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Lung adenocarcinoma (LUAD), a malignant respiratory tumor with an extremely

poor prognosis, has troubled the medical community all over the world.

According to recent studies, fatty acid metabolism (FAM) and long non-

coding RNAs (lncRNAs) regulation have shown exciting results in tumor

therapy. In this study, the original LUAD patient data was obtained from the

TCGA database, and 12 FAM-related lncRNAs (AL390755.1, AC105020.6,

TMPO-AS1, AC016737.2, AC127070.2, LINC01281, AL589986.2, GAS6-DT,

AC078993.1, LINC02198, AC007032.1, and AL021026.1) that were highly

related to the progression of LUAD were finally identified through

bioinformatics analysis, and a risk score model for clinical reference was

constructed. The window explores the immunology and molecular

mechanism of LUAD, aiming to shed the hoping light on LUAD treatment.
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Introduction

Lung cancer accounts for the largest share of cancer-related deaths worldwide (Thai

et al., 2021). It is worth noting that lung adenocarcinoma (LUAD) accounts for up to 85%

of lung cancers and is the most common subspecies (Pao and Girard, 2011) (Nicholson

et al., 2021). Based on different molecular and pathological features, LUAD can be
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subdivided into various subtypes (Inamura, 2018). There are

differences and connections between different subtypes, but the

commonalities between them are high malignancy, poor

prognosis, and greater difficulty in early diagnosis (Blandin

Knight et al., 2017) (Rami-Porta et al., 2018). From the

perspective of treatment, the current treatment methods for

LUAD mainly include surgery (Zappa and Mousa, 2016),

immunotherapy (Hellmann et al., 2018), targeted therapy

(Arbour and Riely, 2017), etc. However, various treatment

methods are limited by the histology of LUAD, mutated

genes, and differences in clinical stages, and the prognosis of

patients is often not exactly (Zappa and Mousa, 2016). Coupled

with the low sensitivity of LUAD to radiotherapy (Zappa and

Mousa, 2016) and the gradual emergence of resistance to targeted

therapy drugs (Remon et al., 2021), we are forced to have a deeper

understanding of LUAD.

Tumor cells are often in an abnormal metabolic

environment, depending on the imbalance between the rapid

proliferation of tumor cells and nutrient angiogenesis (Yi et al.,

2018; Han et al., 2021). Modern thinking holds that tumor cells

need to reprogram their metabolism to meet increased metabolic

and synthetic demands in conjunction with their own growth

needs, while simultaneously reducing the negative effects of

oxidative stress during growth (Martínez-Reyes and Chandel,

2021). Collectively, tumor metabolic reprogramming is

significant (Hanahan and Weinberg, 2011), and the change of

aerobic glycolysis (Warburg effect), glutamine metabolism, and

one-carbon de novo synthesis of fatty acids also confer the ability

of tumors to rapidly progress in a relatively nutrient-stressed

tumor microenvironment (TME) (Cluntun et al., 2017; Newman

and Maddocks, 2017; Ashton et al., 2018; Zhao et al., 2020; Li

et al., 2021a). Interestingly, changes in the metabolic level of

tumor cells often lead to changes in the components of the TME,

thereby having a significant impact on affecting the biological

effects of other cellular components of the TME, and these

changes will ultimately affect tumor progression (Dey et al.,

2021) (Broadfield et al., 2021). It is worth noting that fatty

acid metabolism (FAM), as one of the important pathways of

the three major nutrients metabolism, can be coupled with a

variety of metabolic pathways and participate in cell membrane

formation, intracellular signal transduction, hormone secretion,

and other processes, and is related with the disease and health

state in human (Kimura et al., 2020) (Bogie et al., 2020). At the

same time, the relationship between FAM and cancer

progression has received increasing attention (Koundouros

and Poulogiannis, 2020) (Bergers and Fendt, 2021). long non-

coding RNAs (lncRNAs) are a class of RNAs with regulatory

functions, and they have been extensively studied in the past

decade (Ali and Grote, 2020). Previous studies have illustrated

that lncRNAs are vital in cell cycle regulation (Jiang et al., 2021),

metabolic regulation (Tan et al., 2021), and even the immune

system (Fok et al., 2018), and have been recognized as playing a

significant role in cancer progression (Wu et al., 2020).

Here, we constructed a 12 FAM related-lncRNAs signature

risk model based on LUAD raw data in TCGA by bioinformatic

methods. Further immunological and functional analysis

indicated the possible mechanism of action of these lncRNAs

in LUAD and their impact on the first immunotherapy of LUAD.

And at the end of the study, polymerase chain reaction (PCR)

technology was conducted to verify the expression of the

screened lncRNAs.

