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Abstract
Objectives: A number of published predictors are based on various algorithms and
disordered protein sequence properties. Although many predictors have been pub-
lished, the studyofproteindisordered regionprediction is ongoingbecausedifferent
prediction methods can find different disordered regions in a protein sequence.
Methods: Therefore we have used a new approach to find the more varying disor-
dered regions formoreefficient andaccuratepredictionofprotein structures. In this
study, we propose a novel approach called “emerging subsequence (ES) mining”
without using the characteristics of the disordered protein. We first adapted the
approach to generate emerging protein subsequences on public protein sequence
data. Second, the disordered and ordered regions in a protein sequence were pre-
dicted by searching the generated emerging protein subsequence with a sliding
window, which tends to overlap. Third, the scores of the overlapping regions were
calculated based on support and growthrate values in both classes. Finally, the score
of predicted regions in the target class were compared with the score of the source
class, and the class having a higher score was selected.
Results: In this experiment, disordered sequence data and ordered sequence data
was extracted from DisProt 6.02 and PDB respectively and used as training data.
The test data come from CASP 9 and CASP 10 where disordered and ordered re-
gions are known.
Conclusion: Comparing with several published predictors, the results of the
experiment show higher accuracy rates than with other existing methods.
1. Introduction

The study of protein structure for the prediction of

function using data mining has always been known as an

important research topic in Bioinformatics. Disordered
ted under the terms of the C
0) which permits unrestrict
roperly cited.

ase Control and Prevention
proteins, referred to as naturally unfolded proteins or

intrinsically unstructured proteins, are characterized by

a lack of stable tertiary structure when the protein exists

as an isolated polypeptide chain under physiological

conditions in vitro. However, all the analyses of protein
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are based on protein primary structure denoted amino

acid sequences. Protein sequences decide protein struc-

ture, and protein structures concern protein function. In

the study of protein structures, prediction of disordered

regions in a protein sequence is an important topic [1].

The reasons are as follows: (1) Proteins can function

when protein disordered sequences fold with other

protein sequences. Therefore, finding the protein disor-

dered regions helps to study functions of proteins [2].

Moreover, most of the hub proteins cannot highly

interact with proteins compared with nonhub proteins

[3] (disordered proteins) except cancer proteins [4]. (2)

When we analyzed the similarity between proteins by

protein alignments, identification of disordered regions

could avoid disordered regions compared with ordered

regions, which therefore improved the accuracy of

analysis. (3) Eukaryotic Linear Motifs (ELMs) which

are short linear peptide regions containing independent

functions not related to protein structures. However, the

70% of ELMs are located in disordered regions [5]. (4)

In sequence data, division between disordered regions

and ordered regions are more beneficial to study three-

dimensional protein structures and properties from pro-

tein sequences [6].

In early 1997, Romero et al. proposed the first protein

disordered region predictor which applied data mining

algorithms to protein sequence data without fixed pro-

tein three-dimensional structures [7]. To date, a number

of predictors of protein disordered regions have been

published. From a view of algorithms which were used

to construct the prediction model, several data mining

and machine learning algorithms were applied, such as

nearest neighbor algorithm [8], support vector machines

(SVMs) [9e14], neural networks (NNs) [15e23], arti-

ficial neural network (ANNs), regression [24e26],

sliding window [27,28], random forest [29], Bayesian

Markov chain model [30] and so on.

Many protein properties were used to study protein

disordered regions, for example low hydrophobicity, the

content of B-factor (residues with high B-factor loops)

[31], position-specific score [32e35], high net charge

and low hydrophobicity [27], low contact density

(average amino acid contact propensity scores with or

without pairwise interaction energy matrices) [37e39]

and so on. Recently, two predictors [29] were pro-

posed which are based on the profiles of amino acid

indices representing various physiochemical and

biochemical properties of the 20 amino acids. DISOclust

[40] used a different method from other methods which

was based on the analysis of three-dimensional struc-

tural models using ModFOLDclust [41].

In addition, to increase the accuracy of prediction,

several meta-predictors were developed which were

combined with several predictors [10,18,21,42e46].

