
RESEARCH ARTICLE

Nuclear morphometrics and chromatin

condensation patterns as disease biomarkers

using a mobile microscope

Karthik Damodaran1☯, Michele Crestani1☯, Doorgesh Sharma Jokhun1☯,

G. V. ShivashankarID
1,2*

1 Mechanobiology Institute and Department of Biological Sciences, National University of Singapore,

Singapore, Singapore, 2 Institute of Molecular Oncology, Italian Foundation for Cancer Research, Milan, Italy

☯ These authors contributed equally to this work.

* shiva.gvs@gmail.com

Abstract

Current cancer diagnosis involves the use of nuclear morphology and chromatin condensa-

tion signatures for accurate advanced stage classification. While such diagnostic

approaches rely on high resolution imaging of the cell nucleus using expensive microscopy

systems, developing portable mobile microscopes to visualize nuclear and chromatin con-

densation patterns is desirable at clinical settings with limited infrastructure. In this study, we

develop a portable fluorescent mobile microscope capable of acquiring high resolution

images of the nucleus and chromatin. Using this we extracted nuclear morphometric and

chromatin texture based features and were able to discriminate between normal and cancer

cells with similar accuracy as wide-field fluorescence microscopy. We were also able to

detect subtle changes in nuclear and chromatin features in cells subjected to compressive

forces, cytoskeletal perturbations and cytokine stimulation, thereby highlighting the sensitiv-

ity of the portable microscope. Taken together, we present a versatile platform to exploit

nuclear morphometrics and chromatin condensation features as physical biomarkers for

point-of-care diagnostic solutions.

Introduction

Recent developments in mobile camera have paved the way for the use of mobile microscope

as a useful low cost tool for cellular and tissue imaging [1, 2]. A number of studies have dem-

onstrated its application in visualizing multi-cellular systems such as microbes and tissues [1,

3, 4]. In addition, several studies have also shown the ability of mobile microscopes to capture

static features of the cell, nucleus as well as single DNA molecules [2, 5–7]. Further it has also

been used to measure the dynamic features of the cell such as its motility [8]. These methods

have opened new avenues for mobile microscopes to be used as tools for clinical diagnostics to

assess different types of human samples. Some examples include parasite detection in whole

blood samples [9–12], detection of soil-transmitted worms and cysts in stool samples [13–15],

detection of pathogens in urine samples [16], diagnosis for tuberculosis using sputum samples

[9, 17, 18], measuring sperm concentration and motility [19] as well as cancer cell detection
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using brush biopsy for oral cancer [2]. Several efforts have also been made to exploit the

advancement in digital connectivity for the purpose of tele-consultation [20–22]. These tech-

nologies are making mobile microscopes versatile and low cost platforms for telemedicine and

point-of-care solutions.

While the aforementioned works have made breakthroughs in image acquisition of tissues,

single cells and even DNA, acquiring high resolution images of the nucleus and chromatin

using a low cost mobile microscope is not well developed. Nuclear morphological features and

chromatin condensation patterns are extensively used as biomarkers for various pathological

conditions [23–34]. Conventionally, pathologists would manually scrutinize patients’ samples

for defects in nuclear shape, size and envelope as well as abnormalities in chromatin condensa-

tion and texture for diagnostic purposes. While advances in digital image acquisition and pro-

cessing helps pathologists with detailed nuclear and chromatin analyses, conventional

microscopy systems are bulky, complicated and expensive, limiting their use as point-of-care

solutions in remote regions where high-end infrastructure is lacking. As such, a push for

mobile microscopy systems capable of acquiring high resolution nuclear and chromatin fea-

tures is critical for opening up the existing bottleneck in efficient large-scale tests for cancer

and aging related diseases.

In this study, we developed a small portable device which can be attached to a mobile

phone and function as a mobile fluorescent microscope capable of high resolution nuclear and

chromatin imaging for disease diagnostics. We use a conventional wide-field microscope to

establish a group of nuclear morphological and chromatin textural signatures in normal and

cancer cells as a benchmark to assess the detection capabilities of our mobile microscope. We

imaged the same cell-types on the mobile microscope and showed that we were able to extract

the nuclear morphological as well as chromatin textural features for discriminating between

the different cell types. Importantly, our mobile microscope was able to distinguish subtle

changes in chromatin texture patterns upon extracellular perturbations in both normal and

cancer cells. Collectively, our results highlight the potential of using the mobile microscopy

system as a convenient tool for large-scale diagnostic programs in remote regions.

