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Machine learning‑assisted 
ammonium detection using 
zinc oxide/multi‑walled carbon 
nanotube composite based 
impedance sensors
Akshaya Kumar Aliyana1, S. K. Naveen Kumar1, Pradeep Marimuthu2, Aiswarya Baburaj1, 
Michael Adetunji4, Terrance Frederick2, Praveen Sekhar3 & Renny Edwin Fernandez4*

We report a machine learning approach to accurately correlate the impedance variations in zinc oxide/
multi walled carbon nanotube nanocomposite (F-MWCNT/ZnO-NFs) to NH4

+ ions concentrations. 
Impedance response of F-MWCNT/ZnO-NFs nanocomposites with varying ZnO:MWCNT compositions 
were evaluated for its sensitivity and selectivity to NH4

+ ions in the presence of structurally similar 
analytes. A decision-making model was built, trained and tested using important features of the 
impedance response of F-MWCNT/ZnO-NF to varying NH4

+ concentrations. Different algorithms 
such as kNN, random forest, neural network, Naïve Bayes and logistic regression are compared and 
discussed. ML analysis have led to identify the most prominent features of an impedance spectrum 
that can be used as the ML predictors to estimate the real concentration of NH4

+ ion levels. The 
proposed NH4

+ sensor along with the decision-making model can identify and operate at specific 
operating frequencies to continuously collect the most relevant information from a system.

Metal oxides-based sensors with excellent response time and longevity, are candidates for the next generation 
real-time sensing. Analytical signals from a chemical sensor are dominated by the target concentration. Besides 
the target molecule, interfering ions, process parameters like solution pH, conductivity, temperature, electrode 
parameters such as geometry, material properties also contribute to the sensor signal1–4. In a dynamic setting, 
these parameters contribute heavily to the signal erraticism5. Response of such intricate systems cannot be 
interpreted using calibration curves or modeled using mathematical equations.

Metal oxide active layers have highly tunable electrical, optical and mechanical properties6–9. Metal oxide 
nanocomposites with superior material properties and enhanced sensing range has been developed using ZnO, 
TiO2, SiO2, NiO2, Fe2O3 and CuO10,11. Metal electrodes coated with metal oxide ion selective active layers have 
been used for electrochemical sensing of Ammonium (NH4

+)12–14. The enhanced sensitivity of the ZnO is attrib-
uted to its surface to volume ratio, electrical conductivity, fast response, wide band-gap (3.37 eV)15, large exciton 
binding energy (60 meV)16, and piezoelectricity17. Metal oxide functionalization modulates the physicochemical 
properties of MWCNT thus increasing their ease of dispersion, manipulation, and process ability. Conjugating 
MWCNT with ZnO have shown to reduce the resistance of the sensing material and metal oxide controls the 
sensing properties18–19. Sensitivity of the electrodes are influenced by the chemical composition and microstruc-
ture morphology of the ZnO/MWCNT active layer16,20,21. After repeated measurements, metal-oxide integrity 
is degraded, resulting in a gradual decrease in maximum impedance ( |Zmax| ) values over the period of time22.

Machine learning aided sensing.  Authors have applied machine learning (ML) models to interpret the 
impedance response of a ZnO/MWCNT NH4

+ sensor, mainly to compensate for the instability and drift in |Zmax| 
values. The proposed ML approach centers the estimation of NH4

+ on several predictors using advanced multi-
variate mathematical models. ML approach is adopted to correlate the impedance changes of a ZnO/MWCNT 
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active layer to NH4
+ concentrations at varying solution conditions. Machine learning aided impedance sensors 

have been previously reported to classify Escherichia coli (E. coli) strains JM109, DH5-α, and Salmonella typh-
imurium23. However, no study has been reported on machine learning aided impedance sensors for detecting 
chemicals.

