

Instead of fixing the weight (relative importance) of each
objective for the campaign, which would result in the
identification of one optimal point along the Pareto front,
the Dragonfly algorithm samples different weights at each
refinement iteration, which enables it to find multiple Pareto
optimal points.40 For this SNAr reaction, the data show that 2c
(orange, F leaving group) led to the highest yield and
productivity combinations (e.g., expt 30: 98.3%, 5.97 g/h,
$595/mol). However, 2a (blue, Cl leaving group) conditions
were ∼33% cheaper but came with the trade-off of slightly
lower yields and productivities (e.g., expt 27: 93.8%, 5.70 g/h,
$414/mol). Both these conditions are Pareto-optimal, and it is
up to the experimenter to decide which point is optimal for
their specific context given other process considerations (e.g.,
purity requirements, separations).
To visualize the impact of continuous variables, the

experimental data are plotted (Figure 4E) with respect to
the three most influential continuous variables (temperature,
time, equiv of 1) where a data point’s color and size correlate
with yield and productivity, respectively. Experiments with 2c
(orange lines) resulted in nearly quantitative yields even at
mild reaction conditions, whereas 2a (blue) and 2b (green)
required higher temperatures and longer residence times to
promote reactivity. Data points with the largest size (highest
productivity) are concentrated on the right face of the plot
corresponding to the shortest residence time of 1 min.
The Gaussian process (GP) mathematical model that

underlies the Bayesian algorithm was useful not only during
the optimization, but also after the fact for process character-
ization. By regressing the GP model to the experimental data
and evaluating it over the design space, yield response surfaces
for the three leaving groups were generated (Figure 4F). The
surfaces represent the predicted yield (GP mean value) and the
color reflects the local model uncertainty (GP standard
deviation) at that point. The flatness of the 2c surface reflects
the robust reaction rate even at low temperature, while the
curvature of the 2a and 2b surfaces illustrates the significant
rate acceleration that increased temperature provided. Model
uncertainty is lowest (dark blue) in the more optimal regions
of the design space preferentially explored by the algorithm,
and uncertainty is greatest (most yellow) at low temperature
and long residence time, since very few experiments were
sampled from this suboptimal design region. It is worth noting
that if the experimenter wanted to improve model accuracy
even further for process modeling purposes, the ability to
quantify local uncertainty using the GP model can be leveraged
to perform post-optimization experiments in regions with the
highest uncertainty.

Multistep Downstream Process Optimization Cam-
paign. Following the SNAr campaign, we optimized the
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multistep downstream process (Figure 5) involving nitro
reduction, gas−liquid separation, and amide coupling for
converting purified SNAr product 3 into sonidegib 6. An
important change was made to the process configuration,
however, based on prior results. During the fully telescoped
process experiments (Figure 3, Table 1), we noticed a
significant side-product in the final amide coupling LC-MS
data (Figure 5F(a)) when HATU was employed as the
coupling reagent. Based on our understanding of the reaction
mechanism (see SI),53 this side-product was assigned as
guanidinium 10, formed by an undesired reaction between
amine 4 and HATU, which occurred due to simultaneous
addition of the amide coupling streams (Figure 3A). This side-
reaction can be suppressed by adding the amine after HATU

that is consumed in the desired activation reaction with
carboxylic acid 5. Therefore, the activation and amide coupling
steps were performed sequentially in separate reactors to
control the order of addition. To do this, we took advantage of
the synthesis platform’s flexibility by switching from a linear to
a convergent process configuration (Figure 5A,B) containing
two parallel branches (nitro reduction to form amine 4, and
activation to form the activated ester 9b or 9c) that merge
downstream for coupling. Two FT-IR modules were deployed
to monitor both the activation reaction and the nitro reduction
Pd catalyst stability in real-time over the course of the
campaign. A spherical Pd0/C catalyst50 (Heraeus GmbH) with
high surface area (see SI) and low pressure drop was used for
the nitro reduction, which was operated at high temperature

