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Abstract
Osteoporosis is a severe chronic skeletal disorder that increases the risks of disability and mortality; however, the mechanism of this
disease and the protein markers for prognosis of osteoporosis have not been well characterized. This study aims to characterize the
imbalanced serum proteostasis, the disturbed pathways, and potential serummarkers in osteoporosis by using a set of bioinformatic
analyses. In the present study, the large-scale proteomics datasets (PXD006464) were adopted from the Proteome Xchange
database and processed with MaxQuant. The differentially expressed serum proteins were identified. The biological process and
molecular function were analyzed. The protein–protein interactions and subnetwork modules were constructed. The signaling
pathways were enriched. We identified 209 upregulated and 230 downregulated serum proteins. The bioinformatic analyses
revealed a highly overlapped functional protein classification and the gene ontology terms between the upregulated and
downregulated protein groups. Protein–protein interactions and pathway analyses showed a high enrichment in protein synthesis,
inflammation, and immune response in the upregulated proteins, and cell adhesion and cytoskeleton regulation in the downregulated
proteins. Our findings greatly expand the current view of the roles of serum proteins in osteoporosis and shed light on the
understanding of its underlying mechanisms and the discovery of serum proteins as potential markers for the prognosis of
osteoporosis.

Abbreviations: BMD = bone mineral density, BMPs = bone morphogenetic proteins, GO = gene ontology, PPIs = protein–
protein interactions, TGF-b = transforming growth factor beta, TMT = tandem mass tag.
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1. Introduction

Osteoporosis is one of the most severe chronic skeletal disorders
in the world and featured by the loss of bone mineral density
(BMD).[1] It increases the risk of osteoporotic fracture, leading to
a high frequency of disability and mortality of osteoporotic
patients.[2]

The dynamic regulation of bone metabolisms ensures the bone
homeostasis, including bone resorption, osteoblast differentia-
tion, skeletal development, and bone formation.[3] Dysregulation
of this delicate process increases bone resorption and decreases
bone formation, therefore raising the occurrence of osteoporosis.
Many studies have investigated the processes of bone metabo-
lisms and the molecular features of osteoporosis. Zhu et al[4]

performed a profiling of cytosolic proteome with multiomics
techniques in Caucasianmale osteoporotic patients and identified
BMD-associated genes for the monocyte-mediated osteoporosis.
Despite that osteoporosis has been increasingly studied, the
mechanisms underlying low BMD and osteoporosis have not
been fully understood. Recently, circulating proteins have been
widely investigated and their biological significance is indicated
in modulation of bone metabolisms. Transforming growth
factor beta (TGF-b) is a multifunctional extracellular protein
that regulates bone remodeling, osteoblast proliferation and
differentiation, and bone formation.[5] Recent studies show a
dose-dependent manner of TGF-b in the regulation of bone
metabolisms. Low-dose TGF-b promotes differentiation of
osteoclast for bone formation, whereas high-dose TGF-b inhibits
the differentiation.[6,7] Another example is the bone morphoge-
netic proteins (BMPs), an important group of growth factors
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involved in bone metabolisms. BMP1, BMP2, and BMP4 induce
bone formation; however, BMP3 prevents osteoblast differentia-
tion and lowers bone density.[5] Some studies report that BMP2 is
required in postnatal bone development and formation and the
knockout of BMP2 in a mouse model led to frequent fractures
and difficulty in healing.[8] Other circulating proteins have also
been reported to significantly affect the bone metabolism.
ANXA2 facilitates the migration of monocyte from endothelium
to bone microenvironment.[9] TAGLN2 is relevant to osteoclast
differentiation for the regulation of bone formation and
resorption.[10,11] Several studies using omics technologies identi-
fied differential expression of extracellular proteins in various
levels, from mRNA, protein expression, to posttranslational
modifications, indicating a vital role of circulating proteins in the
regulation of BMD and osteoporosis.[4,12,13]

In this study, we compared our text-mining findings with a
public proteomics data in Proteome Xchange database
(PXD006464) and identified the differentially expressed serum
proteins in osteoporosis. Bioinformatic analyses were performed
to categorize the protein functional classifications, investigate the
gene ontology (GO) terms and the signaling pathways, and
analyze the protein–protein interactions (PPIs) networks and the
subnetwork modules. The regulation of cytoskeleton, extracellu-
lar matrix, biomineral tissue development, and skeletal develop-
ment was found closely related to osteoporosis. Interestingly,
some other pathways in immune system and cancers were also
found in the pathway enrichment. The bioinformatic analyses in
the current study unravel the disturbed serum proteostasis and
provide a systematic view of pathway alterations in osteoporosis,
providing a basis for the validation of functional regulators in
osteoporosis and for the construction of osteoporotic models. In
addition, this study conveys a molecular view for the under-
standing of the mechanism and a comprehensive framework for
discovering novel drug targets and biomarkers to improve the
diagnosis, prognosis, and treatment of osteoporosis.
2. Materials and methods