Materials and methods

Data preparation and processing

All kinds of LUAD data were obtained from the TCGA

database (http://portal.gdc.cancer.gov/) (Blum et al., 2018).

With previous reports about FAM-related genes and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases

(Kanehisa et al., 2017), 1879 FAM-related lncRNAs were

obtained by using the correlation test between the FAM-

related genes and lncRNAs with R. The thresholds were set

as |cor|>0.4 and p < 0.001. LUAD patients without overall

survival (OS) values or whose OS was within 30 days were

excluded. Four hundred and ninety samples were divided into

training and testing sets randomly. 246 samples were

contained in the training set, while contained 244 in the

testing set.

Establishment and validation of the risk
signature

With survival information, we screened the prognosis of

FAM-related lncRNAs from 1879 differently expressed lncRNAs

(p < 0.05). Univariate Cox regression analysis was used to screen

lncRNAs related to survival. LASSO regression was performed by

R package “glmnet” (version 4.1-3) with 10-fold cross-validation,

1,000 cycles. With the Multifactor Cox regression, a 12 FAM-

related lncRNA risk model was finally built.

The risk score was calculated by the following formula:

Risk score � ∑n

k�1Coef(ln cRNA)* exp(ln cRNAk)

where Coef is the coefficient and exp is the expression level of

lncRNA.

The mean score was regarded as a standard to distinguish

LUAD subgroups.

Model performance estimation

The univariate and multivariate Cox (by “glment,”

“survminer,” and “survival” R packages) regression analyses

were developed to evaluate the independent predictive power
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of risk models. The 1-,3-, and 5-year ROC curves were used to

evaluate the effect of prognostic prediction. Principal component

analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE) analysis were further used to verify the

risk model.

Nomogram and calibration

A nomogram was established based on our risk score model

and various clinical characteristics by the “rms” R package. The

1-, 3-, and 5-year OS and ROC curves were performed to

illustrate the actual consistency of the model with the practical.

The investigation of the TME and
immunotherapy

The mutation data was the sum and analyzed by R package

maftools. The infiltration status of immune cells, TME scores,

and immune checkpoints activation between two different

subgroups were presented via CIBERSORT and ssGSEA

algorithm and visualized by the “ggpubr” R package. The

Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was also used to predict the likelihood of the

immunotherapeutic response, Immunotherapeutic

treatment data from the website (http://tide.dfci.harvard.

edu/) (Wang et al., 2020). The data of the immune subtype

was downloaded on TIMER (http://timer.comp-genomics.

org/) (Li et al., 2017).

Exploration of the model in the clinical
treatment

The R package “pRRophetic” was used to evaluate the

therapy response of each LUAD patient on Genomics of Drug

Sensitivity in Cancer (GDSC) (Yang et al., 2013). Drug sensitivity

analyses are conducted online (https://discover.nci.nih.gov/

cellminer/home.do).

Functional analysis

Differentially expressed genes (DEGs) between two groups

were identified by using the package “limma” following the criteria

(|Log2FC| > 1.0, p-value < 0.05). GO and KEGG enrichment

analysis was applied using the package “clusterProfiler” in R. GSEA

analysis was conducted to further screen functional pathways by

using software GSEA 4.2.1 (http://www.gesa-msigdb.org/gsea/

index,jsp) (Powers et al., 2018). Furthermore, the competitive

endogenous RNA (ceRNA) network between lncRNAs and

mRNAs was visualized by Cytoscape (version 3.6.1).

RNA extraction and real-time
quantitative PCR

We extracted total RNA from the samples. We synthesized

cDNA using a ServicebioRT First Strand cDNA Synthesis

Kit (Applied Servicebio, China). Then, cDNA was subjected

to a Real-Time Quantitative Polymerase Chain Reaction

(RT-qPCR) by the bio-rad CFX (Applied Bio-rad, China).

We used b-actin mRNA as an internal reference to

normalize the nine lncRNAs by the comparative Ct

method. All three cell lines (H1299, A549, and BEAS-2B)

were purchased from Procell. The ambient temperature was

controlled at 37°C and the CO2 concentration was 5%. The

three cell lines were added to a 1640 medium containing 10%

fetal bovine serum and incubated in a constant temperature

incubator.

Statistical analysis

All statistical analyses were conducted in the R software

(Version 4.1.1). Wilcoxon rank-sum test was used to compare the

difference between the two groups. K-W test was performed to

compare three or more groups. Kaplan-Meier analysis was used

to evaluate the survival differences between the low- and high-

risk score groups.

If there is no special description for the above method,

statistical significance is defined as a p-value < 0.05.

