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Abstract

Technological developments require the transfer to their location of application to

make use of them. We describe the transfer of a real‐time monitoring system for

lab‐scale preparative chromatography to two new sites where it will be used and

developed further. Equivalent equipment was used. The capture of a biopharma-

ceutical model protein, human fibroblast growth factor 2 (FGF‐2) was used to

evaluate the system transfer. Predictive models for five quality attributes based on

partial least squares regression were transferred. Six out of seven online sensors

(UV/VIS, pH, conductivity, IR, RI, and MALS) showed comparable signals between

the sites while one sensor (fluorescence) showed different signal profiles. A direct

transfer of the models for real‐time monitoring was not possible, mainly due to

differences in sensor signals. Adaptation of the models was necessary. Then, among

five prediction models, the prediction errors of the test run at the new sites were on

average twice as high as at the training site (model‐wise 0.9–5.7 times). Additionally,

new prediction models for different products were trained at each new site. These

allowed monitoring the critical quality attributes of two new biopharmaceutical

products during their purification processes with mean relative deviations between

1% and 33%.
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1 | INTRODUCTION

According to the WHO, transfer of technology is defined as “a logical

procedure that controls the transfer of any process together with its

documentation and professional expertise between development

and manufacture or between manufacture sites” (World Health

Organization, 2011). In this study, we describe the transfer of real‐
time monitoring and pooling system for preparative chromatographic

separation which we developed previously (Sauer, et al., 2019a;

Walch et al., 2019). Usually, pooling decisions are made based on off‐
line or at‐line analysis (Mendhe et al., 2015; Rathore, Wood, et al.,

2008; Rathore, Yu, et al., 2008; Shekhawat & Rathore, 2019). Our

monitoring system allows to predict critical quality attributes such as

product concentration and content of process‐ and product‐related
impurities by statistical models in real‐time. The main advantage of

this approach is that it saves a lot of process time compared with the

determination of quality attributes by offline wet lab analysis.

Moreover, real‐time monitoring enables prospective process control

(Jiang et al., 2017). Predictive models were built on process data

derived from a panel of online sensors and offline analyses of the

corresponding quality attributes. As online sensors, conventional pH,

conductivity, and UV absorbance measurements were connected in

series with commercially available multiangle light scattering (MALS),

refractive index (RI), and ATR‐FTIR (IR) probes. A prototype fluor-

escence measurement device was also integrated which allowed to

collect emission spectra alternatingly at six different excitation wa-

velengths. Overall, several thousands of predictors from the online

sensors were available for model building. Structured additive

regression (STAR) and partial least squares (PLS) regression were

applied as modeling techniques (Sauer, et al., 2019a; Walch et al.,

2019). In the present work, we used partial least squares (PLS) re-

gression as a modeling technique. PLS regression has been used for

similar purposes and with similar online sensors (Grote et al., 2014;

Roychoudhury et al., 2006; Wasalathanthri, 2020). This chemometric

technique reduces the dimensionality of the data set by projecting

the original variables to latent structures. The method is particularly

suited for such highly correlated variables generated by the online

sensors. For model training, the effluent of the chromatography

column was fractionated and analyzed for the respective quality

attributes. The optimal number of fractions and replicates of chro-

matographic runs is a function of the precision of the off‐line method

and the requested quality of the prediction frequently assessed by

the root mean squared error (RMSE) (Felföldi et al., 2020).

The transfer of the monitoring system between different sites is

described in this study. A chromatographic capture step of recombinant

human fibroblast growth factor 2 (FGF‐2) based on ion exchange (Sauer,

et al., 2019b) was used as an industry‐relevant model process for system

comparison. The elution phase was monitored. We used 12 training runs

with 15 fractions each to reach a total number of 180 observations. This

illustrates that many fractions must be analyzed to establish a model.

Hence, a direct transfer of the method from one site to the other would

save a lot of time and material. We hypothesize that the transfer of

models from the training site to the new sites is possible because sensors

of identical configuration of the same vendors where implemented into

commercially available chromatographic workstations of the same type

at all sites. Furthermore, the same separation process protocol and

equivalent feed material were used for all experiments. We tested

the hypothesis by evaluating the test errors at the new sites, that is, the

difference between predictions and measured quality attributes. The

product, FGF‐2, was pooled based on offline analyses and based on

model‐predicted values and the respective models are being described

and discussed. Case studies were performed at the new sites showing the

functionality with newly generated models specific for the site.