Materials and methods

Design of the smartphone microscope

Illumination scheme. The components (S4 Fig) of the smartphone microscope were

designed by Autodesk Tinkercad and subsequently printed with a 3D printer (Ultimaker 3,

Ultimaker). The assembled microscope consists of a diffused axial illumination scheme, in

which the light emitted by an UV star LED (LZ4-04UV00, LED Engin) is filtered by a low-

bandwidth DAPI emission filter (#84–094, Edmund Optics). The light beam is perpendicularly

delivered onto the sample using a Precision Aspheric Lens (#69–852, Edmund Optics, f = 7.5

mm) as a condenser lens. The UV LED, the DAPI emission filter and the condenser lens are

accommodated together with a heatsink (ATS1302-ND, Digi-Key) bound to the UV LED in a

small box. The UV LED is powered up with an 18V 40W AC/DC converter (#1145-1001-ND,

Digi-Key) connected to the mains electricity in order to provide a stable illumination of the

sample. A 100O resistance is used to limit the current flowing through the UV LED.

XYZ moving stage. The removable sample tray is inserted in a translational stage for XY

horizontal movement, giving the possibility to explore a ~ 20 x 20 mm surface area of the sam-

ple. The XY translational stage (S4D and S4E Fig) is made of 2 dovetail rail carriers where

screws are permanently inserted in small cases. Screws are driving the movement of the carrier

where the sample tray is inserted. In particular, the Y translational stage is directly connected

to the sample tray, while the X translational stage is attached to the Y stage (S4D and S4E Fig).
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The small box and the XY translational stage are both mounted on the same custom-designed

Z translational stage for focus adjustment (S4F Fig), where a screw driving for the vertical

movement is inserted in a guide below the Z stage. The vertical movement for focus adjust-

ment is transmitted via 3 gears coupled with the Z screw (S4A–S4C Fig), which can be moved

from the external side of the microscope. The final XYZ translational stage is inserted in 2

mechanical guides present on 2 inner sides of the box to prevent it from tilting (S4F Fig).

Lens system. The DAPI fluorescent signal obtained is collected by 2 lenses, a 60X oil

immersion microscope objective and a Nurugo Micro (Nurugo) coaxially placed in front of

the smartphone camera. A DAPI emission filter (#84–095, Edmund Optics) is interposed

between the 2 collecting lenses for background rejection. The 2 lenses and the DAPI emission

filter are accommodated inside a 3D printed case. The final mobile microscope consists thus of

a small box of 10.5 x 15.5 x 16 cm in dimensions.

Cell culture and sample preparation for the mobile microscope. All experiments were

performed in accordance with relevant guidelines and regulations at National University of Sin-

gapore (NUS). NIH/3T3 mouse fibroblast (CRL-2522, passage 30), MCF-7 breast cancer cells

(HTB22) and BJ human fibroblast (CRL-2522) were obtained from ATCC, grown in high-glu-

cose DMEM media (Gibco, Life Technologies) supplemented with 10% v.v. FBS (Gibco,

Thermo Fisher Scientific) and 1% penicillin−streptomycin (Gibco, Thermo Fisher Scientific)

and maintained at 37˚C and 5% CO2. HTERT-HME1 human epithelial cells were obtained

from ATCC (CRL-4010) and grown in MEBM medium supplemented with Clonetics MEGM

bulletkit (Lonza, CC-3150). Cells were isolated by trypsinization (3–5 min) and plated in the

custom-made PDMS microwell or on a 20 x 20 mm coverslip (Cat No. 01 010 40, Trade 21).