Results

FAM-related lncRNAs in LUAD patients

The detailed process is shown in Figure 1. A total of

490 LUAD patients were included in this analysis, with

their clinical features in Table 1. 92 FAM-related genes

(Appendix D1) were obtained from previous research and

the KEGG database. By using Pearson correlation analysis,

1879 FAM-related lncRNAs were discerned as FAM lncRNAs

(Figure 2A). The relationship data between FAM-related

genes and lncRNAs were shown in Appendix D2, and their

correlation was shown in (Figure 2B) (Part of fatty acids

metabolism-related genes were selected for display and

Supplementary Figure S1 for all).

Construction and validation of a
prognostic model

Here, 164 FAM-related lncRNAs were identified through

univariate COX regression analysis (Figure 3A, results whose p <
0.01 were selected to show and all results were available in
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Supplementary Figure S2. The LASSO regression focused on

26 related lncRNAs while avoiding overfitting (Figures 3B,C).

Finally, 12 FAM-related lncRNAs (Table 2) were used to

construct this prognostic model (Figure 3D).

The risk score was evaluated as: risk score =

AL390755.1×(−1.54813752178063)+

AC105020.6×(−2.54915590358082)+ TMPO-

AS1×(0.645364340734862)+ AC016737.2×(−1.62529028103815)+

FIGURE 1
The entire analytical process of the study.

TABLE 1 The clinical characteristics of included samples.

Covariates Type Total Test Train p-value

Age ≤65 231 (47.14%) 111 (45.49%) 120 (48.78%) 0.5789

>65 249 (50.82%) 127 (52.05%) 122 (49.59%)

unknown 10 (2.04%) 6 (2.46%) 4 (1.63%)

Gender FEMALE 262 (53.47%) 136 (55.74%) 126 (51.22%) 0.3618

MALE 228 (46.53%) 108 (44.26%) 120 (48.78%)

Stage Stage I-II 378 (77.14%) 184 (37.55%) 194 (39.59%) 0.8546

Stage III-IV 69 (21.22%) 55 (11.22%) 49 (10%)

unknown 8 (1.63%) 5 (2.05%) 3 (1.22%)

T T1-2 426 (86.94%) 210 (42.86%) 216 (44.08%) 0.7023

T3-4 61 (12.45%) 32 (6.53%) 29 (5.92%)

unknown 3 (0.61%) 2 (0.82%) 1 (0.41%)

M M0 324 (66.12%) 165 (67.62%) 159 (64.63%) 0.7872

M1 24 (4.9%) 11 (4.51%) 13 (5.28%)

unknown 142 (28.98%) 68 (27.87%) 74 (30.08%)

N N0 317 (64.69%) 157 (64.34%) 160 (65.04%) 0.3002

N1-3 162 (33.06%) 82 (16.73%) 80 (16.33%)

unknown 11 (2.24%) 5 (2.05%) 6 (2.44%)
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FIGURE 2
Selection of FAM-related lncRNAs in LUAD patients. (A) Sankey relation diagram for target lncRNAs. (B) Heatmap of the correlation between
FAM-related genes and the 12 prognostic FAM-related lncRNAs in TCGA entire set.
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AC127070.2×(−1.1290227830944)+

LINC01281×(−1.21908027803503)+ AL589986.2×(1.97638163310763)+

GAS6-DT×(1.04880809216376)+ AC078993.1×(0.651117829305934)+

LINC02198×(−0.520620804335338)+

AC007032.1×(−1.43127474226429)+

AL021026.1×(−1.55257545730318)

FIGURE 3
Prognostic model in training set validation. (A) Univariate Cox regression analysis. (B) The LASSO coefficient profile. (C) The 10-fold cross-
validation for variable selection in the LASSO model. (D) Multivariate Cox regression analysis and 12 lncRNAs were finally selected. (E) Patient risk
score distribution for the training set. (F) Survival status time between two risk groups in the training set. (G) 12 FAM-related lncRNAs distributed for
each patient in the training set. (H) OS curve of the training set.
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The median value of the risk score was the standard to divide

LUAD samples. All samples were divided into two low-/high-risk

groups. The distribution of risk grades and survival information

between the two groups is shown in (Figures 3E,F). The relative

expression standards of the 12 FAM-related lncRNAs for each

patient are shown in (Figure 3G). The survival analysis

demonstrated that the OS of the low-risk group was longer

than that of the high-risk group (Figure 3H p < 0.001).

We calculated risk scores for LUAD patients to validate the

predictive capability of the established model by using the uniform

formula. Figure 4 shows the diffusion of risk scores, survival status

and time, and expression of the FAM-related lncRNAs in the testing

set (Figures 4A–C) and the entire set (Figures 4E–G). The K-M

survival curve based on the testing set and the entire set also showed

that the patients in the low-risk group had a longer OS than those in

the high-risk group (Figures 4D,H p < 0.05).