2.1. Text mining of key genes in osteoporosis

The key word for text mining was osteoporosis. All the related
protein names were extracted using an in-house R package
against the MEDLINE database (www.ncbi.nlm.nih.gov) of
literatures on life sciences and biomedical sciences. The
osteoporosis-related protein names were verified with the
GeneCards (www.genecards.org) and the subcellular localization
of these proteins was searched against the Universal Protein
Resource (Uniprot) database to ensure the hits are extracellular
or secreted proteins.[14]
2.2. Identification of differentially expressed serum
proteins

A large-scale 6-plex tandem mass tag (TMT)-labeled proteomics
raw data (Proteome Xchange database: PXD006463) from
osteoporotic patients was downloaded. The ethics committee or
institutional review board was not formed for this study because
we only acquired and analyzed the data from the public online
database, and we did not perform the experiments. The basic
characteristics of patients were summarized in the Supplemental
Table 1, http://links.lww.com/MD/E883. Data processing
was performed using MaxQuant 1.5.4.1 with an integrated
2

Andromeda search engine.[15] The MS/MS spectra were searched
against a SwissProt human database (downloaded from Uniprot
on January 2015) with the following parameters: 10ppm for
both precursor and fragment mass tolerance, full tryptic peptides
with maximal 2 missed cleavage, carbamidomethylation (C) as
static modification, and oxidation (M) as dynamic modification,
6-plex TMT was chosen as isobaric labels with 0.01 Da reporter
ion tolerance, and false discovery rate <1%. Corrected reporter
intensity provided byMaxQuant was used for quantification and
the ratio of protein expressions was calculated as the mean of the
osteoporotic samples over the mean of the controls. Two-tailed
Student t test was performed and P value less than .05 was
considered as statistically significant. Only the proteins with
P< .05 and fold changes greater than 50% (the ratio>1.5 or<
0.67) were considered as the differentially expressed serum
proteins and used for following analyses.
2.3. Gene ontology analysis, pathway enrichment, and
protein–protein interactions

Heatmap and hierarchical clustering of the differentially
expressed proteins were performed with R programing language.
PANTHER classification system was used to perform protein
functional classifications and GO term enrichment .[16] PPIs
network was analyzed using the online tool STRING with the
highest confidence (interaction score >0.9).[17] The modules of
PPI subnetworks were also analyzed and displayed in the
Cytoscape.[18] The signaling pathways were enriched against
KEGG pathway database using DAVID and only the pathways
with more than 2 hits and P< .05 (Benjamini-Hochberg
Procedure) were displayed.[19,20]
3. Results

3.1. Identification of differentially expressed serum
proteins

To better characterize and evaluate the serum molecular features
of osteoporosis, a total of 3236 proteins associated with
osteoporosis were initially identified using a text-mining
approach using our in-house R package. Subsequently, 2459
proteins were filtered out by searching against GeneCards for
osteoporotic correlation and Unitprot for subcellular localiza-
tion. The MaxQuant analysis of the publicly available proteo-
mics data identified 1360 proteins. When comparing the search
results, 651 proteins were shared by both protein lists (Fig. 1A), in
which 209 proteins were significantly upregulated and 230
downregulated in osteoporosis (Fig. 1B and Supplemental
Table 2, http://links.lww.com/MD/E884). This profiling result
indicates the homeostasis of serum proteome has been signifi-
cantly disturbed in osteoporotic patients when comparedwith the
healthy individuals. To validate these differentially expressed
proteins, we performed a quantitative analysis using 2 publicly
available mRNA microarray datasets (GSE56815 and
GSE80614). In total, 80 of the differentially expressed proteins
were validated (P< .05 and ratio >1.5 or<0.67) (Supplemental
Table 3, http://links.lww.com/MD/E885).