When trying to electrochemically analyze complex mixtures of structurally similar analytes in real matrices, 
various interferences occur, leading to faulty estimation of target concentration. Instability in electrochemical 
sensing is caused by structurally similar molecules/ions (Ca2+, Mg2+, K+, H+ and Na+)24, solution pH, sensor foul-
ing, temperature etc.25. Application of machine learning techniques in chemical sensing provide several benefits: 
(1) can cut down sensor optimization cost and time (2) provide unexpected insights into the experimental data 
(3) can predict the outcome by deciphering non-linear analytical input signals without mathematical fitting 
(4) can be readily integrated into a IoT setting. Machine learning powered intelligent electrochemical sensors 
have better accuracy and reliability26. Systematic ML investigation discovers the hidden relationship between 
the analyte sample parameters and sensing signals through data compression, elimination of baseline drifts, 
normalization, transformations, and so forth27.

Various ML models are used to train and extract significant features28,29. Support vector machine (SVM) 
model, used in cancer and pathogen detection, transforms predictor data into higher dimensions in order to 
maximize the response between the training patterns and the decision boundary29,30. The k-Nearest Neighbor 
(kNN) algorithm has been applied to solve classification problems in biology31. Naive Bayes (NB) is a proba-
bilistic classifier based on Bayes theorem with strong (Naive) independence assumptions32. Decision tree (DT) 
based models have been proved to be efficient in various ML applications in particular chlorophyll (Chl) level 
monitoring33, food quality assessment34,35 and antioxidants detection in biodiesel36. Each node of DT stands 
for a feature in an instance to be tested, each branch stands for a value that the node can assume, and each leaf 
stands for a probability density value distribution. Extensively used ensemble ML model is random forest (RF), 
operates by developing a number of DTs for classification and regression with addressing overfitting issues37,38. 
Artificial neural networks (ANN) are primarily used to deal with the non-linear problems39. These features are 
particularly beneficial for real-time operations and quick decisions.

Most sensing systems either rely on an equivalent circuit40 or a deterministic model41 to make predictions 
about the anticipated output concentrations. Often, the models have stringent boundary conditions and require 
extracting sub features to correlate to calibration curves. We hypothesize that a machine learning aided analytical 
sensing will enhance the accuracy of field deployable sensors operating at dynamic experimental conditions. The 
success of machine learning aided sensors depend on extracting the right features from an electronic signal or 
a frequency response. Signals that appear random or decipherable only using complex mathematical equations 
often have repeatable features that have a collective value after preprocessing42. The extracted features are often 
either peak of waveforms, the rise and fall rates, distance between peaks etc. Impedance spectrum of the sensor 
provides a fingerprint for a measured sample.

In this paper, we explain how the sensing accuracy of a metal-oxide based impedance sensing system can be 
improved using a machine learning approach that identifies predominant spectral features to predict unknown 
NH4

+ concentrations. We have analyzed the performance of in-house fabricated F-MWCNT/ZnO-NF nanocom-
posite sensors with varying ZnO:MWCNT ratios. The impedance characteristics of the sensors to varying NH4

+ 
concentrations were analyzed to extract impedance and frequency features. Datasets that capture the uniqueness 
of an impedance response were generated along with experimental parameters, interfering ion concentrations. 
Features like |Zmax| , |Z| at fixed frequencies, and average slope of the impedance curve were found to be impor-
tant predictors. ML models like kNN, random forest, neural network, Naïve Bayes and logistic regression model 
were trained using datasets with more than 18 predictors. Some of the predictors were transformed to closely 
resemble a normal distribution as part of the preprocessing. The most dominant predictors were identified using 
feature importance analysis.

Experimental and methods
Chemicals.  Multi-Wall Carbon nanotube (MWCNT), Zinc nitrate hexahydrate (H12N2O12Zn), Sodium 
hydroxide (NaOH), Hexamine((CH2)6N4), Copper (Cu), Fibre epoxy resins, Di-methyl sulfoxide (DMSO), 
Nitric acid (HNO3), Ammonium hydroxide (NH4

+OH) and Ethanol are the precursor materials and solvents 
used to formulate the F-MWCNT/ZnO-NFs nanocomposites. The precursor materials and analytes were pur-
chased from Sigma Aldrich. Interdigitated electrode structures were made from Copper (Cu) and Fiber epoxy 
resin (Fig. 1c).