PCA

Heterogeneity between the two risk subgroups in the entry

set and test set was examined by PCA analysis. The whole gene

expression profiles, 92 FAM genes, as well as our risk model was

included (Figure 5). The analysis results according to the risk

model we constructed showed that the low- and high-risk groups

had different distributions (Figures 5C–E). This shows that the

risk model can distinguish between low- and high-risk groups.

Nomogram

The hazard ratio (HR) of the risk score and 95% confidence

interval (CI) were 1.189 and 1.140–1.240 (p < 0.001), respectively,

in univariate Cox (uni-Cox) regression while 1.176 and 1.126–1.229

(p < 0.001), respectively, in multivariate Cox (multi-Cox) regression

(Figures 6A,B). Univariate Cox regression analysis indicated that

disease stage, T stage, M stage, and risk score, were related to

prognosis (Figure 6A, p < 0.001). Furthermore, multivariate Cox

regression analysis presented that the risk score was an independent

factor affecting prognosis (Figure 6B, p < 0.001). Therefore, we are

reasonably confident that risk models based on FAM-related

lncRNAs have a significant impact on the survival and prognosis

of LUAD patients and are independent prognostic factors. To better

predict the 1-,3-, and 5-year survival for LUAD patients, we

established a nomogram combining gender, age, stage, TNM,

and risk score (Figure 6C). Using calibration curve analysis, the

prediction accuracy of the nomogram was assessed (Figure 6D).

Assessment of the risk model

ROC curves were utilized to evaluate the sensitivity and

specificity of the model on the prognosis. The AUC (1-, 3-, and

5-year) for the train set were 0.805, 0.779, and 0.845, of the test set

were 0.645, 0.576, and 0.483, and of the entire set were 0.722, 0.664,

and 0.688, respectively (Figures 7A–C). The AUC value illustrated

that the prognostic risk model of the 12 FAM-related lncRNAs for

LUAD was comparatively dependable (Figures 7D,E).

Figures 7F–I showed the OS of patients after sub-clustering

using clinical characteristics based on the risk score. Like the

previous results, the OS of the low-risk group was better than that

of the high-risk group.

Stratification analysis of the risk model in
immune features

The infiltration status of immune cells was evaluated by the

CIBERSORT algorithm. The proportions of 22 immune cells in

each sample were shown in Figures 8A,B. The high-risk group

TABLE 2 The 12 FAM-related prognostic lncRNAs.\

Id Coef HR HR.95L HR.95H p-value

AL390755.1 −1.548137522 0.196552779 0.049061185 0.787445217 0.021594278

AC105020.6 −2.549155904 0.031057225 0.004725325 0.204123802 0.000301471

TMPO-AS1 0.645364341 1.594883853 1.061457403 2.396379259 0.024635498

AC016737.2 −1.625290281 0.165930576 0.040164005 0.685513212 0.013077694

AC127070.2 −1.129022783 0.338535109 0.147220182 0.778466772 0.010790501

LINC01281 −1.219080278 0.243707993 0.075401385 0.787698871 0.018341205

AL589986.2 1.976381633 2.768161634 1.121511954 6.832489666 0.027193217

GAS6-DT 1.048808092 1.527058692 1.015808552 2.295617855 0.041813182

AC078993.1 0.651117829 2.36441459 1.252924785 4.461924947 0.007910449

LINC02198 −0.520620804 0.516815504 0.301364474 0.886296453 0.016458722

AC007032.1 −1.431274742 0.371231383 0.143127389 0.9628677 0.041572162

AL021026.1 −1.552575457 0.060826538 0.007094814 0.521489027 0.010653806
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FIGURE 4
Prognostic value of risk score model in testing and entire sets. (A–D) Distribution of risk score, survival status, 12 hub lncRNA expression levels,
and K-M survival curve (OS) in the testing set. (E–H)Distribution of risk score, survival status, 12 hub lncRNA expression levels, and K-M survival curve
(OS) in the entire set.
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was associated with significantly lower levels of B cells, T cells

follicular helper, and Tregs, but a higher level of eosinophils and

neutrophils (Figure 8C). Subsequently, the results of the ssGSEA

algorithm showed that the high-risk group had a lower mean

infiltration level than the low-risk group, with T helper cells

showing higher infiltration levels in both risk groups (Figures

8D,E). We obtained similar results in correlation analysis of

immune responses, and overall, patients in the high-risk group

had a lower immune response. In addition, LUAD patients in the

high-risk group had remarkably lower stromal, immune, and

ESTIMATE scores (Figures 8F–H).