3.2. Functional classification and gene ontology analysis

To investigate the functional categories of these differentially
expressed proteins in osteoporosis, a protein classification and
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Figure 1. Identification of the differentially expressed serum proteins in osteoporosis (A). A Venn diagram shows that 651 osteoporosis-related serum proteins
were overlapped between the filtered text-mining result and proteomics result, in which 439 proteins were differentially expressed (B).

Lv et al. Medicine (2020) 99:39 www.md-journal.com
GO term analysis was performed using the PANTHER
classification system.[16] The serum proteins were first catego-
rized based on their functions. The results showed that both the
upregulated and downregulated serum proteins have more than a
dozen of functional categories. The top 3 enriched categories in
the upregulated proteins are nucleic acid binding, enzyme
modulator, and hydrolase, while the top 3 enriched categories
in the downregulated proteins are hydrolase, enzyme modulator,
and cytoskeletal protein (Fig. 2 A and B). This is functionally
controversial as the enzyme modulator and hydrolase groups
were upregulated and downregulated at the same time. One
possible explanation for this observation is the functional
specificities of these proteases cannot be unambiguously
differentiated and classified by using the general terms of protein
functions. To further explore the differences between the shared
categories in both upregulated and downregulated proteins,
subgroup analyses of the top 3 categories were applied. Nucleic
acid binding protein group was significantly upregulated in the
osteoporotic patient samples and was not enriched in the
downregulated proteins. Among all the nucleic acid binding
proteins, RNA-binding proteins are the most enriched subgroup
(see Supplemental Fig. 1A, http://links.lww.com/MD/E886). The
cytoskeletal protein group in the downregulated serum proteins is
composed of the actin family cytoskeletal protein and microtu-
bule family cytoskeletal protein (see Supplemental Fig. 1F, http://
links.lww.com/MD/E886). The top 2 shared protein groups
Figure 2. Functional classification of the differentially expressed serum proteins.
PANTHER. Both the upregulated (A) and downregulated (B) serum proteins wer
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between the upregulated and downregulated serum proteins are
enzyme modulator and hydrolase (Fig. 2). In the enzyme
modulator, the protease inhibitor is the most enriched subgroup
in the upregulated protein, while the G-protein is most enriched
in the downregulated proteins (see Supplemental Fig.1 B and E,
http://links.lww.com/MD/E886). The protease is the most
enriched subgroup of protein functional classifications in both
the upregulated and downregulated serum proteins (see Supple-
mental Fig.1C and D, http://links.lww.com/MD/E886).
Biological process and molecular function of the differentially

expressed serum proteins were also analyzed to characterize
protein functionalities. Both the biological process and molecular
function are shared by the upregulated and downregulated
serum proteins in osteoporosis (Fig. 3). Subsequently, subgroups
of the top 3 biological process and molecular function in either
the upregulated or downregulated serum proteins were analyzed.
The subgroups of cellular process and metabolic process under
biological process are shared by both the upregulated and
downregulated proteins (see Supplemental Fig. 2 A, B, D, and
E, http://links.lww.com/MD/E886). Cellular component organi-
zation or biogenesis is one of the top 3 biological processes in the
upregulated proteins and it contains the cellular component
organization and the cellular component biogenesis (see Supple-
mental Fig. 2C, http://links.lww.com/MD/E886). In the down-
regulated proteins, the biological regulation is one of the top 3
biological processes and its subgroups are composed of the
Functional classifications and gene ontology analysis were performed with the
e classified based on protein functions.
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Figure 3. Gene ontology analysis of the differentially expressed serum proteins. Biological process was analyzed for the upregulated (A) and downregulated (B)
serum proteins. Molecular function was analyzed for the upregulated (C) and downregulated (D) serum proteins.
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regulation of biological process, homeostatic process, and
regulation of molecular function (see Supplemental Fig. 2F,
http://links.lww.com/MD/E886). Considering the subgroups of
the molecular function, the binding and the catalytic activity are
shared by both the upregulated and downregulated proteins (see
Supplemental Fig. 3A, B, D and E, http://links.lww.com/MD/
E886).However, the structuralmolecular activity subgroup shows
the difference, in which the upregulated proteins possess the
functional terms structural constituent of ribosome and structural
constituent of cytoskeleton,while thedownregulatedproteins have
structural constituent of cytoskeleton and extracellular matrix
structural constituent (seeSupplemental Fig. 3CandE,http://links.
lww.com/MD/E886). The GO analysis indicates that even though
the protein expressions are significantly differentiated between the
healthy controls and osteoporotic patients, the general functions of
these proteins may be similarly categorized and cannot be
unambiguously distinguished by the general GO terms, which is
in agreement with our protein classification analysis.