Device characterization.  The surface orientation of the F-MWCNT/ZnO structure is studied using field 
emission scanning electron microscopy (FeSEM) with energy-dispersive X-ray spectroscopy (EDS). Crystal 
phase and orientation of F-MWCNT, ZnO and F-MWCNT/ZnO nanocomposites were examined using an 
X-ray diffractometer (XRD). Further, electrochemical performance of NH4

+ detection device was measured 
using an Agilent 4294A precision impedance analyzer system. Measurements were repeated and analyzed using 
multiple sets of sensors.

Fabrication of F‑MWCNT/ZnO‑NFs nanocomposites based NH4
+ smart sensor.  The fabrication 

process of screen-printed IDEs modified with F-MWCNT/ZnO active layer is illustrated in Fig. 1. The Copper 
(Cu) based IDEs structures were screen printed on the fiber epoxy substrate as described in our previous publi-
cation16. The CIRCAD software-oriented IDE’s design consist of total 18 fingers and provide a total sensing area 
of 18 × 15 mm2 for the NH4

+ analytes.
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F-MWCNT was functionalized using ZnO nanoparticles to form F-MWCNT/ZnO-NFs nanoflowers (NFs) 
structures. MWCNT is added with Nitric acid (HNO3) in the ratio of 1:1.5 solution is made homogeneous. The 
obtained solution is further refluxed for 8 h at 110 °C, consequently F-MWCNT powder treated with 0.1, 0.3 and 
0.5 M Zn (NO3)·6H2O to get the ZnO in the proportion of 1%, 3% and 5%. Three variants of Nanocomposites 
were synthesized by varying the MWCNT: ZnO ratio. The binding agent (0.01 M Hexamine) is added to the 
respective homogeneous nanocomposite solutions to create three types of sensors (S1, S2 and S3) with varying 
ZNO:MWCNT ratio. The mixture was refluxed for 3 h at 120 °C and precipitate is dried at 80 °C for 10 h to get 
the F-MWCNT/ZnO-NFs composites. The synthesized products were investigated in terms of morphological 
and structural properties. Nanocomposites further dispersed in the Di-methyl sulfoxide (DMSO) solvent were 
drop casted over the screen-printed IDEs surface.

Results and discussion
Characterizations of IDEs modified F‑MWCNT/ZnO nanocomposite active layer.  The layout 
and prototype of the screen-printed IDEs and FeSEM images of the electrode patterns are shown in Fig. 1c. 
The width and space between the two electrodes designed for 500 μm which comes to ≈ 460 μm after printing. 
Evident from the field emission microscopy (FeSEM) studies on F-MWCNT (Fig. 2a1), F-MWCNT/ ZnO-NFs 
composites with proportion of 1:1 (Fig. 2a2), 1:3 (Fig. 2a3) and 1:5 (Fig. 2a4), the morphology of F-MWCNT/
ZnO-NFs composites with varying ZnO percentages were distinctly different. Formation of nanoflowers (NF) 
inclusions over the F-MWCNT were observed. The majority of the MWCNT and F-MWCNT particles are uni-
formly distributed in high compactness with almost parallel alignment to the surface. Nanoflowers (NFs) are 
assembled in bunches which contain sub-NFs. Further characterization of the NFs attributed a hexagonal struc-
ture to NFs confirming good crystallinity. We noticed that ZnO percentage in the composite defines the orien-
tation of the NFs in such a way that its branching and petal size is proportional to the ratio of ZnO (1 to 5%).

Morphology and chemical composition of the nanocomposites were investigated using Energy Dispersive 
Spectroscopy (EDS) (Fig. S2). To analyze the crystalline nature of the particles, X-ray diffraction (XRD) study 
for ZnO, F-MWCNT, F-MWCNT/ZnO-NFs (S1, S2 and S3) samples were done and pattern is plotted in Fig. 2b. 
Obtained pattern shows maximum intensity for the peak positioned at 2θ = 36.56° for ZnO along the (101) plane 
and relates the growth along c-axis parallel to the substrate.