2 | MATERIALS AND METHODS

2.1 | Materials

All chemicals were purchased from Merck unless stated otherwise. Basic

human FGF‐2 was expressed in Escherichia coli BL21 in soluble form. Cells

harvest, disintegration, and clarification were carried out as described by

Sauer et al. (2019b). Aliquots of the homogenates obtained from fer-

mentation broth carried out under same conditions were used as feed

material for the experiments at the three sites. For the case studies,

biopharmaceutical proteins were produced by proprietary processes.

2.2 | Methods

2.2.1 | Chromatography

FGF‐2 was purified by chromatographic purification on an Äkta Pure 25

(Cytiva) as described in Sauer, et al. (2019b). In brief, E. coli homogenate

was 0.22 μm filtered and 118ml (10 CV) of the clarified homogenate

were loaded on a column packed with weak cation exchanger

Carboxymethyl‐Sepharose Fast Flow (Cytiva) with 11.8ml CV (1 cm

diameter, 15 cm bed height). The column was equilibrated before and

washed after loading with 100mM Na‐phosphate, pH 7.0. FGF‐2 was

eluted by a linear gradient from 0 to 1M NaCl in 100mM Na‐phosphate
pH 7.0. During the elution phase, the effluent was collected in 1ml

fractions. Fifteen fractions were analyzed around the peak center. The

column was sanitized after each run with 1.0M NaOH for 1 h (5 CV). For

the case studies, proprietary purification protocols were used. For model

training, 8–9 replicate runs were performed at each of the new sites, 6–7

of them as training runs, and 2 runs as test set.

2.2.2 | Online sensors and database

Sensors were integrated in the column effluent stream in‐line in the

order of increasing flow cell void volume and/or increasing pressure

sensitivity. Details are described in Sauer, et al. (2019a) and Walch

et al. (2019). A mid‐infrared spectrometer MATRIX‐FM (Bruker) was

used to measure ATR‐FTIR spectra in the wavenumber range

from 3500 to 750 cm−1 at a resolution of 2 cm−1. Intrinsic protein
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fluorescence was recorded at emission wavelengths between 236

and 795 nm at a resolution of 0.3 nm. Excitation was done at six

different wavelengths and one (300 nm) with a small and a large

filter width: 265 ± 10 nm, 280 ± 10 nm, 289 ± 10 nm, 300 ± 10 nm,

300 ± 40 nm, 340 ± 10 nm, and 400 ± 10 nm. The sensor was as-

sembled in‐house using a laser‐induced xenon lamp (type EQ‐99XFC
LDLS, Energetiq), a fiber optic multiplexer (Avantes), a flow cell

(FIAlab Instruments), and the spectrometer AvaSpec‐ULS‐TEC
(Avantes) (Figure 1). Measurement time for all seven emission

spectra including multiplexer switching time was 16 s. All other de-

tectors were standalone commercial devices. An RI detector Optilab

T‐rEX (Wyatt) was used allowing differential RI detection in the

range of −0.0047 to + 0.0047 RIU. The RI detector also traced a

forward monitor for evaluation of system integrity and the LED in-

tensity. Light scattering signals were recorded with the MALS de-

tector miniDAWN TREOS (Wyatt) at angles of 43.6° (LS1), 90° (LS2),

and 136.4° (LS3). Additionally, forward monitor intensity and tem-

perature were recorded.

Volume delay between sensors was determined gravimetrically

and sensor signals aligned accordingly before modeling and predic-

tion. All buffers used in the process were aqueous based, therefore

water was used as blank for all measurements. Blanks were mea-

sured with UV, IR, RI, and MALS before each run and signals ad-

justed. The pH probe was calibrated with a linear calibration

between pH 4 and pH 7 before each run. The IR detector was cooled

with liquid nitrogen at least 20min before each run. Signals were

recorded and stored by the control software XAMIris (evon).

2.2.3 | Offline analytics for quality parameters

All offline analyses were performed as described in Sauer, et al.

(2019b). In essence, protein quantity was determined by reversed‐
phase (RP) HPLC using a TSKgel Super‐Octyl column (2 μm bead

diameter, 4.6 × 50/100mm, 110 Å, Tosoh Bioscience). Monomer and

high molecular weight impurity (HMWI) contents were determined

by their relative peak areas after size‐exclusion (SEC) UPLC using an

ACQUITY UPLC BEH125 SEC column (1.7 μm bead diameter,

4.6 × 150mm, Waters). Low molecular weight impurities were pre-

sent in negligible amounts in the peak center.