Microwell were fabricated by plasma bonding a poly(dimethylsiloxane) (PDMS,Sylgard 184

Silicone elastomer kit, Dow Corning, Midland, MI, USA) layer of few mm in thickness onto a

20 x 20 mm coverslip (Trade 21, 01 010 40). Prior to bonding, the ~ 10 x 10 mm PDMS layer

was punched in the middle with a 5 mm biopsy puncher to create the well. PDMS was

obtained by mixing silicone elastomer and curing agent at a 10:1 v.v. ratio, followed by degas-

sing and polymerization at 80˚C for 2 hours. Once PDMS was polymerized, it was cut in ~ 10

x 10 mm squares and punched to create the hole, taped and sterilized in autoclave for 20 min

at 120˚C before proceeding with plasma bonding. Cells were fixed with 4% parafoldehyde

(PFA) (Sigma, 252549–500 ml) for 10 minutes.

Compressive force experiment

For compressive force experiments, around 10000 cells were plated on a 20 x 20 mm coverslip

and allowed to attach such that the confluency is around 90%. The experiment was performed

as described previously with slight modifications [35]. A pluronic acid-treated 18x18 mm cov-

erslip was placed on the cells. The compressive force was applied by placing parafilm-wrapped

metallic nuts (mass = 23g) on the coverslip. This corresponds to each cell experiencing a force

in the order of micro-newtons (calculation shown below). For recovery, the metallic nut was

removed and the cells were allowed to recover for one hour before being fixed for immunoflu-

orescence staining.

The force was computed as follows:

Mass = 23g (23 x 10-3kg); force applied (weight) = mass x acceleration due to gravity = 23 x

10−3 x 10 = 230mN;

Force
cell
¼

Compressive force � buoyant force due to 1ml media
number of cells
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Buoyant force = weight of volume of media displaced; volume of media displaced by a sin-

gle nut = 1ml (1g); mass equivalent to 1/20th of the nut that is submerged in the media during

the experiment = 1.1g; number of cells = 10,000.

Force
cell
¼
ð23 � 1:1Þ X 10� 3 X 10

10000
¼ 21:9 mN

For compressive force experiments, fixation was performed by treating the cells with 4%

PFA for 20 minutes in the presence of the load. Thereafter, the load as well as the coverslip

were removed. The samples were subsequently covered by gently placing a new 18x18 mm

coverslip (Trade 21, 01 070 32) on top. Nail polish was used to permanently seal the edges of

the 2 coverslips which also enables moisture retention by the samples.

Coverslips and the inner microwell surface were coated with a PBS solution of Fibronectin

(Sigma F1141-2MG) 1:150 dilution for 45 minutes at 37˚C prior to cell seeding. For nucleus

staining a DAPI solution (ThermoFisher Scientific R37606) in PBS was employed as recom-

mended by the supplier.

For experiments involving tumor necrosis factor α (TNF-α) and Cytochalasin-D (Cyto-D)

the stimulation was applied for 30 min with a working concentration of 0.4 nM and 1 nM

respectively prior to cell fixation.

1 μm (T7282, Life Technologies) and 10 μm (F8829, Life Technologies) DAPI fluorescent

beads were sonicated for 30 min and injected inside a 3.5 mm microwell. In particular, 15 μl of

bead solution 1:6 dilution in distilled water were injected in the microwell and allowed to evap-

orate. Upon evaporation, 15 μl of distilled water were injected as mounting medium prior to

imaging.

Image acquisition workflow for Mobile microscope

The cell sample of interest was loaded on the sample tray and inserted in the translational stage

of the mobile microscope. A drop of immersion oil standardized for 23˚C usage was added on

the coverslip before imaging. Every fluorescence image utilized for the analysis was recorded

in a lossless digital negative (DNG) format with an integration time of 1.3 s. ISO sensitivity

was left auto when PDMS microwell was employed, while was set to 400 or 800 when the

sealed coverslip was employed, due to the different optical path. Smartphone autofocus was set

to infinity. Multiple frames (N� 4) of each region of interest were captured. Image averaging

(N� 4) was performed with Adobe Photoshop CC 2018 in lossless DNG format after mono-

chrome conversion, white balance adjustment (with Photoshop plugin Camera Raw 10.3) and

alignment of the nuclear edges. DNG images are indeed displayed with no compression and

demosaicking (i.e. color reconstruction) steps (Abobe Photoshop: Digital Negative (DNG).

http://helpx.adobe.com/photoshop/digital-negative.html) [7]. The averaged image was con-

verted to 8-bit TIFF format for background subtraction using a rolling ball algorithm and

median filtering (radius = 1 pixel) for further noise reduction utilizing a custom macro in Ima-

geJ/Fiji.