Evaluation of electrochemical sensing performance of F‑MWCNT/ZnO‑NFs composites active 
layer.  Impedance response of the F-MWCNT/ZnO-NFs composite samples were recorded using Agilent 
4294A precision impedance analyzer. The performance of the sensors was evaluated using standard NH4

+ solu-
tions (1–100 mM). Enhanced sensitivity and stability of the F-MWCNT/ZnO-NFs is attributed to the higher 

Figure 1.   (a) Screen printed interdigitated electrodes (IDEs), (b) F-MWCNT/ZnO-NFs nanocomposites are 
synthesized by functionalizing MWCNT using ZnO nanoparticles. (c) NH4

+ selective impedance sensors are 
fabricated by embedding F-MWCNT/ZnO-NF active layers on interdigitated arrays and (d) electrochemical 
response of the NH4

+ selective impedance sensors.
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surface area and direct electron mobility11. NH4
+ ions in the immediate vicinity of ZnO-NF active layers, are 

converted into NO3
−6,43. NH4

+ analytes adsorbed on ZnO-NFs are nitrified causing a decrease in the overall 
impedance of the sensor which induces a change in the local electrical fields and a proportional change in 
the electrical properties of the F-MWCNT/ZnO-NFs nanocomposites. The surface of ZnO-NFs will react with 
oxidizing and reducing analytes due to the presence of adsorbed oxygen species on the outermost layer, which 
subsequently gets ionized into O2−, O− or O2

−.
Three types of the F-MWCNT/ZnO-NF nanocomposite sensors were constructed by varying the 

ZnO:MWCNT weight percentages. Sensors S1, S2 and S3 had ZnO:MWCNT ratios of 1:1, 1:3 and 1:5 respec-
tively. Impedance spectra of the sensors showed an inversely proportional response with frequency in the 
1–10 kHz range (Fig. S3), clearly at higher frequencies the total impedance of the sensor decreased44,45. Higher 
|Zmax| were observed for S3 (1:5) compared to S1 (1:1) and S2 (1:3). Results confirm the predominant effect of 
ZnO weight percentages on the impedance characteristics of F-MWCNT/ZnO-NFs composites. |Zmax| values also 
tend to slightly vary from device to device. Such anomalies lead to inaccurate analysis of target concentrations.

Ammonium sensing.  The performance of the sensors S1, S2 and S3 was evaluated using standard NH4
+ 

solutions (1–100 mM) (Fig. 3). The presence of NH4
+ molecule in the dielectric (liquid medium) causes a change 

in the sensor impedance. A proportional decrease in the impedance magnitude was observed with increasing 
frequency (1 to 10 kHz) in all the three sample conditions. Linearity of the response was found to decrease with 
frequency. It was observed that response of impedance magnitude is influenced by the pH environment of the 
NH4

+ testing samples. The impedance sensitivity of the electrode was drastically affected by the pH environ-
ments, the response being acute in the 1–10 kHz range.

Results indicate that higher pH conditions cause an enhanced impedance value for S1, S2 and S3. It can be 
noted that impedance values of all sensors decreased with increasing NH4

+ levels in acid (Figs. 4a, 5a, 6a), neutral 
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Figure 2.   (a) FeSEM images of F-MWCNT (a1), F-MWCNT/ZnO-NFs composites with proportion of 1:1 (a2), 
1:3 (a3), 1:5 (a4) and (b) X-ray diffraction (XRD) spectrum for ZnO, F-MWCNT, F-MWCNT/ZnO-NFs.

Figure 3.   Impedance (Z/Zmax) versus frequency response of the sensors (a) S1, (b) S2 and (c) S3 at 0.1–100 mM 
NH4

+ ion concentrations.
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(Figs. 4b, 5b, 6b) and alkaline (Figs. 4c, 5c, 6c) conditions. The device sensitivity to NH4
+ was also found to vary 

with pH. Critical values such as the |Zmax| and the frequency dependency of |Z| were found to vary from device 
to device. |Zmax| values for sensor S3 operated at pH 4 was ~ 10.5% higher when operated in pH 9 and its ~ 23.8% 
higher for sensor S2. |Zmax| values were comparatively stable for S1 sensors with a variation of ~ 2%. The rate of 
change of |Zmax| is highest for pH 4 whereas increase in Zmax was very gradual at pH 7 and 9.