Host cell proteins (HCP) were determined by anti‐E. coli‐HCP

sandwich ELISA in 96‐well plate format with antibodies from Cygnus.

Values of 3–6 doubling dilutions per sample were averaged. Double‐
stranded DNA (dsDNA) was quantified by Quant‐iT® Picogreen

(Thermo Fisher Scientific) fluorescence dying in 96‐well plate format.

Values of 3–4 doubling dilutions per sample were averaged. Offline

analyses for the case studies were performed by proprietary analy-

tical methods.

F IGURE 1 Schematic of the in‐house assembled multi‐wavelength fluorescence detector. Arrows represent optical fibers. Not drawn to
scale
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2.3 | Statistical modeling

PLS regression was used to generate prediction models of quantity

and purity. All data handling was performed within the statistical

computing environment R (Team R. C., 2020) using R package pls

(Mevik et al., 2019) as in Walch et al. (2019). This linear regression

method is particularly suited for multicollinear variables. Models

were trained on 8–12 replicate runs (120–180 data points) at the

training site as there were some missing sensor data at the training

site. Targets were the quality attributes quantity (measured in mg/

ml), monomer content (in %), HMWI content (in %), and HCP and

dsDNA contents (both in ng/ml). Based on expert knowledge (such as

amide bands and fingerprint regions), the spectral data were reduced

to certain regions of interest and different combinations of sensor

signals were tested. Numerous subsets of in total 15,725 predictors

(online variables) that were available and usable at all three sites

were selected. Prediction models were generated on the training

data using leave‐one‐run‐out cross‐validation (CV) for each of the

five responses. The error measure used here was the RMSE, which is

a measure of the average prediction error. It is given in the unit of

the respective quality attribute and calculated by
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where n is the number of samples, yi are the measured values, and ŷi the

predicted values. The set of predictors yielding the lowest RMSE for a

given response was selected for the prediction model of this response. In

case of equivalence or almost equivalence between models for one tar-

get, models with fewer predictors were preferred for reasons of simpli-

fication and greater robustness against sensor fall‐outs. Prediction quality

was assessed by applying the models on test data sets which were not

used for model training. The error measure is then called “test RMSE.”

To assess the quality of the proposed models we also included

so‐called null models. In a null model the response of a certain run is

simply predicted by the average values of all the training runs

without the use of any predictors. If the proposed model outper-

forms the null model, the contained predictors are considered im-

portant and useful for the prediction of the response.

Another measure of the quality of prediction used in this study

was the mean relative deviation (MRD, in %) defined by
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Contrary to the RMSE, the MRD is a relative measure and can be

regarded as independent of the range of the measured values. Therefore,

it was used for the case studies where not all information could be

disclosed.

2.4 | Method transfer to new sites

Online sensors at two new sites (A and B) were purchased from the

vendors mentioned above. Offline analyses were performed at the

training site to reduce differences between sites. Operators received

hands‐on training for the use of the monitoring system. A run

checklist was transferred to ensure correct system handling. Three

multi‐day hands‐on trainings were performed for data analysis and

modeling.

Data of runs B1 and B2 were shifted forward by 2 and 1min

respectively, corresponding to equal milliliters, for easier visual

comparison.

2.5 | Pooling

Fractions were manually selected for pooling so that the pools met

defined quality criteria while maximizing the yield (collected protein

over eluted protein). Negative predictions of dsDNA, HCP, and

HMWI were set to 0 before fraction selection for calculation of the

pool averages. Predictions of more than 100% Monomer were set to

100%. For pooling, HCP and dsDNA were calculated in parts per

million (ppm) by dividing the values in ng/ml by the FGF‐2 con-

centration in mg/ml. Runs were pooled independently based on

measured quality attributes and based on model predictions. The

pooled fractions can be identified in Online Supporting Information.

2.6 | Case studies

All offline analyses were performed at the new sites. PLS models for

six critical quality attributes were trained on 6–7 training runs and

tested on data of two independent test runs. In each run, 13 fractions

were collected.

3 | RESULTS

Online monitoring systems for chromatographic purification were

set‐up at the two new sites. Automated sensor control was enabled

by custom control software. The functionality of each system was

first tested using a human serum albumin solution (data not shown).