We then analyzed the mutation data. Mutations were stratified

according to the constructed risk model. The results of mutations

analysis with those top 20 driver genes are shown in Figures 9A,B.

A higher level of TP53 mutations was correlated with a worse

survival state. The TMB in the high-risk group exceeded that in the

low-risk group, showing that the FAM-related risk model classifier

index had a high correlation with TMB (Figure 9C). Therefore, we

tested the correlation between FAM-related lncRNAs and TMB

based on the risk model using Spearman correlation analysis

(Figure 9D r = 0.13, p = 0.0056). The results suggested a strong

correlation between the FAM-based classifier index and the TMB.

We further investigated the impact of TMB status on the prognosis

of LUAD patients by analyzing the survival of the high and low

TMB groups. However, the survival curves were similar in both

groups, indicating that TMB failed to differentiate survival in

LUAD (Figure 9E, p > 0.05). Besides, the survival outcome

(OS) predictive validity of TMB was conducted, which shows a

weaker predictive power than our risk model (Figure 9F, p < 0.05).

The results show that our model may predict better than the TMB.

Furthermore, according to TIMER2.0 data (Appendix D3), we

divided all samples into different immune subtypes (Figure 9G).

FAM genes, 12 FAM-related lncRNAs, and risk types were included

in the Sankey network (Figure 9H). The above results illustrate the

high correlation of these 12 FAM-related lncRNAs with LUAD

immunity from another dimension.

FIGURE 5
Principal component analysis. (A,B) 2D PCA in training and the entire set. (C–E) PCA between two risk groups for entire gene expression profiles,
92 FAM related-genes, and profiles of the 12 FAM-related lncRNAs as an entire set.
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Clinical treatment and drug sensitivity
analysis

Given the differences in the immune microenvironment

between these two risk groups, we hypothesized that these

two groups might have different responses to drugs. We then

used the pRophetic algorithm to estimate treatment response

against potential drugs in our model based on the IC50 of each

sample in the GDSC database. The correlation between CI50 and

different risk groups were shown in Figure 10A. The IC50s for

AP.24534, ATRA, AS601245, and ABT.888 were significantly

higher in the low-risk group (Figure 10A), suggesting that

exposure to these drugs may be more appropriate for high-

risk patients. Then those model-related lncRNAs and

immunotherapeutic biomarkers were pooled to explore their

relationship. We were pleasantly surprised to find that

TMPO-AS1 was related to the sensitivity of multiple drugs

(Figure 10B, the entire result was available in Appendix D4).

Unsurprisingly, the high-risk group may effect better in

immunotherapy, which also means that our model might

serve as a potential signature for predicting TIDE

(Figure 10C).

Functional analysis

GO analysis illustrated that these risk model-related genes

mainly affect the modulation of axoneme assembly, motile

FIGURE 6
Construction and validation of the nomogram. (A) Univariate Cox regression analysis indicated that disease stage, T stage, M stage, and risk
score, were related to prognosis (p < 0.001) (B)Multivariate Cox regression analysis presented that the risk score was an independent factor affecting
prognosis (p < 0.001). (C) The nomogram predicts the probability of the 1-, 3-, and 5-year OS. (D) The calibration plot.
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FIGURE 7
Assessment of the prognostic risk model. (A–C) The 1-, 3-, and 5-year ROC curves of the training, testing set, and entire set. (D) ROC curves of
all included features. (E)CI of the risk score and clinical characteristics. (F–I)OS curve of difference clustered by LUAD clinical features between two
risk groups in the entire set.
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FIGURE 8
Stratification Analysis of the FAM-related lncRNA prognostic risk score in immune features. (A–C) Heatmap, bar chart, and relative infiltrating
proportion of 22 tumor-infiltrating immune cell types in two risk groups. (D,E) The score of immune functions comparing two risk groups by ssGSEA
or ssGSEA score. (F–H) The comparison of immune-related scores between high- and low-risk groups.
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cilium, chemokine activity, and so on (Figure 11A). KEGG analysis