Figure 7a shows the response of  |Zmax| versus NH4
+ concentration (1–20 mM) for three S3 devices in the acid, 

neutral and alkaline sample conditions.  |Zmax| values can be seen to decrease consistently with increasing NH4
+ 

concentrations. |Zmax| values for S3 I, II and III sensors showed ~ 5% variation which can be due to variation in 
the active layer thickness among the sensor prototypes. Response of the sensors were interpreted using linear 
impedance versus NH4

+ calibration plots (Figs. S7, S8 and S9). The correlation coefficient (R2) of these plots is 
in range of 0.75–0.90. Sensitivity of the sensors were between 76.09 and 1.06 mM/Ω with an average correlation 
coefficient (R2) of 0.81. A decrease in sensitivity was observed when the solution pH was varied from acid to 
alkaline. This can be attributed to the non-uniformity in the distribution of ZnO-NFs on electrode active area 

Figure 4.   Impedance magnitude (Ω) versus NH4
+ ion concentration (0.5–50 mM) response of the sensor S1 in 

the (a) acid, (b) neutral and (c) alkaline sample conditions.

Figure 5.   Impedance magnitude (Ω) versus NH4
+ ion concentration (0.5–50 mM) response of the sensor S2 in 

the (a) acid, (b) neutral and (c) alkaline sample conditions.

Figure 6.   Impedance magnitude (Ω) versus NH4
+ ion concentration (0.5–50 mM) response of the sensor S3 in 

the (a) acid, (b) neutral and (c) alkaline sample conditions.
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(Fig. 2a). To interpret the stability of the sensor, impedance characteristics were recorded every 500 s for a total 
time duration of 4000 s and further measured every day for 7 continuous days. The results confirm the stable 
performance of the fabricated device.

To evaluate the selectivity of the NH4
+ sensor, we introduced 1–25 mM of interfering ions (K+, Mg2+

, P+, 
and Mn2+) in 50 mM NH4

+ sample. Figure 7b reveals the selectivity performance of the device in the presence 
of interfering ions. Four experiments (Test 1–4) were performed to analyze the effect of interfering ions. Test 
1–4 was conducted in the presence of 1, 10 and 25 mM each of the interfering ions (K+, Mg2+, P+, and Mn2+). 
Experiments were also conducted using a heterogenous mixture of all the interfering ions. In the presence of 
1–25 mM interfering ions with 50 mM NH4

+, |Zmax| values were found to change sigificantly in the presence 
of interfering ions. A drift of ~ 5.14 to ~ 23.15% in |Zmax| was observed in NH4

+ sensor due to chemisorption of 
interfering ions in the MWCNT/ZnO active layer. Heterogenous mixture of ions resulted in a significant varia-
tion of ~ 4.5% (Fig. 7b) in the |Zmax| values.

Machine learning based target prediction.  Prediction of target variable concentration (NH4
+) was 

done using 28 predictors in which 8 are experimental features and 20 are impedance and frequency features of 
the Frequency-impedance (F-Z) spectra (Fig. 8). S1, S2 and S3 are categorical predictors that indicate the type 
of sensor. The extracted features of the spectra are stored in a structure with a sensor and session ID number 
encoded in CSV file for each impedance spectra. Missing values were replaced with the median value of the 
predictor. 80% of dataset is assigned as training data set and the other 20% were assigned for testing. The accu-
racy of the ML regression models was analyzed using a confusion matrix in order to compare the predicted 
and true values. ML analyses were performed using the Orange toolbox by writing Python scripts accessing the 
Orange API. Python Script widget are used to run python scripts in Orange to perform additional functionali-
ties like feature importance46. The updated variables from the Python script are used as outputs of the Python 
Script widget.