As a model process, we used the chromatographic capture process of

FGF‐2 from clarified E. coli homogenate. First, models were estab-

lished for real‐time prediction of product concentration and contents

of monomer, HMWI, HCP, and dsDNA at the training site. These

models were transferred to the new sites.

3.1 | Online sensor data of FGF‐2 capture at three
sites

Online sensor data of three FGF‐2 capture runs at site A (runs

A1–A3) and three runs at site B (runs B1–B3) were compared with

the arithmetic mean of 12 runs performed at the training site

(Figure 2). To include the variability at the training site, one, two, and

three standard deviations (SD) of the signals obtained at the training
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site were included in the graph. The three runs and the respective

sensor signals at site A were highly reproducible except for the

MALS detector. At site B, the runs were not as reproducible. Elution

was delayed in runs B1 and B2 as can be seen in the UV absorption,

conductivity, and refractive index signals (Figures 2a–d and 2f). The

reason for this delay was a later start and then steeper salt gradient

used for protein elution due to insufficient priming of the tubes

before the runs. As a result, peaks were narrower with higher peak

protein concentrations in runs B1 and B2 (Figure 2b). All sensors

except conductivity and pH showed higher maximum intensities

compared with site A and the training site. Modifications of the

process conditions of the final run B3 caused a broadening of the

peak. UV absorption signals showed large differences at site B

compared to the other two sites where the signals were comparable

F IGURE 2 Online sensor data during the elution phase from three test runs at sites A and B compared with data from the training site (gray
lines). Black lines: averages of 12 training runs. Dashed lines: 1, 2, and 3 standard deviations of training data. Sensors: UV (214, 260, and
280 nm, a–c), conductivity (d), pH (e), refractive index (f), light scattering (g) and (h)
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(Figure 2a–c). pH was not available for runs A2 and A3, but similar in

all other runs at all sites (Figure 2d). More pronounced pre‐peaks
were observed in MALS signals at the new sites in the range of

5–15min after start of the elution phase (Figure 2g,h). Noisy scat-

tering signals at 43.6° angle (Figure 2g) indicated the requirement for

cleaning of the flow cell at both new sites. Processing of cell

homogenates led to (fast) fouling of the flow cell. Light scattering at

90° (Figure 2h) was less affected by fouling. Overall, the signals from

the two new sites often differed significantly from the training site.

IR and fluorescence sensors recorded absorption and emission

spectra, respectively, at each time point in a very high resolution.

Thus, representative wavenumbers and wavelengths in the center of

the peaks were visualized over the time of the elution phase.

Figure 3 shows raw and preprocessed IR and fluorescence data.

F IGURE 3 Exemplary wavenumbers and wavelengths of IR (a) and (b) and fluorescence data (c)–(h) before and after preprocessing (left and
right column, respectively). Gray lines: model training data. Black lines: averages of 13 training runs. Dashed lines: 1, 2, and 3 standard
deviations of training data
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Spectral data needed one or more of the following preprocessing

techniques: smoothing, baseline correction, first or second deriva-

tive, and normalization to equal length or area. Preprocessing

methods and their parameter values influenced the suitability for

predictive modeling (not shown). They must be optimized iteratively

by comparing a score such as the RMSE. Here, smoothing, taking the

first derivative and normalization to equal length were selected for

fluorescence. IR was preprocessed by subtraction of a reference

spectrum recorded before elution in addition to smoothing and

baseline correction by asymmetric least squares (Eilers & Boelens,

2005) implemented in the R package baseline (Liland et al., 2010).

Among all sensors, the fluorescence data showed the largest

differences between sites. Intensities of peaks were different at all

sites (Figures 3c, 3e, and 3g). For excitation at 265 nm and 280 nm,

signal preprocessing by smoothing, derivatization (first derivative),

and normalization to equal length led to a higher agreement of

the spectra (Figure 3c–f). For all higher excitation wavelengths

(289–340 nm), no suitable preprocessing method or a combination

thereof could be found to compensate for the differences of the

signals obtained at the different sites (e.g., Figure 3g,h). In addition, a

decrease of signal intensities over time as a result of the aging of the

lamp and optical fibers was observed (see Figure S1).

3.2 | Model predictions

Predictive models for all described quality attributes were applied to

the online data obtained at the new sites. Due to the large differ-

ences in fluorescence signals which could not be compensated by

preprocessing, the RMSEs of the models were large in the beginning.