illustrated that these genes were involved in multiple immune

pathways such as the chemokine signaling pathway, B cell receptor

signaling pathway, and so on (Figures 11B,C). KEGG analysis

results were shown in Figures 11D,E. Pathways such as aminoacyl

tRNAbiosynthesis and biosynthesis of unsaturated fatty acids were

significantly related to the high-risk group, while pathways such as

allograft rejection and asthma were significantly enriched in the

FIGURE 9
Exploration of TMB and lncRNAs networks visualization. (A,B) 20 genes with high mutation frequencies in different risk subgroups. (C) TMB
difference in two risk groups. (D) The correlation between risk score and TMB. (E) K-M curves of the patient OS in the high-TMB and low-TMB groups
in the entire set. (F) The survival outcome predictive validity of TMB. (G) The correlation between risk score and immune subtype. (H) Sankey diagram:
the connection degree between the FAM-related genes, FAM-related lncRNAs, and risk types.
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FIGURE 10
The investigation of tumor immune factors and immunotherapy. (A) The immunotherapy prediction of high-risk and low-risk groups. (B) The
correlation between 12 FAM-related lncRNAs and drugs. (C) TIDE prediction difference in the high-risk and low-risk patients.
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FIGURE 11
Functional analysis. (A) Result of GO functional enrichment (top 10). (B) KEGG enrichment terms (top 30). (C) Circle diagram in KEGG analysis.
(D) GSEA of the top 10 pathways significantly enriched in the high-risk group. (E) GSEA of the top 10 pathways in the low-risk group. (F) 12 FAM-
related lncRNAs and differential FAM genes networks.
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low-risk group. In addition, we also established an interaction

network for these key lncRNAs (Figure 11F).

Verification of expression level in vitro on
hub lncRNAs

To verify the expression level of 12 FAM-related lncRNAs in

LUAD cells, we used RT-qPCR analysis to detect BEAS-2B and

LUAD cells, including A549 and H1299 (Figure 12).

Unfortunately, the sequences of three lncRNAs (AC105020.6,

AC127070.2, AC078993.1) did not have suitable primers, so we

only verified the expression levels of the remaining nine FAM-

related lncRNAs (The PCR primer sequences were available in

Table 3). Among these lncRNAs, we found that the expression of

GAS6-DT in the A549 and H1299 cell lines was significantly

higher than that in the BEAS-2B cell line, and TMPO-AS1 was

significantly higher in the H1299 cell line. Combined with the

FIGURE 12
Expression of nine lncRNAs from the risk model in LUAD cell lines and bronchial epithelial cells.
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previous research results, their high expression was associated

with a poorer prognosis, with HR < 1, suggesting that GAS6-DT

and TMPO-AS1 genes may be a risk factor in LUAD. The

expression levels of AL021026.1 and LINC01281 in the

A549 cell line were significantly lower than those in the

BEAS-2B cell line, and their average expression in the

H1299 cell line was lower than that in BEAS-2B, but the

difference was not significant (p > 0.05). Model coefficients

and patient outcomes are considered that they may be

protective factors for LUAD. Interestingly, we also noticed

that LINC02198, AC007032.1, AL589986.2, and

AL390755.1 were significantly overexpressed in the H1299 cell

line and significantly underexpressed in the A549 cell line, while

AC016737.2 was significantly overexpressed in H1299 cell line.

The high expression contradicts the result of its coefficient of less

than 0 in the risk model.

Discussion

With the deepening of tumor research, the role of metabolic

reprogramming in tumors cannot be underestimated any longer

(Faubert et al., 2020). Simply, tumor cells are different from

normal tissue cells, when tumor cells are ready to colonize other

organs, they need to compete with other normal cells for the

living environment and nutrients. Therefore, the metabolic

demands of tumor cells are regulated to meet the needs of

survival in the current environment (Schild et al., 2018).

Based on the above characteristics, the metabolic

reprogramming of tumor cells is also regarded as a hallmark

of tumor development (Ward and Thompson, 2012). In addition,

more and more evidence shows that in addition to protein-

coding RNA mutations, mutations and abnormal modifications

of non-coding RNAs represented by lncRNAs were also vital in

tumor progression (Bhan et al., 2017). Therefore, these non-

coding RNAs also play a key role in tumor progression. It is

regarded as a new marker for tumor diagnosis or a new

therapeutic target (Kong et al., 2019; Wang et al., 2019; Xing

et al., 2021). Here, we cannot help but want to explore whether

and how lncRNA can interact with the lipid metabolism

reprogramming of tumor cells, and how the interaction

between the two affects the process of LUAD and thus affects

the prognosis and survival of patients. At the same time, it is

hoped that more powerful biomarkers and therapeutic targets

can be found for the clinical diagnosis and treatment of LUAD.

In this study, LUAD data were obtained from the TCGA

database, while FAM-related lncRNA data were downloaded

from the KEGG database. After differential gene analysis,

1879 differential lncRNAs related to FAM were found, and

after survival analysis, univariate/multifactor and LASSO Cox

regression. A 12-hub FAM-related lncRNA prognostic model

with high reliability and validity was constructed. Further

exploration was performed to figure out how those hub

lncRNAs were involved in LUAD progression.