Apart from these methods, multiple sequence alignment

with proteins of known protein domains is used to

analyze protein structures.
Although many meta-predictors are proposed for

increasing prediction accuracy, the increase of accuracy

is limited to published based models. We also need to

propose new basic prediction methods to search the

disordered regions which have specific characteristics

using different methods. According to the characteristics

of disordered proteins, the regions which are predicted

are different from each other [47]. Most of the protein

disordered region predictors applied characteristics of

disordered proteins to identify the disordered region in a

protein sequence. In this study, a novel approach was

proposed which did not apply the characteristics of

disordered protein. In this paper, we modified and

applied an emerging substring generation algorithm

which was based on a suffix tree to derive the protein

emerging subsequences [36]. These protein emerging

subsequences were used to predict disordered regions in

a protein sequence sliding window.

The predictor is based on emerging subsequences

(ESs) which have high discriminating power, and it is

more suitable to use ESs in classification analysis.

Comparing with most existing disorder predictors which

use a sliding window to map individual residues into a

certain feature space, the ES-based predictor decreases

the useless patterns for classification. The predictor

using sliding window applies the feature selection for

selecting more useful patterns. However, the ES-based

predictor does not need to change the window size and

prunes the generated patterns using feature selection

methods.

The rest of the paper is organized as follows. Section

2 presents the method applied to the ES-based predictor

using some examples. Section 3 shows the performance

of the predictor and discusses the experiment results.

Finally, we give some concluding remarks in Section 4.
2. Materials and methods

2.1. Emerging Subsequence
Sequence data are special data which have ordering

properties. To discover the emerging pattern from

sequence data, an emerging substring and a suffix tree-

based framework for generating emerging substring

were proposed by Sarah Chan in 2003 [36]. In this

paper, to apply the emerging sequential patterns to

protein sequence data, the emerging pattern was called

an Emerging Subsequence (ES) and defined as being a

part of a protein sequence that has a higher frequency of

occurrence in the target class than in the source class.

Emerging subsequences are more suitable for classi-

fying protein sequences to the disordered sequences and

ordered sequences than frequent sequential patterns

which are often used in subsequence mining, because of

the high discriminating power of emerging sub-

sequences. Frequent sequential patterns only depend on

the frequency of the subsequence in the target class.
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However, the emerging subsequences do not only use

the frequency of subsequence in the target class, but also

compare with the background class.

2.2. Parameters
Two parameters: support (support count) and

growthrate are used to generate the ESs. The support

count is the number of subsequences in a target class,

and the support is the rate of a subsequence among

proteins that are included in a target class [given in Eq.

(1)].

support countkðsÞZThe number of subsequences

in class k;
ð1Þ

where k is a target class, disordered protein or ordered

protein and s is a subsequence.

Growthrate of an ES is the ratio of support count or

support which is contained in a target class to the sup-

port count or support which is contained in the back-

ground class [given in Eq. (2)].
growthrate

0
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>>>:
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if suppcount 1Z0 and suppcount 2Z0;
if suppcount 1Z0 and suppcount 2 > 0;

otherwises:
ð2Þ
where suppcount1 is the value of support count of class 1,

and suppcount2 is the value of support count of class 2.

However, a protein sequence usually contains more

than one disordered region and a protein can also contain

more than one subsequence. Consequently, an emerging

subsequence alsomay be present several times in a protein

sequence. The support count can be larger than the

number of proteins in the target class and the support of a

subsequence could be larger than “1”. The support value

cannot represent the rate in the total target class’s protein

sequences. Therefore, in this study, we applied the sup-

port count and growthrate as basis parameters unlikely in

the study of basic emerging subsequence. In this case,

support (support count) represents the frequency of a

subsequence in target class, and growthrate represents the

frequent standard of subsequence in target class which

was compared to background class. In other words, an

emerging subsequence of a class k is that a subsequence

satisfies the threshold value of support count and

growthrate value in class k.