Fluorescence variables were only included for excitation at 265 and

280 nm. Models for monomer, HMWI, and HCP which contained

fluorescence excitation variables above 280 nm, were retrained with

data from the training site to be able to apply them to the new sites'

data. Figure 4 shows the results of the offline analyses obtained for

FGF‐2 concentration and contents of monomer, HMWI, HCP, and

dsDNA. Furthermore, corresponding model predictions and differ-

ences between measured and predicted values (errors) are shown for

F IGURE 4 Fraction‐wise offline measured quality attributes for FGF‐2 concentration, monomer, HMWI, HCP, and dsDNA content, model‐
based predictions, and corresponding differences to offline measured values (prediction errors). Gray lines: model training data. Blackline:

average of training data. Dashed lines: 1, 2, and 3 standard deviations of training data. dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth
factor 2; HCP, host cell protein; HMWI, high molecular weight impurities
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each fraction. As before, data from new sites were plotted over the

data obtained at the training site including their respective averages

and 1, 2, and 3 standard deviations thereof. Predictors selected in

each model are given in Table 1.

Errors of the prediction of concentration were distributed

around zero in a slightly larger range as for the training data with

errors up to 4.5 mg/ml. The monomer content was underpredicted at

site A by −8.9% on average and by up to −20.5% in collected frac-

tions. The monomer content was over‐ and underpredicted at site B

by up to 31.2% overall and up to −20.7% in collected fractions. On

average, the monomer content at site B was underpredicted by

−1.5% in collected fractions. HMWI showed lower absolute values in

the beginning of the peak at site B compared with the other sites

which was not recognized by the model. Errors of the HMWI pre-

dictions were in the same range as at the training site (±12% HMWI).

The model for HCP was not able to recognize the different profiles

at the new sites, yet the errors were in a similar range as for the

training runs. Measured dsDNA was higher at site A compared to the

training site and lower at site B, due to the different fermentation

batches. The model for dsDNA was not able to predict the different

dsDNA profiles accurately. Average prediction errors for dsDNA

were about two and five times as high as at the training site for site A

and B, respectively (Table 1).

Model quality can also be evaluated with regard to the errors

obtained by so‐called null models which predict the target value by

simply taking the average of the respective variable from all the

TABLE 1 Predictors used in the models, RMSEs of the respective null models, and PLS models for test runs at three sites

Model Predictors (number) RMSE Training site Site A Site B

Concentration

(mg/ml)

UV, RI,

conductivity (5)

Null model 7.0 7.0 8.8

PLS model 0.8 (0.5–1.0) 1.2 (1.1–1.3) 1.1 (0.9–1.4)

Monomer (%) UV, RI, Fluor265 (25) Null model 21.9 11.1 24.9

PLS model 8.5 (4.7–10.4) 17.7 (14.4–20.9) 16.7 (14.9–19.2)

HMWI (%) UV, conductivity (4) Null model 6.2 3.7 4.9

PLS model 3.2 (2.0–4.7) 2.8 (2.7–3.0) 4.2 (1.8–6.1)

HCP (ng/ml) UV, conductivity,

MALS (8)

Null model 156 169 191

PLS model 81 (37–125) 171 (113–209) 121 (98–141)

dsDNA (ng/ml) MALS (4) Null model 110 623 199

PLS model 87 (39–139) 496 (488–501) 233 (186–271)

Note: The ranges of test RMSEs per run are given in brackets.

Abbreviations: dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth factor 2; HCP, host cell protein; HMWI, high molecular weight impurities; MALS,

multiangle light scattering; PLS, partial least squares; RI, refractive index; RMSEs, root mean squared errors.

TABLE 2 Quality attributes of the collected FGF‐2 product pools at the three sites based on model‐predicted values and based on offline
measurements, respectively

Training site (n = 6) Site A (Run A2) Site B (Run B3)
Measured Predicted Measured Predicted Measured Predicted

Pool volume (ml)* 8 or 9 8 or 9 4 5 10 10

FGF‐2 concentration (mg/ml) 11.8 ± 0.6 10.5 ± 0.4 15.2 13.9 12.5 11.7

Monomer (%) 96.0 ± 1.5 97.6 ± 1.6 99.5 91.1 97.1 93.7

HMWI (%) 0.8 ± 0.4 1.7 ± 0.2 0.1 1.4 2.5 2.0

HCP (ppm) 44 ± 6 56 ± 3 12 34 45 53

dsDNA (ppm) 34 ± 14 56 ± 5 56 26 4 46

Yield (%) 97.1 ± 0.3 96.3 ± 1.3 65.1 73.0 97.6 95.9

Note: Plus/minus values represent one standard deviation. For the new sites, data of one representative run is shown.