3.3. Protein–protein interaction network analysis

To investigate the relationships between the differentially
expressed serum proteins in osteoporosis and to discover the
difference behind the highly similar functional classifications, a
PPI network analysis was performed by STRING with a more
detailed functional analysis of the highly interacted subnetwork
modules.[17] The top 3 modules of PPI subnetworks were
analyzed in both the upregulated and downregulated proteins. As
shown in the analysis, each PPI module is unique and different
from others with the specific biological process terms (Fig. 4). In
the PPI modules derived from the upregulated serum proteins, the
biological process is enriched in mRNA processing and protein
synthesis (Fig. 4, A–C). Of note, the negative regulation of
biomineral tissue development was highly enriched, suggesting
4

an inhibition or dysregulation of bone metabolism in osteoporo-
sis. On the other hand, the skeletal system development was also
highly enriched, indicating a potential recovery event for bone
formation in osteoporosis. Among all the PPI modules from the
downregulated serum proteins, the biological process is highly
enriched in immune system and cytoskeletal development,
indicating that most of the immune activities, including innate
immune response and phagocytosis, are downregulated and the
ability of actin cytoskeleton organization is inhibited in
osteoporosis (Fig. 4, D–F).

3.4. Signaling pathway enrichment analysis

A signaling pathway analysis was performed using DAVID
against KEGG pathway database.[19,20] The enriched signaling
pathways from the upregulated serum proteins are involved in
protein synthesis, infections, immunological reactions, and some
cancer-related pathways (Fig. 5A). However, among the down-
regulated serum proteins, the signaling pathways are highly
enriched in the regulation of cell adhesion and immune response
(Fig. 5B).

4. Discussion

Using the text-mining strategy and the publicly available large-
scale proteomics data, we identified the differentially expressed
serum proteins in osteoporosis, in which 209 were upregulated
and 230 downregulated. We further validate 80 of the
differentially expressed proteins by analyzing the microarray
datasets. Then we classified these serum proteins by their
functions and analyzed their biological process and molecular
function. To explore in detail the specific roles of these proteins in
osteoporosis, we constructed the PPI networks and analyzed the
biological process of each PPI subnetwork module. Finally, we
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Figure 4. Subnetwork modules and the biological process of the differentially expressed serum proteins. PPI subnetwork modules and their biological process
were analyzed and displayed. The top 3 modules of the upregulated (A–C) and downregulated (D–F) serum proteins and the biological processes were analyzed,
respectively.
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analyzed the signaling pathways disturbed in osteoporosis. This
study has demonstrated that the serum proteome has been largely
altered and the signaling pathways have been disturbed in
osteoporosis, and an imbalanced serum protein homeostasis and
dysregulation of cellular functions were also observed. However,
the causality of osteoporosis cannot be demonstrated by the
current study due to the lack of intervention and biological
validation. A detailed and comprehensive in vitro or in vivo study
is required to thoroughly elucidate the molecular mechanisms
and causal relationships between the proteins, pathways, and
osteoporosis, thus providing a basis for diagnosis, prognosis, and
development of potential treatments for this disease.
Figure 5. Signaling pathway analysis of the differentially expressed serum prote
upregulated (A) and downregulated (B) serum proteins, respectively.
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In the present study, we have identified the upregulated and
downregulated serum proteins by combing text mining and
bioinformatics analyses. We have further comprehensively
analyzed the functions of the upregulated and downregulated
proteins in osteoporosis, respectively. In the protein classifica-
tions, the subgroup analyses indicate that RNA-binding proteins
and protease inhibitor are upregulated in osteoporosis; however,
cytoskeletal proteins and G-proteins are downregulated. Inter-
estingly, the protease subgroup of hydrolase possesses a large
proportion in both the upregulated and downregulated serum
proteins, which is functionally controversial. One explanation for
this observation might be the functional specificities of these
ins. The signaling pathways disturbed in osteoporosis were analyzed for the
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proteases cannot be unambiguously differentiated and classified
by using the general terms of protein functions. Among the
upregulated serum proteins, the functional terms, in general, are
protein synthesis, infection, and immune response. Complement
and coagulation cascades is one of the highly enriched pathways
in the upregulated proteins. Complement system, coupled
with blood coagulation, is a mediator of innate immunity that
regulates inflammatory processes, recruits inflammatory and
immunocompetent cells, and eliminates pathogens.[21] However,
recent studies show that complement activation plays a role in
cell turnover, tissue growth, and regeneration.[22,23] Another
enriched pathway is the antigen processing and presentation,
which immunologically prepares antigens for presentation to the
immune system for pathogen clearance.[24] The activation of this
pathway induces CD8+ T cells and natural killer cells to eliminate
pathogens, as well as the induction of CD4+ T cells for an
assistant role.[24–26] Insulin-like growth factor 1 (IGF-1) is a
convergent point of a few pathways and was previously identified
as upregulated in the early-onset breast cancer.[27] In this study,
the pathway analysis shows that IGF-1 is involved in prostate
cancer and proteoglycans in cancer. These 2 pathways, combined
with Herpes simplex infection, might suggest an easier infection
process and high-level inflammation, probably due to an
impaired immune system in osteoporosis.[28] In addition, the
analysis of the subnetwork modules, as well as the signaling
pathways, derived from the upregulated serum proteins shows a
high enrichment in protein synthesis. Combined with the viral
infection and transcription in the GO terms, this observation may
suggest an enhancement of inflammation and dysregulation of
immune system, which can be anticipated as the role of
inflammation in bone degradation.[29,30]