In this work, the problem regarding prediction of

disordered regions is to find the subsequences based on

the support count and growthrate, which more

frequently occur in the target class, and the disorder/

order class, than in the background class, or order/dis-

order class, from the protein sequences whose structures

need to be predicted.
2.3. Extraction of protein emerging

subsequence
The protein emerging subsequence (Protein_ES)

generator is a part of disordered region predictor that is

used in this work. The Protein_ES generator is con-

structed based on a suffix tree which is used to arrange

and search the sequence. The emerging subsequence

mining algorithm was proposed by Sarah Chan and

colleagues [36]. However, they proposed a single-class

mining algorithm. In this work, we changed frame-

work of the single-class mining algorithm to make it to

be suitable for a two-class mining algorithm and the

generation of disordered and ordered protein emerging

subsequences.

A merged tree is a data structure which is based on a

suffix tree [36] and can show all subsequence sequences,

and also reveals the support count and growthrate value

of each node in target class. In a merged tree, edges spell

nonempty sequences and each node has at least two

children apart from the leaf node. Every pathway from
the root node to the leaf node is a suffix of sequences in

a protein dataset. The purpose of constructing a merged

tree is discovering all the subsequence of sequence in a

sequence dataset, and it is also easy to calculate the

support count and growthrate of all subsequences in the

protein sequence dataset.

The process of generating a protein emerging

sequence using a protein sequence dataset is as follows.

At the beginning, there is just a root node in a merged

tree. The root node does not represent anything. It is just

used as a top node to connect all the nodes which do not

have a parent node. A disordered sequence in a disor-

dered sequence dataset is taken to compare to the root

node’s child nodes where every node represents an

amino acid in the disordered protein sequence. If there is

a node that is the same as compared to an amino acid in

a disordered sequence, the disorder class’s support

counter of the node is added to one and compared to the

next amino acid in the sequence with the pathway of the

node’s child nodes.

If there is no node that is the same as compared

amino acids in the disordered sequence, the amino acids

will create the new child node of root node, and the

pathway of the nodes and new child node represents the

different subsequence constructed by amino acids. The

disorder class’s support counter of the node added to

one. Once the sequence is finished arranging, the next
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sequence in the disordered sequence dataset starts being

compared with the root node’s child nodes of the

merged tree. The ordered protein sequences dataset also

use the same phases to upgrade the merged tree and to

calculate the support count and growthrate value of

emerging subsequence in the order class.

As we described, the amino acid is the unit of the

protein sequence algorithm. Every node represents an

amino acid, and the support counter value represents the

frequency of the subsequence which is combined by

amino acids in the pathway from the root node’s child

node to the appropriate node.

2.4. Identification of disordered region in

proteins
The process is divided into two phases for identifying

the disordered protein region in protein sequences using

protein emerging subsequences. One is the phase of

searching for disordered regions using disordered

emerging subsequences (Disordered_ESs). The other is

the pruning phase using ordered emerging subsequences

(Ordered_ESs) to improve the prediction accuracy based

on calculating contributions of protein emerging

subsequences.

2.4.1. Searching disordered regions based on

Disordered_ES
In this work, the method is used for discovering

disordered regions by scanning the Disordered_ES using

the sliding window technique in protein sequences and

matching the right region as disordered regions. When

amino acids in protein sequences were classified to

disordered regions, the amino acids made a record of the

support count and growthrate values of all Dis-

ordered_ESs which matched with the amino acids

sequence.

2.4.2. Pruning disordered regions based on

Ordered_ES and Score
The purpose of the pruning phase is to search the

ordered regions that were incorrectly predicted as

disordered regions by disordered emerging sequence.

Consequently, the prediction accuracy is improved. In

this phase, we also applied the sliding window to find

the ordered region based Ordered_ES. The predicted

disordered regions and ordered regions inevitably
Table 1. The example of disordered emerging subsequences

values.

Disordered_Ess

Sequence Contribution

TTTLDSK 1.5

LDS 2.8

DDSKK 1.5
overlapped. In these cases, the parameter-score is

applied to predict the disordered region. The score is

proposed in the CAEP (classification by aggregating

emerging patterns) [48] which applies the support and

growthrate of emerging subsequence. It shows the sum

of the contributions of the emerging subsequences in the

target class (Eq. (3)). The formula is as follows.