Abbreviations: dsDNA, double‐stranded DNA; FGF‐2, fibroblast growth factor 2; HCP, host cell protein; HMWI, high molecular weight impurities.

*For the exact fractions refer to Online Supporting Information.
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training runs. Any trained model has to outperform the null model.

For the training site, data from six independent test runs from two

new fermentation batches (3 runs per batch) was used as a reference

(Sauer, et al., 2019a). These test runs represent a similar situation as

was faced at the new sites since the data was not used for model

training and the processed material was from different fermentation

batches. Predictions and offline measured values can be found in

Online Supporting Information.

The PLS model for FGF‐2 concentration performed much better

than the corresponding null model at all three sites (Table 1). The

model for monomer content also performed better than the null

model at two of three sites. At site A, the PLS model gave a higher

RMSE than the null model. This was probably due to many missing

observations at the tail of the peak where the error usually was the

largest (compare Figure 4). At the training site, the models predicting

HMWI, dsDNA, and HCP allowed better predictions compared with

the null models. Average RSMEs of the null models were between 1.3

and 8.8 times larger than the RMSEs of the PLS models at the

training site. At the new sites, the advantage of the models over the

null models was moderate or none at all. In three cases (monomer at

site A, HCP at site A, and dsDNA at site B) the model prediction

errors were even higher than the null model RMSE. The performance

of the transferred PLS models at the new sites was only satisfying for

the FGF‐2 concentration.

3.3 | Product pooling based on model predictions

The ability of the new systems to produce product that meets spe-

cified quality criteria was evaluated by pooling fractions of each of

the test runs. Quality attributes of pools based on model‐predicted
values were compared to pools based on offline measured data.

The following criteria had to be fulfilled by the pools: FGF‐2 mono-

mer more than or equal to 90%, HMWI less than or equal to 5%, HCP

less than or equal to 60 ppm, DNA less than or equal to 60 ppm, and

FGF‐2 concentration in the fraction of at least 1.0 mg/ml. Measured

and predicted HCP and dsDNA contents in ng/ml were converted

into ppm by division through the measured and predicted FGF‐2
concentrations, respectively. In an iterative process, fractions were

included to maximize the share of collected product from the total

eluted protein (=yield) while fulfilling all quality criteria. Table 2

shows the obtained pool quality attributes at the training site and for

exemplary runs at the new sites. Run A2 was selected randomly since

all runs at site A were very similar. Run B3 was selected as an ex-

ample because in this run the process conditions best matched those

of the other sites. Pool volumes were multiples of 1 ml fractions and

thus integer numbers. At the training site, very similar pools were

obtained using the predictions and the offline measurements. At site

A, less fractions were pooled offline than online due to high mea-

sured dsDNA contents. At site B, the model predictions led to the

collection of the same fractions as were pooled offline. The FGF‐2
concentration in the peak center was underpredicted about equally

at all sites: On average, the collected FGF‐2 mass was predicted 7.0%

lower than the measured mass. This was most probably due to the

saturation of many sensors at the peak center, such as UV or RI

detectors. Despite deviations in the monomer prediction at the

training site of up to 17% in collected fractions, the average mono-

mer content of the pools was similar to the reference analytics. At

site A, the monomer content was the limiting variable for pooling

based on predictions due to its strong underprediction which led to

moderate yields of 73%–88%. The mass balance of %monomer and %

HMWI was not closed either due to the presence of low molecular

weight impurities (not shown) or due to inaccuracies of the

predictions. Mass balances were not considered with these models.

F IGURE 5 PLS predictions and offline measurements of six critical quality attributes of two test runs at one of the new sites. The test RMSE
is given for each attribute. PLS, partial least squares; RMSEs, root mean squared errors
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The high dsDNA content of the material at site A (compare Figure 4)

was responsible for the low yields of the pools based on offline

measurements of 65%–82%.

3.4 | Case studies at the new sites

Case studies at the new sites were performed to test the abilities of

the systems to predict critical quality attributes of biopharmaceutical

proteins during chromatographic separation. One of them is ex-

emplarily shown in Figure 5. Among the modeled product attributes

were typical process‐related and product‐related quality attributes,

respectively. Mean relative deviations (MRDs) among the six models

were between 1% and 33%.