Imaging using conventional wide-field microscope

Cells were seeded on glass bottom dishes (Ibidi 81158) and allowed to attach overnight. After

fixing and staining the nuclei, images were obtained using an Applied Precision DeltaVision

Core microscope. Wide field images were obtained using 60X objective (air, NA 0.7) with a

pixel size of 0.2150 μm. These 512 × 512 12-bit images were deconvolved (enhanced ratio, 10

cycles) and saved in tiff format.
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Image analysis

Unless otherwise specified, custom-written codes in MATLAB (The MathWorks, Natick, MA)

were used for data analysis and graphs were plotted using Origin (OriginLab, Northampton,

MA) and MATLAB (The MathWorks, Natick, MA).

Autocorrelation length-scale (spatial correlation)

In order to quantitatively characterize the DNA intensity pattern manifested in each nucleus,

single nuclei were first segmented from DAPI images and their autocorrelation length-scales

were determined using a modified version of the method described previously [36]. As illus-

trated in S1 Fig, the largest possible circle was cropped from the nucleus and its intensity was

scaled from zero to one. The mean intensity was then subtracted from each pixel such that

intensities in the image would vary with a mean of zero. This zero-mean normalized circular

image was finally used for the following analysis.

2D image correlation was used to calculate the correlation coefficients between the image

and a copy of itself, shifted by n pixels in every possible direction (-diameter of the circle < n

< diameter of the circle). As the copy is shifted, the correlation coefficient decreases and the

rate of decrease is dependent on the sizes of the structures inside the nucleus. The distance at

which the correlation coefficient becomes zero corresponds to the number of shifts whereby,

on average, the bright structures inside the nucleus are matched with the dark structures. Since

we had the correlation coefficients for shifts in every direction, the mean was taken and plotted

as a function of distance (shifts). The distance at which this mean curve crossed the x-axis is a

measure of the average length-scale of the pattern inside the nucleus.

Principle Component Analysis (PCA)

Data from all the cells being analysed were first concatenated. The combined dataset vector for

each parameter was then standardized by subtracting its mean and dividing by its standard

deviation. As a result, each parameter would be a vector of values from all the cells with a

mean of 0 and a standard deviation of 1.

The in-built PCA function in MATLAB was then applied as follows:

[coeff,score,latent] = pca(standardized_CombinedData)

The output matrix ‘coeff’ contains the loading coefficients of each parameter on each prin-

ciple component. The output matrix ‘score’ contains the projection value of each data point in

the principle component space (feature space). And the output matrix ‘latent’ contains the

principle component variances.

Since the number of nuclei from each sample was known, while plotting the data in the fea-

ture space, data from different samples were given different colours. This enabled us to visual-

ize the space occupied by each sample in the feature space.

Results and discussions

Nuclear morphometric and chromatin textural features discriminate

different cell types imaged on a conventional wide-field microscope

DAPI stained nuclear images were obtained from three different cell lines for this study i.e.

normal human foreskin fibroblast (BJ), immortalized normal human mammary epithelial cells

(HME1) and metastatic human breast cancer cell line (MCF7). The representative images are

shown in Fig 1A. Each nucleus from an image was cropped using custom program (as

described in methods) and saved as an individual 12 bit image for further analysis. Nuclear

morphometric and chromatin textural features are the two main types of information which

Nuclear morphometrics and chromatin condensation patterns as disease biomarkers using a mobile microscope
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Fig 1. Establishing nuclear shape and chromatin features as a measure for diagnosis. a) Representative wide-field images of the nuclei acquired using

Deltavision microscope. Scale bar: 10μm. b) PCA plot showing the segregation of BJ, HME1 and MCF7 nuclei in a feature space based on a linear combination

of their morphometric and textural features. c) The loading coefficient of each parameter used to obtain the first principle component of the PCA plot in (b). d)