Among the downregulated serum proteins in osteoporosis, the
signaling pathways are highly enriched in cell adhesion and
immune response. Of note, several pathways are closed related to
cytoskeletal physiology, including focal adhesion, extracellular
matrix-receptor interaction, regulation of actin cytoskeleton, and
cell adhesion molecules. These pathways are involved in the
modulation of arrangement and disassembly of cytoskeletal
structures consisting of actin filaments and the interacting
partners.[31–33] Previous studies show that the status of
cytoskeleton affects the morphology and functions of osteoclasts
in bonemetabolism.[34] Interestingly, these cytoskeletal pathways
have crosstalk with other highly enriched pathways, such as
PI3K-Akt pathway, chemokine pathway, and leukocyte trans-
endothelial migration, which are related to cell survival, immune
surveillance, and inflammation.[35–37] Rac1 is the intersection of
these pathways and the downregulation of this protein
inactivates PI3K-Akt pathway, blocks chemokine signaling,
and disturbs direction sensing of leukocyte, therefore resulting
in activation of apoptosis, dysregulation of cell motility and
migration, and leukocyte dysfunction.[38–41] The downregulation
of cytoskeletal pathways also affects the capability of immune
system to eliminate pathogens, trigger and exacerbate inflamma-
tion.[42] Vesicular trafficking is playing a crucial role in
osteoclastic bone resorption[43] and the vesicular trafficking-
mediated endocytosis is regulated by the cyclic adenosine
monophosphate.[44,45] Consistent with these findings, our study
shows that endocytosis pathway is highly enriched among the
downregulated serum proteins, suggesting the pathophysiologi-
cal significance of endocytosis in osteoporosis. TGF-b has been
found as a key regulator in bone formation and the loss of TGF-b
was previously shown to induce chondrocyte hypertrophy and
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cartilage degeneration.[46] In this study, we found that TGF-b
was downregulated in the osteoporotic patients and inactivates
the endocytosis, which suggests an additional role of TGF-b in
the regulation of inflammation, as well as bone formation, in
osteoporosis. Although complement activation and innate
immune response are enriched among the downregulated
proteins, which seems controversial to the previous studies and
our current data, the deficiency of the member in C1 protein
complex (C1QA, C1QB, C1R, C1S, and C1QC) has been shown
to associate with dysfunction of the immune system and elicit
lupus erythematosus and glomerulonephritis.[47]

In the present study, we combined the text-mining strategy
with the adopted proteomics data to characterize the differen-
tially expressed serum proteins in osteoporosis. We also
performed the integrative analysis of protein functions, PPI
networks and module analysis, and signaling pathway enrich-
ment. Our study combining various bioinformatics techniques
shows the important roles of extracellular proteins in osteoporo-
sis and reveals the relationship between immune system and bone
metabolisms including bone resorption and formation. In
addition, this bioinformatics study elucidates an interaction
between cytoskeletal pathways, cell proliferation/migration
pathways, and osteoporosis from a systematic point of view
rather than targeted proteins in traditional molecular biology,
indicating the crosstalk among differential protein complexes and
pathways.
Collectively, this study identifies the molecular features for

understanding the underlying mechanisms of osteoporosis and
provides a basis for the screening of biomarkers, prognostic
factors, or drug targets for the treatment of osteoporosis.
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