Feature extraction and model training.  Predictors of our model were extracted from the impedance 
spectra, sample features, and experimental settings (Fig. 9). Both impedance magnitude and frequency features 
are used as predictors to capture the dynamics of the original spectra. Individual features were expanded into 
multiple predictors in order to better represent a non-linear input–output relationship thereby eliminating outli-
ers and reducing computational time47. The frequencies at which a fixed change in impedance occurs are taken as 
the derivative frequency values ( fn ) of a spectrum (Fig. 9b). Predictors f0.1 to f0.9 are the frequencies at which the 
impedance values are 0.1–0.9 times of Zmax from the impedance spectra, we extracted derivative frequencies fn 
at Zn = n ∗ Zmax

{

0.1 ≤ n ≤ 0.9} . We hypothesize that representing the impedance variations as fn will reduce 
the dependency of the spectrum on electrode area. fn starts to increase at the onset of depletion and a maximum 
value of fn is observed at 0.9 ∗ Zmax. Although Zmax value is a function of the area of the electrode, the frequency 
response is influenced by the dielectric property of the material and the environment. Total surface area of an 
electrode may decrease after cycles of repeated measurements as the nanocomposite structures in the active layer 
tend to deteriorate.

We transformed the impedance features into admittance values in order to improve the model. Raw imped-
ance data were preprocessed using a running mean prior to modeling. But excess data smoothing showed a 
tendency to eliminate important nonlinear patterns. Hence, we adopted a Box-Cox transformation method that 

Figure 7.   (a) |Zmax| versus NH4
+ concentration (1–20 mM) for three similar set of S3 devices in acid, neutral 

and alkaline pH conditions. (b) Selectivity performance of the sensor in the presence of Interfering ions (K+, 
Mg2+, P+, Mn2+ and Heterogeneous mixture) concentrations levels.
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uses separate estimation procedures to transform the impedance (Z) data so that it closely resembles a normal 
distribution. A Box-Cox transformation was used to estimate the transformation.

The Box-Cox procedure, originally intended as a transformation of a model’s outcome, uses maximum 
likelihood estimation to estimate a transformation parameter λ in the equation which is estimated from the 
data. Values of λ map to transformations. When λ = 1 (no transformation), λ = 0 (log), λ = 0.5 (square root), 
and λ =  − 1 (inverse). For impedance (Z) values, λ was estimated to be − 1 which is effectively the inverse trans-
formation. Hence, we adopted the admittance representation in our datasets using the feature constructor tool 
in Orange.

Prediction efficiency of the decision‑making model.  From the confusion matrices, scoring frame-
works such as CA (Accuracy classification score), Precision (precision computation), recall (computation of 
true positives and false negatives), F1 score (weighted average of precision and recall) and AUC (stored predic-

x∗ =

{

x�−1
� x�−1 , � �= 0

x̃ log x, � = 0

Figure 8.   (a) Impedance spectral features and experimental parameters used as predictors in various datasets. 
(b) Information gain scores for Z, F and Y predictors. Insets show the variation in Zmax values of predictors with 
maximum IG scores ( Z2k , f0.8, Ymax).

Figure 9.   (a) Predictors of the ML model are extracted from Impedance Spectral features, sample parameters, 
and experimental settings. (b) Predictors f0.1 to f0.9 are the frequencies at which the impedance values are 0.1–0.9 
times of Zmax.
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tions and actual data in model testing) were obtained to evaluate the prediction efficiency of each model. Scor-
ing framework takes the decimal values of probability between 0 and 1. Evident from the Confusion matrices 
(Tables S5–S10), are the prediction accuracy of all the models among which RF is the most accurate (Table S5). 
Among all the models that we tested, RF model was the most efficiency in predicting the concentration range, 
which has a precision score of 0.83–0.89 depending upon the predictor variables. Using impedance only dataset, 
RF displayed a precision of ~ 0.83. Precision values of the RF model increased from 0.83 to 0.85 when trans-
formed 1/Z  values were used. The precision of the RF model was increased further to ~ 0.87 after including 
derivative frequency (f n) predictors. Accuracy was highest for RF model, when admittance (1/Z) were used as 
predictor instead of impedance values. Prediction accuracy of the model was lower for samples in low pH solu-
tions. This may be attributed to high variance in Z values in low pH solutions. The accuracy was found to be 
highest in basic pH.