Whisker box plots (2.5% to 97.5%) showing the distribution of nuclear projected area for BJ, HME1 and MCF7. e) Spatial autocorrelation of DAPI intensity as
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can be obtained from DAPI intensity images [32, 37]. To explore the feasibility of automati-

cally distinguishing between the above-mentioned three cell lines, just from DAPI intensity

images, the following nine parameters were extracted from single nuclei imaged under a wide-

field microscope (described in Table 1): (1) Projected Area, (2) Aspect Ratio, (3) Perimeter, (4)

Shape Factor, (5) Relative Concavity, (6) Centre-Centroid Mismatch, (7) Entropy, (8) SD of

Normalized Intensities and (9) Autocorrelation Length-scale. While single parameters can

sometimes distinguish a cell type from another one, it is not likely to be successful when there

are more than two cell types involved. At the same time, it is challenging to simultaneously

visualize more than two or three parameters on a single graph. A dimension reduction

approach, Principle Component Analysis (PCA), was therefore adopted and each nucleus was

projected in the resulting feature space (Fig 1B). Interestingly, we found that nuclei from each

of the three cell lines occupied distinct regions in the feature space (Fig 1B). Around 83% of

the variance in the data was explained by the first three principle components (PC1, 2 and 3)

(S2 Fig). As shown in Fig 1C), the morphometric parameter with the highest loading coeffi-

cient on PC1 was the Projected Area while the textural parameter with the highest loading

coefficient was the Autocorrelation Length-scale. Graphs for these individual parameter are

shown in Fig 1D and 1E). It’s worth noting that while HME1 nuclei have smaller projected

areas compared to BJ or MCF7 nuclei, BJ and MCF7 nuclei cannot be well separated from one

another based on their projected areas only (Fig 1D). The same is true for the length-scale of

internal structures. The average decorrelation curve for each cell type intersects the x-axis at

different points (Fig 1E). However, when individual nuclei are considered, though HME1 and

MCF7 separates well, there is significant overlap between each of them and BJ (insert in Fig

1E). Decorrelation curves for individual nuclei of each cell type have been plotted in S3 Fig

and the loading coefficients of PC2 and 3 are shown in S2 Fig. This highlights the feasibility of

using a combination of morphometric and textural features from DAPI images to efficiently

segregate nuclei of different cell types. Taken together, this suggests that using a combination

of nuclear morphometric and chromatin textural features we can distinguish between different

a function of length-scale for BJ, HME1 and MCF7 nuclei (see methods for more details). The lines show the average of all the nuclei of each cell line and the

bars represent the standard deviation. The whisker box plots (2.5% to 97.5%) in the insert shows the distribution of length-scales at which the correlation

coefficient drops to zero. N: BJ = 300; HME1 = 389; MCF7 = 321.

https://doi.org/10.1371/journal.pone.0218757.g001

Table 1. Description of parameters.

Parameter Description Type

Projected Area Projected area of the nucleus Nuclear morphometric

Aspect Ratio Length of the major axis/length of the minor axis of the nucleus Nuclear morphometric

Perimeter Perimeter of the nucleus Nuclear morphometric

Shape Factor Circularity given by

¼ Perimeter2
4p x Area

Nuclear morphometric

Relative Concavity ¼ Convex area� area
Convex area Nuclear morphometric

Centre-Centroid

Mismatch

Distance separating the centroid of the nucleus and the centre of mass of the chromatin intensities Nuclear morphometric &

Chromatin Textural

Entropy Statistical measure of randomness in the distribution of intensities given by

-sum(p.�log2(p)), where p contains the normalized histogram counts. The in-built MATLAB function

J = entropy(I) was used for the calculation.

Chromatin Textural

SD of Normalized

Intensities

Standard deviation of the distribution of normalized intensities Chromatin Textural

Autocorrelation Length-

scale

Length-scale of internal chromatin structures (see methods for more details) Chromatin Textural

https://doi.org/10.1371/journal.pone.0218757.t001
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cell types such as fibroblasts and epithelial cells as well as normal and cancerous cells. Although

high quality widefield images are very useful, such sophisticated microscopy systems are not

always available in clinical settings, especially in under-developed and remote rural areas. It is

therefore highly desirable to develop cheaper systems with the capability of discriminating

normal cells from cancerous ones, based on nuclear and chromatin features. It would also be

preferable for such a device to have a small and portable design.