scoreða;kÞZ
X

a4s;s˛ESðkÞ

growthrateðsÞ
growthrateðsÞ þ 1

� supp countkðsÞ ð3Þ
where a is an amino acid which is contained in the

overlapped region by Disordered_ES and Ordered_ES, s

is an emerging subsequence, ES(k) is a dataset of

emerging subsequences of class k. Namely, contribution

is the value of as following formula,

growthrateðsÞ
growthrateðsÞ þ 1

)supp countkðsÞ:

An example of the prediction method using the score

of emerging subsequence is given in Table 1 and

Figure 1. In the example, two overlap sequences “DSK”

and “DD” exist in a protein sequence. For first overlap

region “DSK”, the scores are Score(“D”,

D_ES) Z 1.5 þ 1.8 Z 3.3 (“TTTLDSK” and “LDS”)

and Score(“D”, O_ES) Z 1.6 (“DSKT”). Therefore “D”

is a disordered region. For second amino acid “S”, the

scores are Score (“S”, D_ES) Z 1.5 þ 1.8 Z 3.3

(“TTTLDSK” and “LDS”) and Score(“S”,O_ES) Z 1.6

(“DSKT”). Therefore “S” is classified to the disordered

region. Though the calculation, the classification result

is that “TTTLDS” and “SKK” are the disordered

regions.
3. Results

3.1. Dataset
In this study, the training data is extracted from

DisProt (version 6.02, http://www.disprot.org/) and the

Protein Data Bank (PDB). DisProt is a collection of

disordered regions of proteins based on published liter-

ature descriptions. The PDB sequences were filtered

using the culled PDB list to extract a high-quality and

low-sequence identity subset. It has 694 proteins entries

and 1539 disordered regions. Long disordered regions
and ordered emerging subsequences and their contribution

Ordered_ESs

Sequence Contribution

DSKT 1.6

KT 2.8

TLDDD 1.3

http://www.disprot.org/


Figure 1. The example of prediction on overlap region in protein sequences. (A) Predicted disordered regions. (B) Predicted

ordered region. (c) Overlapped regions of disordered emerging subsequences and ordered emerging subsequence.
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(more than 30 amino acids) in DisProt 6.02 are used to

train emerging subsequence based predictor to discover

the long disordered emerging sequences, and it is

denoted as the Long_Disorder dataset (LD). Short

disordered regions (less than 30 amino acids) in DisProt

6.02 were used to train emerging subsequence based

predictor to discover the short disordered emerging

subsequences, and it is denoted the Short_Disorder

dataset (SD). The ordered training data are extracted

from PDB-Select-25, a representative set of protein data

bank (PDB). This collection of ordered training set in-

cludes a total of 68,132 residues.

The CASP 9 and CASP 10 targets were used as an

independent test dataset to blind test the performance

of prediction. The CASP 9 dataset contains 108 se-

quences with a total of 21,230 residues, and the CASP

10 dataset contains 94 sequences with a total of 37,335

residues [49]. In this work, we randomly selected the

95 sequences in CASP 9 and CASP 10 which contain

both disordered and ordered regions together for test

data.
3.2. Protein emerging subsequences
The features used to predict disordered regions are:

protein short disorder (SD) emerging subsequences and

long disorder (LD) emerging subsequences generated
Table 2. Short_disorder ES.

Short_disorder ES Support count Growthrate

MEKVL 9 N
FMEKV 9 N
EKVL 9 4.5

KVLG 7 N
AFMEK 7 N
DPTI 6 N
QEEY 6 6

YDPTI 6 N
... ... ...
by the protein emerging subsequence mining algo-

rithm. When the ES is generated, two datasets, the

background class dataset and the target class dataset,

are needed. Therefore we set the dataset SD to the

background class dataset, and set dataset LD to the

target class dataset. Tables 2 and 3 show the sample of

the disorder ESs generated. Here short_disorder/

long_disorder ES means the ES is more frequent

in short_disorder/long_disorder ES than in long_dis-

order/short_disorder ES. In Table 2, it is shown that the

short_disordered region is different from long_-

disordered region as published [36].
3.3. Performance of ES_based disordered

region predictor
To evaluate the performance of this approach, we

compared with some existing predictors which have

high accuracy.
3.3.1. The analysis and performance result
From Figure 2, we can determine that this approach is

efficient for predicting the boundary of protein disor-

dered regions. In the whole text dataset, it predicts 75%

of boundary of disordered regions.
Table 3. Long_disorder ES.