Figure 5. Multistep downstream process optimization campaign for sonidegib synthesis. (A) Platform configuration for convergent process. (B)
Process scheme, optimization variables, and objective functions. (C) Objective values versus experiment number. (D) 2D plot of objective values.
(E) 3D scatter plot showing continuous variable values explored. (F) LC chromatograms from (a) linear and (b) convergent processes. (G) FT-IR
timecourse data from (a) nitro reduction of 3 and (b) activation of 5. (H) Yield response surfaces generated using Gaussian process models fitted
to experimental data. Activation time and equiv 3:5 set to 1 min and 1.1 equiv to enable visualization. Abbreviations: HOAt (1-hydroxy-7-
azabenzotriazole).
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(125 °C) to minimize the likelihood of deactivation. The
overall yield of sonidegib 6 was determined via an LC-MS
module after the amide coupling reactor.
Five optimization variables and two objective functions

(Figure 5B) were considered for the multistep campaign. The
activation reagent (EDC/HOBt or HATU) and activation
residence time were categorical and continuous variables,
respectively. Equivalents of nitro 3 with respect to carboxylic
acid 5 was included as a continuous variable, since amide
couplings are often performed with a slight excess of the amine.
Since the flow rate of 3 was fully specified by the 3:5
stoichiometry and the acid flow rate in the activation reactor,
the reduction residence time also varied based on equivalents
of 3 and activation time. For the final amide coupling step, in
addition to including temperature as a continuous variable,
reactor volume (1 or 3 mL) was a discrete numeric variable
that was automatically reconfigured by the robotic gantry arm
during the campaign to provide an independent degree of
freedom for accessing shorter and longer residence times
without altering upstream flow rates. Overall yield and
productivity of sonidegib 6 were chosen as the objective
functions, while cost was not included in this case, since both
coupling reagents were similarly priced.
Fifteen total experiments were run over 13 h (∼1.4 g starting

materials/experiment) with 8 initialization and 7 refinement
experiments (Figure 5C−G; tabulated results in SI). The
initialization runs were evenly divided between the two
activation reagents and reactor volumes (Figure 5C), and
higher yields were observed with HATU (red points, 73−93%)
than EDC/HOBt (blue points, 23−56%). After the first 4
experiments which utilized a 1 mL reactor for the amide
coupling, the system performed a midrun robotic reconfigura-
tion from the 1 to 3 mL reactor (see SI Movie) and brought
the process back up to resume the campaign. The ability to
change reactor volume helped us investigate the effect of
coupling time independently of other variables. In this case,
longer reaction times provided by the larger volume increased
conversion and yield. This is particularly evident when
comparing EDC/HOBt experiment 3 (1 mL, 1 min, 25%
yield, 1.1 g/h) and experiment 8 (3 mL, 3 min, 57% yield, 2.65
g/h), which employed otherwise similar conditions.
For all the refinement experiments (9−15), the algorithm

proposed HATU and the 3 mL reactor. Compared to the
initialization (e.g., expt 5, 93% yield, 1.6 g/h), the multi-
objective optimization algorithm identified conditions in the
refinement phase with simultaneously high yields and
productivities (optimal expt 15, 93% yield, 7.4 g/h) (Figure
5C,D). When plotting the data (Figure 5E) with respect to the
three most impactful continuous variables (coupling temper-
ature, coupling time, equiv 3:5), the refinement experiments
(points with solid vertical lines) generally employed faster
coupling times and elevated temperatures to boost the reaction
rate, yield, and productivity. The 3 mL reactor was key to
providing sufficiently long residence times (∼1.6−2 min) at
high flow rates to achieve greater conversion compared to the
1 mL reactor, which is likely why the algorithm selected the 3
mL module for each refinement experiment. Yield response
surfaces (Figure 5H) generated using the Gaussian process
model fitted to the experimental data help visualize the impact
of coupling temperature and time. Model uncertainty is
generally much lower (dark purple) for HATU than EDC/
HOBt (more orange/yellow), since 11 out of 15 experiments
were conducted with the optimal HATU reagent.