Implementation of fluorescent imaging of nuclei on a mobile microscope

In order to address the above mentioned problem, we developed a simple and portable mobile

phone microscope that is capable of acquiring wide-field fluorescent images. The actual image

of the device is shown in Fig 2A. The optical path and the schematic diagram are shown in Fig

2B (described in detail in the methods section). Incorporation of a fluorescent light source and

the appropriate filters enabled us to obtain clear fluorescent images of nuclei. The microscope

was calibrated using a ruler with markings 0.01mm (10μm) apart, 1μm beads as well as 10μm

beads (Fig 2C) and the pixel size was found to be 0.04μm. Using this device, we were able to

capture chromatin textural patterns at submicron resolution from intact nuclei, a rich mine of

useful features for diagnostic purposes. The representative DAPI stained nuclei images

obtained using the mobile microscope after processing are shown in Fig 2D. We next per-

formed similar analysis on images acquired using the mobile microscope.

Nuclear morphometric and chromatin textural features discriminate

different cell types imaged on the mobile microscope

Raw low signal to noise ratio (SNR) images were first obtained using the mobile microscope.

This was further processed to obtain the final tiff image which was then further segmented to

generate individual nucleus crops and thresholded to analyse chromatin texture (Fig 3A and

detailed in methods section). After processing and segmenting individual nuclei from DAPI

images taken by the mobile microscope, they were passed through the same analysis pipeline

as the images taken by the conventional wide-field microscope. Consistent with the results

from images taken on the conventional microscope, nuclei imaged on the mobile microscope

also occupied distinct regions in the feature space (PCA plot) according to their cell type (Fig

3B). Around 75% of the variance in the data was explained by the first three principle compo-

nents (PC1, 2 and 3) (S5 Fig). Although this was marginally less than that observed with data

from the conventional microscope (around 83%), there was a clear separation of the different

cell types within PC1, 2 and 3 (Fig 3B). The loading of the different parameters on PC1 was

also slightly different with images from the mobile microscope. The top morphometric param-

eter was Perimeter and the top textural parameter was the Autocorrelation length-scale (Fig

3C). Graphs for these individual parameters are shown in Fig 3D and 3E). Decorrelation

curves for individual nuclei of each cell type have been plotted in S6 Fig and the loading coeffi-

cients of PC2 and 3 are shown in S5 Fig. Interestingly, while differences in the loading coeffi-

cients reflect differences in illumination, optical path, camera sensitivity and post-acquisition

image processing between the conventional and the mobile microscope, each cell type still

occupies a distinct region in the PCA-based feature space (Fig 3B). This highlights the poten-

tial and practicality of using the simple low-cost mobile microscope as a diagnostic tool to

identify abnormal nuclei based on nuclear morphometric as well as chromatin textural fea-

tures. Due to the possibility of different cell types having characteristically different nuclear

features, it might be relatively easier to segregate nuclei from different cell types. It is more

challenging to discriminate between nuclei of a certain cell type and nuclei of the same cell

type from an altered (abnormal, potentially diseased) microenvironment. This suggests a need

Nuclear morphometrics and chromatin condensation patterns as disease biomarkers using a mobile microscope
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for the mobile microscope device to be sensitive enough to pick up subtle changes in the

nuclear and chromatin features within the same type of cell in order to distinguish cells that

are exposed to external stimulus from the control cells.

Sensitivity of the mobile system assessed by extracellular cues-induced

subtle nuclear changes

To assess whether the mobile system is sensitive enough for the aforementioned discrimina-

tion capabilities, we selected a normal cell line (BJ), stimulated it with different types of

Fig 2. Implementation on mobile microscope. a) Top and side view of the mobile microscope. b) TinkerCAD schematic illustration for the

optical path. Colour code of the components: grey transparent for 3D printed parts, black for collecting lenses and heatsink, grey for UV LED,

orange for DAPI filter set, purple for UV light beam and condenser lens, green for the sample and blue for the drop of immersion oil. c)

Calibration of the mobile fluorescent microscope. Graduated scale bar with 10 μm pitch. Picture of a 1 μm DAPI fluorescent bead. Picture of a

10 μm DAPI fluorescent bead. Pixel size = 0.043 μm. Scale bar: 10μm. d) Representative images of the nuclei acquired using mobile microscope.