Long_disorder ES Support count Growthrate

AKSPA 22 N
EEEEG 15 N
GQPHG 12 N
WGQPH 12 N
EEEED 11 11

GGWGQ 11 N
DSDSD 11 N
HGGGW 10 N
... ... ...



Figure 2. Example of performance result.

Table 4. Performance accuracies of the protein disor-

dered region on per-residue version (%).

Sensitivity Specificity Precision Accuracy

EMBL_hot 60.2 66.2 20.9 65.1

EMBL_coil 47.3 75.1 22.9 70.8

EMBL_remark 65.6 49.1 18.9 50.9

PONDR-VSL2 39.9 79.2 22.8 74.1

RONN 33.6 84.3 26.8 77.2

ES 44.7 85.3 30.7 79.4
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3.3.2. The analysis of protein disordered region

prediction by the per-residue method
For analysis on ES based predictor is more detail, the

experiment on per-residue is proposed. Table 4 shows that

the accuracies are generally high. In this experiment, we

just compare with the predictors which applied the

different properties of disordered regions, and obtain the

highest accuracy [supportZ(2,2) growthrateZ(2,3)].

Some papers reported that the sensitivity was the most

important performance measure for disordered region

predictor. If we change the parameters, the specificity of
Table 5. Performance accuracies of the protein disor-

dered region on per-chain version (%).

Methods Sensitivity Specificity Precision Accuracy

EMBL_hot 40.8 79 20 74.6

EMBL_coil 64.4 47.4 13.6 49.3

EMBL_remark 21.1 93.3 28.7 85

PONDR-VSL2 37.6 82.8 21.9 77.6

RONN 34.1 84.3 26.8 77.1

ES 40.6 86.1 27.3 80.9
our proposed predictor also could reach 57.5% and the

accuracy could reach 66% [supportZ(2,2), grow-

thrateZ(4,2)]. It means we can control the value of the

parameters to obtain the necessary results.

3.3.3. The analysis of the protein disordered region

prediction by the per-chain method
When predicting the disordered region on per-chain

version, the accuracies of all the predictors are not as

good as per-chain version (Table 5). It is show that in

the special case the predictor accuracy is much worse so

that the overall accuracy is not higher than by using the

per-chain method.
4. Disussion

Prediction of protein structures and functions, in

particular identification of natively disordered and or-

dered regions of a protein, is always an important and

challenging task. Although many predictors have been

published, the study of protein disordered region pre-

diction is ongoing because different prediction methods

can find different disordered regions in a protein

sequence. We have used a new approach to find the

different disordered regions for more efficient and ac-

curate prediction of protein structures. In this paper, we

proposed a protein disordered region predictor was

applied an emerging subsequence mining algorithm. An

emerging subsequence, which has high discriminating

power, is more suitable for classification analysis. The

proposed prediction model uses a merged tree based on

a suffix tree to discover the emerging subsequence from

protein disordered and ordered sequence data, and
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predicts the disordered region by identifying disorder

emerging subsequence and ordered emerging sub-

sequences using a sliding window in a protein sequence.

Classification of the disordered regions and ordered re-

gion in a protein is according to the score of emerging

subsequences. For testing the performance of the pro-

posed predictor, we used the protein disordered

sequence data from Disport 5.7 and ordered sequence

data from the PDB. The extracted test data are from

CASP 9 and CASP 10. The results show that this new

approach guarantees high accuracy, and it is an efficient

approach to predict the boundary of disordered regions

compared with other methods.

The upgraded emerging subsequences-based predic-

tor is appropriate to analyze protein structures and

functions. We assumed that the emerging subsequences

could discover regions of important biological signifi-

cance and it could be used as part of meta-predictors.

We also estimate that the disordered properties and

emerging subsequences features could be used together

to predict disordered regions and could obtain more

meaningful features with high accuracy. Concurrently, it

is also the topic of our future work. Regarding the

number of disordered and ordered data, the parameters

used in predictor are very different, and the way the

parameters are set impacts the prediction accuracy. The

discovery of the association between the parameters and

the amounts of disordered and ordered data is for

another future work.
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