All other models like ANN and kNN had lower prediction accuracy (< 0.70). SVM models with four different 
kernels (polynomial, sigmoidal, linear, and radial basis function) were analyzed. However, SVM showed the least 
accuracy (0.24–0.47) while testing for unknown samples.

Feature importance estimation for maximum relevance and minimum redundancy crite‑
rion.  Extraneous predictors erode the performance of a model and also increases computational cost. It is 
important to identify a subset of predictors with high prevalence. Among the predictors, some of them have a 
significant influence on the response of the model. Feature importance was tested by permuting the predictors 
and measuring the decrease in accuracy. In order to identify the predictor combination that is relevant to the 
response, we made 3 datasets containing predictors derived from the features of the impedance spectra. DS (1) 
Z1k−10k , (2) Z1k−10k , f0.1−0.9 (3) Y1k−10k , f0.1−0.9 (Fig. 8a).

A complete list of all features and their Information Gain (IG) scores for RF model is shown in Table 1. IG 
scores indicate the significance of a predictor in the model. The IG scores of various predictors are ranked based 
on highest and lowest precedence features. We evaluated the information gain for each variable in order to select 
only those variables that maximizes the information gain. IG score provides a baseline for comparison; some of 
the features are removed based on feature importance scores.

Among three datasets analyzed, each consisting of ~ 150 data points and 18 features, Z2k , the Z value cor-
responding to the impedance at 2 kHz, had the highest IG score 0.544 which is higher among all Z predictors 
( Z1k−10k ). IG scores were higher for fn predictors. Among them f0.8 had the highest score (0.574). S predictors, 
S1, S2, S3, was found to have low info gains (~ 0.047). Following points summarizes our findings from the feature 
analysis.

(1)	 It was clear from the IG scores that categorical S-predictor parameter S3 has a higher significance than S2 
and S1

(2)	 Impedance predictors had higher IG scores than Admittance.
(3)	 Frequency predictors ( fn ) had a higher significance than impedance or Admittance predictors. Among the 

fn predictors, f0.8 (0.574) had the highest significance and f0.9 (0.43) had lowest significance.

Table 1.   Information gain (IG) scores for DS1, DS2 and DS3.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24321  | https://doi.org/10.1038/s41598-021-03674-1

www.nature.com/scientificreports/

(4)	 The effect of interfering ions and pH were consistent across all types of devices (S1, S2 and S3). For all 
datasets, IG scores for pH was 0.33 and interfering ion concentrations scores were 0.157.

Besides analyzing the impedance spectra for prominent features, our study can be used to design impedance 
sensing circuits specifically for a sensor. The model is capable of identifying and operating at specific sensing 
frequencies to continuously collect the most relevant information from a system.

Conclusions
We report a smart NH4

+ sensing system based on F-MWCNT/ZnO-NFs sensor and a ML model for the purpose 
of accurately correlating sensor impedance to NH4

+ concentrations. F-MWCNT/ZnO-NFs composites with 
varying ZnO:MWCNT ratio (S1, S2, and S3) were analyzed for their NH4

+ sensitivity. The machine learning 
based decision support tool which is the new frame of reference has been designed to interpret the features 
of impedance spectra and predict the real NH4

+ concentrations by mitigating the effects of non-linearity and 
impedance drifts. ML analysis has led to identification of dominant predictors of our sensing system. Our work 
has confirmed the possibility of integrating a custom ML module in an impedance sensing system in order to 
mitigate the detrimental effect of interference ions and pH on sensitivity and selectivity of F-MWCNT/ZnO-NF 
active layers. Different models such as kNN, random forest, neural network, Naïve Bayes and logistic regression 
support have been contrasted and discussed. Depending on the analyte concentration and the metal-oxide, the 
proposed model can be extended to most impedance-based sensing systems, although dominant features have 
to be reanalyzed using feature scores and feature transformation.
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