Scale bar: 10μm.

https://doi.org/10.1371/journal.pone.0218757.g002
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extracellular signals and checked whether the mobile system was able to differentiate between

the treated cells and the non-treated ones. Three different treatments were chosen; the actin

depolymerising pharmacological drug, Cytochalasin D, the soluble cytokine, TNF-α, and a

mechanical stress applied in the form of a compressive load. These treatments were chosen as

they roughly imitate what cells experience under physiological conditions. The sensitivity

assessment was also performed on a cancer cell line (MCF7).

We found that the mobile system was able to discriminate between the Cytochalasin D-

treated, TNF-α treated and compressively loaded cell from their untreated control both with

BJ and MCF7 cells (Figs 4 and 5). We further observed that the loading coefficients for each

parameter on PC1 (which effectively segregated the nuclei) were different in each case. With

BJ cells, the top two parameters were SD of Normalized Intensities and Projected Area for

TNF-α treatment, while they were Entropy and SD of Normalized Intensities for CytoD

treatment, and finally Relative Concavity and Aspect Ratio for compressive loading (Fig 4).

With MCF7 cells, on the other hand, the top two parameters were Centre-Centroid mismatch

and Projected Area for TNF-α treatment, SD of Normalized Intensities and Entropy for

CytoD treatment, and finally SD of Normalized Intensities and Entropy for compressive load-

ing (Fig 5). These differences indicate that in different cell types, different features are differen-

tially sensitive to various input signals. This stresses on the need for measuring a number of

nuclear morphometric as well as chromatin textural features for effective segregation of subtly

altered nuclei from unaltered ones. These results highlight the potential of using this mobile

system as a tool to detect subtle morphometric and textural nuclear changes induced by an

altered physico-chemical extracellular microenvironment in pathological conditions such as

cancer.

Conclusions

We have developed a mobile microscope with sub-micron resolution and fluorescent capabil-

ity. The resolution was suitable for measuring nuclear morphological as well as in-situ chroma-

tin textural features. We demonstrated that these features can be used to segregate cells from

different cell types into different regions of a combined feature space. We further assessed the

sensitivity of the device by demonstrating its ability to detect extracellular cues-induced subtle

nuclear and chromatin changes in a normal as well as a cancer cell line. This highlights the

possibility of using this versatile mobile microscope for disease diagnosis where subtle changes

in chromatin in response to pathological extracellular stimuli can be picked up at an early

stage. Combining the progress in data analytics such as machine learning and communication

systems with affordable and high quality mobile microscopes will open up a new paradigm

with the possibility of remote expert consultation, thereby facilitating early therapeutic

interventions.

Fig 3. Nucleus segmentation and analysis of chromatin features in mobile microscope. a) Image processing workflow for the raw and low signal to noise

ratio (SNR) images acquired using the mobile microscope. Series of mobile phone images (N� 4) of representative MCF7 nuclei were captured in DNG

format and converted to black and white mode. White balance was performed using Adobe Photoshop CC 2018 plugin Camera Raw 10.3. Averaged image

was formed upon alignment of the nuclear edges. Final image was generated upon background subtraction, LUT adjustment and median filtering for final

noise reduction. Thresholding was then performed for single nucleus isolation and chromatin texture identification. b) PCA plot showing the segregation of

BJ, HME1 and MCF7 nuclei in a feature space based on a linear combination of their morphometric and textural features. c) The loading coefficient of each

parameter used to obtain the first principle component of the PCA plot in (b). d) Whisker box plots (2.5% to 97.5%) showing the distribution of nuclear

perimeter for BJ, HME1 and MCF7. e) Spatial autocorrelation of DAPI intensity as a function of length-scale for BJ, HME1 and MCF7 nuclei (see methods

for more details). The lines show the average of all the nuclei of each cell line and the bars represent the standard deviation. The whisker box plots (2.5% to