Among the 12 key FAM-related genes we finally screened

for risk score modeling, most lncRNAs have not been studied,

but some lncRNAs have also appeared in the construction of

prognosis prediction models for different diseases. For

example, AL390755.1 was used to construct a prognostic

prediction model for low-grade glioblastoma, and similar

LINC01281, AL589986.2, and AC007032.1 were also used

for laryngeal cancer (Zhang et al., 2019), cervical cancer

(Ye et al., 2021), dilated cardiomyopathy (Zhang et al.,

2020) and proliferative vitreoretinopathy respectively (Ni

et al., 2021), which were also considered a potential

diagnostic marker. At the same time, we also noticed that

GAS6-DT and TMPO-AS1 have been shown to have

regulatory axes in previous studies, which can interact with

another coding/non-coding RNAs, and these two lncRNAs

were proved to be possible risk factors for LUAD in our PCR

validation. For example, the study of Zilin Li et al. pointed out

that in liver cancer cells with incomplete radiofrequency

ablation, the expression of GAS6-DT is often up-regulated

and can competitively inhibit the binding of microRNA-3619-

5p to ARL2, thereby promoting the proliferation and

migration of liver cancer cells (Li et al., 2021b). The

TABLE 3 The PCR primer sequences.

Gene F 59-39 R 59-39

TMPO-AS1 5ʹ-CAGACCTCTACAATCGGGCACTTA-3′ 5ʹ-ATTCTTGCGGGTGGTGGGAT-3′
AC016737.2 5ʹ-CTGGAGATGGACTTTGGCT-3′ 5ʹ-CTTGTGAGGTGGCTGTTATTATC-3′
LINC01281 5ʹ-CAGCCCAGAGTGAAGATAAGAATAC-3′ 5ʹ-GAAGCCACCAGCAGAATGACA-3′
GAS6-DT 5ʹ-TAGCTATTATTTCCTAAGGGTTCCAG-3′ 5ʹ-TCCATTAACTCTCTTCTCCAAAACTACA-3′
LINC02198 5ʹ-ACTTCTGTCACCCCCTTGATTACC-3′ 5ʹ-CCAAAGACTGGTCCTCCTCTATCC-3′
AC007032.1 5ʹ-TGATGACTTCACCCAAATACAGACC-3′ 5ʹ-ACTTTTTCCTGGCTACTTTTATCCG-3′
AL021026.1 5ʹ-ATATCTGAGCCTGAGTTTCCCATTC-3′ 5ʹ-TTCCATAGCCGCCAATACAAGC-3′
AL390755.1 5ʹ-GGAAAGCTATGAGGAAGAAGAAACAGA-3′ 5ʹ-CAACCTGTGCTGTGATGAATGG-3′
AL589986.2 5ʹ-CCTGATACTGGTTTTTCTACATGCTTC-3′ 5ʹ-TCCAAGGTTGTGCTATGGTAATCTG-3′
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relevant research on TMPO-AS1 is relatively sufficient. The

study of Xiaoqian Mu et al. (Mu et al., 2020) pointed out that

TMPO-AS1 is highly expressed in LUAD samples and

knocking down this gene negatively regulates the cell cycle

of tumors and reduces the invasiveness of tumors. Targeted

binding to TMPO-AS1 plays a role similar to gene knockout.

A similar study by Qiu L et al. (Li et al., 2021c) also pointed out

that TMPO-AS1 can also interact with miR-143-3p, ultimately

affecting the expression of CDK1 and regulating the cell cycle

of LUAD. Interestingly, the study by Jie Yao et al. (Yao et al.,

2021) pointed out that TMPO-AS1 is also involved in the

regulation of iron metabolism in LUAD.

When conducting drug sensitivity analysis, we were

pleasantly surprised to find that the expression level of

TMPO-AS1 is highly correlated with the sensitivity of

various drugs, including ifosfamide, thiotepa, irinotecan,

and other antitumor drugs that have been approved for

clinical LUAD use. Among them, the expression level of

this lncRNA is highly positively correlated with the CI50 of

ifosfamide, which means that the higher the expression level

of TMPO-AS1 (which also means a higher risk score), the

worse the effect of ifosfamide for LUAD treatment. At the

same time, we also noticed that trametinib showed a negative

correlation. The experimental study by Toshiyuki Sumi et al.

indicated that trametinib can reduce survivin expression in

RB1+/KRAS-mutated LUAD cells, thereby improving

prognosis (Sumi et al., 2018), and there was a similar case

study by Maurício Fernando Silva Almeida Ribeiro et al.