Among the critical quality attributes were charge variants which

represent a form of micro‐heterogeneity. The composition of charge

variants is a major quality attribute that needs to be controlled in the

manufacturing of biopharmaceuticals (Hintersteiner, Lingg, Janzek,

et al., 2016; Hintersteiner, Lingg, Zhang, et al., 2016). Protein charge

variants have very similar structural and spectroscopic properties

and present a challenge for online monitoring and prediction. The

developed models were able to predict the different critical quality

attributes with satisfying accuracy (not shown).

4 | DISCUSSION

The aim of the technology transfer was to ensure that the systems

are fit for their purpose at the new sites. The performances of the

online monitoring systems transferred to the new sites were com-

pared with the training site by two different measures: the RMSEs of

the test runs quantified the average errors overall fractions and

thus the overall quality of the PLS models. The pooling example

illustrated the ability of the models to produce qualitative products.

Even though equivalent load material was processed following

the identical protocol and using online sensors from the same sup-

pliers at all sites, significant differences between the sensor signals

were observed for the system established at the two new sites. Site‐
specific influences such as operator effects, ambient temperature,

humidity, or chemicals might have influenced the processes. Fouling

is another common problem when working with biological solutions.

Usually, signals are being background corrected by resetting them

just before the measurement however at the cost of decreased

sensitivity with an increasing amount of fouling. Fouling and sensor

aging must be continuously monitored and controlled to ensure that

the monitoring system is in a functional state. The IR detector came

with a built‐in performance qualification test which was done before

each run. The test fails, for example, when the device is not cooled

enough, when the lamp intensity is too low or humidity too high

which would indicate leakage. IR spectra were strongly influenced by

ambient conditions, for example, temperature. IR absorption mea-

surements are usually background corrected by a blank spectrum

recorded just before the measurement. This was not sufficient here

due to the long duration of the loading process of about 2 h. Spectra

of different runs showed very different appearances. Subtraction of a

spectrum just before the elution was necessary to use the sensor

data for modeling. For RI and MALS detectors, Forward monitor

intensity of more than 90% was used for quality control. With these

measures, the commercial sensors were robust and delivered com-

parable results across the sites. The reason for the different fluor-

escence signals was probably that this sensor was not an optimized

commercial setup but an in‐house assembled prototype (see

Figure 1). The flow cell was free‐standing and not encased as in the

other sensors. The optical fibers must be manually arrested and the

exact position impacted the measurement through the transmission

of light. Mechanical switching of channels by the multiplexer must be

precise to transmit all light. This setup was chosen to allow the

scanning of six excitation wavelengths in parallel to gather as much

information as possible. However, this was at the expense of the

robustness of this fluorescence sensor. In a manufacturing environ-

ment, a simpler and more robust sensor would be needed. Fluores-

cence signals at site A were closer to the training site than signals at

site B. The technology was transferred to site A about 2 years after

set‐up at the training site was completed and to site B about 1 year

after that, that is, 3 years after set‐up at the training site. Signal

preprocessing could not level out the differences sufficiently. Lamp

aging is generally common for such lamps and can be predicted but

here the effects of fiber aging and lamp aging overlayed.

Accurate representative process data is a major requirement for

the generation of reliable prediction models. Therefore, sufficient

time and resources must be invested in data generation. However,

data generation was work‐intensive (compare Christler et al., 2020).

The appropriate number of fractions and number of runs depends on

the coefficient of variation of the reference analytics (Felfödi et al.,

2020). If more fractions are analyzed, less runs can be sufficient

because a certain number of total data points is necessary. More

observations usually increase the reliability of predictions. More than

the planned runs were necessary at the training site because at least

one sensor showed fouling, aging, or had a defect. Moreover, the

complex system required experience to handle it correctly. Offline

and online data of the runs at site A were generally more similar to

the training site than at site B. This shows that technology transfer

concerns not only the transferred technology but also the technology

handling process. System handling is expected to become much ea-

sier for an optimized commercial sensor battery.