97.5%) in the insert shows the distribution of length-scales at which the correlation coefficient drops to zero. N: BJ = 54; HME1 = 83; MCF7 = 53.

https://doi.org/10.1371/journal.pone.0218757.g003
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Fig 4. Sensitivity in detecting changes in nuclear and chromatin features upon perturbations in a normal cell line (BJ). PCA plots (left side) showing the

segregation of BJ control cells from those subjected to TNFα (top row), CytoD (middle row) and compressive load (bottom row), together with the respective

loading coefficient of each parameter (right side) used to obtain the first principle component. N: BJ control = 54; BJ TNFα = 36; BJ CytoD = 40; BJ Load = 54.

https://doi.org/10.1371/journal.pone.0218757.g004
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Fig 5. Sensitivity in detecting changes in nuclear and chromatin features upon perturbations in a cancer cell line (MCF7). PCA plots (left side) showing

the segregation of MCF7 control cells from those subjected to TNFα (top row), CytoD (middle row) and compressive load (bottom row) respectively, together
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Supporting information

S1 Fig. Schematic description of spatial correlation. Graphical description of the steps

involved in extracting the textural correlation length-scale from nuclear images.

(PDF)

S2 Fig. Discriminating between different populations of cells–Deltavision. a) Plot showing

the percentage of total variance explained along each principle component for a dataset con-

sisting of features from HME1, BJ and MCF7 nuclei, imaged under the conventional wide-

field microscope. The red dots represent the percentage of dataset variance explained along

individual principle components while the blue dots represent the cumulative sum. b,c) The

loading coefficient of each parameter used to obtain the second and third principle compo-

nents of the PCA for HME1, BJ and MCF7 nuclei, imaged under the conventional wide-field

microscope (Fig 1B).

(PDF)

S3 Fig. Characteristic spatial correlation (Radial average) in different types of cells–

Deltavision. N: BJ = 300; HME1 = 389; MCF7 = 321.

(PDF)

S4 Fig. Components of mobile microscope. 3D Tinkercad illustration of the mobile fluores-

cent microscope. a-c) 3 gear system for vertical movement to adjust focus. a) The lateral gear

movable by the user (blue transparent) has a bore. The lateral gear is thus inserted in a shaft

and hold in place with an external cap (grey transparent). b) The lateral gear interacts with

other 2 gears (blue transparent) inserted in the same manner in the base of the microscope.

One of these 2 gears drives the movement (c) of the screw (grey colour in all the Figs) inserted

in the plane (yellow colour in all the Figs) where the XY stage lays. d and e) XY moving stage.

d) X stage (red) and Y stage (blue) were designed as dovetail rail carriers where the carriers

(filled colours) are inserted inside cases (transparent colours) where the screw is permanently

inserted. e) In green colour is the sample holder, permanently joint to the Y carrier and the

sample tray. The Y carrier carries directly the sample and the X carrier carries the X moving

stage. f) Integration of the XYZ moving stage inside the box. (g) Final mobile microscope with

the integration of the optical path components.

(PDF)

S5 Fig. Discriminating between different populations of cells–Mobile Microscope. a) Plot

showing the percentage of total variance explained along each principle component for a data-

set consisting of features from HME1, BJ and MCF7 nuclei, imaged under the mobile micro-

scope. The red dots represent the percentage of dataset variance explained along individual

principle components while the blue dots represent the cumulative sum. b,c) The loading coef-

ficient of each parameter used to obtain the second and third principle components of the

PCA for HME1, BJ and MCF7 nuclei, imaged under the mobile microscope (Fig 3B).

(PDF)

S6 Fig. Characteristic spatial correlation (Major-Minor axes) in different types of cells—

Mobile Microscope. N: BJ = 54; HME1 = 83; MCF7 = 53.

(PDF)

with the respective loading coefficient of each parameter (right side) used to obtain the first principle component. N: MCF7 control = 52; MCF7 TNFα = 45;

MCF7 CytoD = 55; MCF7 Load = 48.

https://doi.org/10.1371/journal.pone.0218757.g005
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