(Ribeiro et al., 2021). However, the latest clinical study by

Luo J, Makhnin A et al. pointed out that in the drug-resistant

EGFR-mutant LUAD that had previously appeared with a

tyrosine kinase inhibitor, the addition of trametinib could not

reverse the sensitivity of the tumor to the drug (Luo et al.,

2021), which means that TMPO-AS1 may be a potential target

to solve this problem, which is worthy of further study.

In addition, in the PCR validation of these hub lncRNAs, we

found that the expression levels of the four lncRNAs LINC02198,

AC007032.1, AL589986.2, and AL390755.1 were not consistent

in the H1299 and A549 cell lines, and they were all expressed in

the H1299 cell line. Moderately high expression, but low

expression in the A549 cell line. We speculate that this may

be related to the differences in the genomes of the two cells

themselves. H1299 is a lymph node-derived human NSCLC cell

line (Giaccone et al., 1992), while A549 cells are human

adenocarcinoma alveolar basal epithelial cells (Foster et al.,

1998). The different sources of the two may be one of the

possibilities leading to this contradiction. Secondly, the

H1299 cell line is considered to be a p53 wild-type cell, while

the A549 is a p53-null cell (Dorandish et al., 2021). Several

studies have also pointed to heterogeneity between the two types

of cells, and our findings may add some new evidence to this

topic (Yang et al., 2018) (Sidorova and Petrikaitė, 2022). In

addition, we also noticed that AC016737.2 was significantly

highly expressed in the H1299 cell line, but the coefficient of

this lncRNA in the risk model was negative. This contradiction

may require more basic experiments to explain.

Furthermore, with the deepening of research, there is a lot

of evidence that there is a close relationship between the

metabolic reprogramming of tumor cells and the tumor

immune response (Cronin et al., 2018). In a broad sense,

lipid metabolites include phospholipids, fatty acids, and

cholesterol, and the impact of FAM on immune cells is

particularly well-studied, for example, during the

transformation of monocytes like neutrophils, the demand

for fatty acid synthesis is significantly increased (den Hartigh

et al., 2010). In regulatory T cells (Tregs), there is high fatty acid

oxidation for energy, but in effector T cells, this oxidative

activity is inhibited, which also maintains the relative

stability of the immune system (Amersfoort et al., 2021).

When we jointly analyzed the immune characteristics of

LUAD samples of different risk groups, we found that the

immune characteristics of the high-risk group were all

suppressed compared with the low-risk group. At the level of

immune cell infiltration, T helper cells (CD4+ T cells) were

infiltrated to a higher degree in both high and low-risk groups,

and there were significant differences between groups. Previous

studies have pointed out that FAM is closely related to the

phenotypic differentiation of T helper cells (Almeida et al.,

2016), but our study found that Th1/Th2 subtypes did not have

significant infiltration differences between the two risk groups,

so we guessed that the lipid metabolism of LUAD is important.

Programming may have more effect on the shift of T helper cells

towards Th17. Recent work by Panagiota Mamareli indicated

that de novo synthesis of fatty acids is necessary for the

differentiation of the Th17 phenotype (Mamareli et al.,

2021), In contrast, Ran You et al. observed that TIL in early-

stage NSCLC was biased towards IL17A expression, whereas

Th17 cells were reduced in tumor-infiltrating regional lymph

nodes in advanced NSCLC (You et al., 2018). The clinical study

by Chen G et al. also showed that Th17 and IL-17 increased in

the peripheral blood of LUAD patients (Chen et al., 2020).

Interestingly, in the functional enrichment analysis, we found

that the IL-17 signaling pathway was enriched to the top

position, which confirmed our conjecture to a certain extent.

All the above evidence suggested that lipid metabolism

reprogramming in LUAD may lead to the differentiation of

T helper cells inclined towards Th17, which affects the LUAD

process.

Interestingly, in the functional enrichment analysis, we

found that the IL-17 signaling pathway was enriched to the

top position, which confirmed our conjecture to a certain

extent.

Overall, based on the lncRNA regulation of lipid

metabolism in LUAD, we constructed a prognostic

prediction model with good prediction results, and the

model has high reliability and validity. In addition, we also
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conducted a preliminary study on how these key lncRNAs

participate in the LUAD process and affect LUAD

immunotherapy. Everything we do aims to improve the

understanding of LUAD and shed a hoping light on early

clinical diagnosis and treatment of LUAD.

Limitations

Of course, almost all studies face certain challenges of

limitations. Our study is no exception. First, we need to

complete further validation experiments to provide reliable

support for this study. Second, traditional statistical analysis

methods may be of limited value in building and assessing

prognostic risk models. We hope to open the door for lung

adenocarcinoma research, and more questions to follow will

require more investigators to join the study.
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