Representative analytical data (Figure 5F,G) collected by the
integrated LC-MS and FT-IR modules provided insight into
the individual reactions within the multistep process.
Comparing the LC profiles from the fully telescoped linear
process and convergent process (Figure 5F) showed that
guanidinium impurity 10 (red peak) formed by the undesired
side-reaction between HATU and amine 4 was significantly
reduced in the convergent process. Monitoring the activation
reactor outlet using FT-IR module 2 (Figure 5G(b)) revealed
that the steady-state concentration of the HATU activated
ester 9c (purple profile) reached the same plateau for all
HATU experiments which ranged from 1 to 5 min of
activation time. This indicated that activation of acid 5 with
HATU was rapid and proceeded essentially to full conversion
even at 1 min. As a result of the controlled order of addition
with the convergent process, minimal HATU proceeded
downstream, which suppressed guanidinium side-product 10
and increased overall process yield. The first FT-IR module,
which analyzed the liquid permeate from the nitro reduction
and gas−liquid separator, played a key role in helping us verify
in real-time that the Pd catalyst activity was stable as the
campaign progressed. The diagnostic IR signal from 3 (Figure
5G(a), yellow profile) was at the baseline, which indicated high
levels of conversion even at the highest liquid flow rates (∼0.8
mL/min). This was corroborated by the complementary LC-
MS module downstream which also revealed complete
reduction to amine 4. The enabling features of continuous
processing for hydrogenation (enhanced gas−liquid−solid
mass transfer, high local catalyst loading, and prompt
telescoping of the oxidation-sensitive amine into the amide
coupling) contributed to realizing high nitro reduction
throughput and sonidegib productivity.

■ CONCLUSION
A CASP-proposed and human-refined multistep synthesis
recipe for an exemplary small molecule, sonidegib 6, was
experimentally optimized on a modular, robotic flow synthesis
platform. Integrated analytics (FT-IR, LC-MS) facilitated data-
rich experimentation and monitoring of multiple reactions
(SNAr, nitro reduction, amide coupling) for thorough process
understanding. Automation scripts for reaction execution,
sampling, and data processing helped accelerate and reduce
manual effort during experimentation. By utilizing a multi-
objective Bayesian optimization algorithm that iteratively
proposed new conditions to evaluate in order to optimize
several objectives simultaneously (yield, productivity, cost),
optimal settings for categorical (reagent choice) and
continuous (temperature, time, stoichiometry) reaction
conditions were identified to complete the synthesis recipe
as well as to generate predictive mathematical process models.
The platform’s hardware features, such as robotically
reconfigurable reactor volumes (1 and 3 mL) and convergent
synthesis capability, were essential for allowing variation of
downstream residence time in multistep flow synthesis and
controlling the order of addition to minimize unproductive
reactivity.
This work not only explored how algorithmic optimization

can help fill in process details when integrating CASP tools
with recipe-driven synthesis platforms but also identified
several areas where human input is still needed. In multistep
syntheses, any chemical incompatibilities between reagents
across steps that are hard to anticipate a priori (e.g., SNAr
byproduct leading to catalyst deactivation in the sonidegib 6
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case study) pose a major challenge for one-pot or telescoped
synthesis. Such cases may necessitate intermediate purification
procedures which can be challenging to predict or develop,
especially when nonchromatographic. Furthermore, procedural
details such as concentration and solubility require additional
experiments, while knowledge of the reaction mechanism and
human interpretation of analytical data are needed to inform
the order of reagent addition and strategies to eliminate side-
reactions. Due to the limited data availability, it is currently not
possible to plan every detail required to execute a synthesis
without human intervention. However, this work exemplifies
how machine assistance in the repetitive aspects of initial
formulation, experimental execution, and data collection can
help us focus on the application of domain knowledge, critical
interpretation of data, and creative problem-solving where
human input still provides the greatest utility.
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