Model training was conducted within a few days, once the

workflow was established and knowledge was obtained on data

processing. The main parameters for model optimization were data

preprocessing techniques and predictor selection. Simpler models

with fewer predictors were selected in this investigation whenever

the RMSEs were similar between models containing a different

number of predictors. Simpler models bear a lower risk of dysfunc-

tion of the monitoring system if single sensors become dysfunctional

or lose their connection to the database during a run. Missing pre-

dictors can lead to totally missing predictions because all predictors

of a model are needed to calculate the target. Missing predictors
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could be imputed by other highly correlated predictors using for

example tree‐based modeling techniques (Kuhn & Johnson, 2013),

however at the cost of increased model complexity.

Overall, the UV absorbance sensor gave the most useful

predictors, conductivity the second most useful, then RI and

MALS, and last fluorescence. IR was not used in a model. How-

ever, this is no general statement. In our previous work, fluor-

escence and infrared sensors yielded very useful predictors,

especially for process‐derived impurities such as HCP and DNA,

but also for monomer and HWMI (Sauer, et al., 2019a; Walch

et al., 2019). This could be a reason for the poorer performance

of these models here, since fluorescence from excitation above

280 nm could not be used. The fact that a sensor is not included

in a model does not necessarily mean that it is useless in pre-

dicting a response. In the case of several prediction models with a

similar performance the simpler models were selected due to

higher robustness. RSMEs of the five models on the test runs of

the new sites were on average twice as high (2.0 times) as the

test errors at the training site (0.9–5.7 times). Higher errors at

the new sites were expected since some of the new data were not

represented in the training data set, such as the high dsDNA

values at site A or the high HCP values at site B. In such cases,

predictions may not be accurate (Kuhn & Johnson, 2013). Var-

iations in product and impurity contents are common in biologi-

cal processes. The training and test data set should include at

least as much variation as is expected later in the application,

better a bit more.

Product pooling based on model predictions was possible at all

three sites with yields between 73% and 99%. Nevertheless, the

differences between offline measurements and model predictions

showed that the accuracy of the transferred models was not suffi-

cient for monitoring in the manufacture of biopharmaceuticals. A

properly functioning fluorescence sensor is expected to significantly

improve the models' performance. Moreover, the test situation was

rather complex due to the very different impurity contents between

the sites.

The case studies showed that on‐site model training allowed to

predict six critical quality attributes with good accuracy. A mean

relative deviation of 33% may be borderline for manufacturing but

there is still room for optimization, for example by using different

modeling techniques. Nonlinear techniques such as STAR used in our

previous work (Sauer, et al., 2019a) generally bear an advantage in

cases where predictors and responses are nonlinearly related.

However, nonlinear modeling techniques often need more compu-

tation power and time for training. An advantage of PLS is that it can

be trained very fast. For proof of principle, we used the simpler

method here.

A prerequisite for real‐time process monitoring and control is a

central powerful data collection point. Large data was generated: for

one run about 450MB of process monitoring data. Sufficient com-

puting capacity was necessary to allow the estimation of several

quality parameters within a few seconds. Overall, time for quality

estimation could be reduced by days because no offline analytics was

necessary anymore. Once the functionality of the monitoring system

was shown, it can also be used for process development (e.g.,

Chemalil, 2020). Sensor data can be used directly, for example, the

fluorescence pattern to distinguish protein of interest from HCP.

Model predictions can be used to compare process variants as long

as the conditions are within the trained design space of the models.

In summary, we were able to transfer statistical models for real‐
time prediction of five critical quality attributes of a recombinant

human FGF‐2 process from the training site to two other sites. Up to

5.7 times higher test errors at the new sites compared with the

training site were observed with an average of 2.0 times among all

quality attributes. The accuracy of the transferred models would not

be high enough for real‐time process monitoring and product pool-

ing. Model re‐training would be needed for application in manu-

facturing. However, these were not optimized models but used to

assess system similarities and general functionality under real pro-

cess conditions.

5 | CONCLUSION

For a successful transfer of a statistical model for real‐time predic-

tion we conclude that the quality of prediction at new sites depend

on (a) how close the process parameters can be matched with the

training site and (b) how robust and reliably the sensors work at

the different sites. The biggest source of errors in our work was the

different sensitivity of these highly sensitive sensors. Differences

between sensor signals at the three sites could partially be com-

pensated by preprocessing methods and this is considered as ad-

vantage of the statistical models. For process monitoring, model

re‐training at each site was necessary. The case studies showed that

on‐site model training allowed to predict six critical quality attributes

with good accuracy. We conclude that it will be necessary to at least

optimize transferred statistical models at new sites. Sensor robust-

ness and thus data reliability are key elements of a monitoring

system.
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