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Skin tissue bioengineering is an emerging field that brings together interdisciplinary teams

to promote successful translation to clinical care. Extensive deep tissue injuries, such

as large burns and other major skin loss conditions, are medical indications where

bioengineered skin substitutes (that restore both dermal and epidermal tissues) are

being studied as alternatives. These may not only reduce mortality but also lessen

morbidity to improve quality of life and functional outcome compared with the current

standards of care. A common objective of dermal-epidermal therapies is to reduce the

time required to accomplish stable closure of wounds with minimal scar in patients

with insufficient donor sites for autologous split-thickness skin grafts. However, no

commercially-available product has yet fully satisfied this objective. Tissue engineered

skin may include cells, biopolymer scaffolds and drugs, and requires regulatory review

to demonstrate safety and efficacy. They must be scalable for manufacturing and

distribution. The advancement of technology and the introduction of bioreactors and

bio-printing for skin tissue engineering may facilitate clinical products’ availability. This

mini-review elucidates the reasons for the few available commercial skin substitutes.

In addition, it provides insights into the challenges faced by surgeons and scientists

to develop new therapies and deliver the results of translational research to improve

patient care.

Keywords: skin, bioengineering, burns, wound closure, skin substitutes, clinical translation, tissue engineering,

biopolymers

INTRODUCTION

The challenges of translational medicine are becoming more prevalent with developing new
technologies as novel therapies for personalisedmedicine. One therapy where translational research
is at the forefront is reducing the use of skin autografts for extensive full-thickness burns with
laboratory-generated skin (1–7). The split-thickness meshed and expanded skin autograft has been
the prevailing standard of care for burns surgeons for decades and remains the preferred method
of wound closure due to its relatively high efficacy of stable wound closure (3, 8, 9). However, if
the burn area massively exceeds the area of available donor site for skin autografts, the advantages
of autologous engineered skin substitutes is compelling. To regenerate a substitute of uninjured
human skin that definitively provides wound closure both anatomically and physiologically (6) is a
common challenge for tissue engineers, and may involve polymer chemists, cellular and molecular
biologists, surgeons, nurses, and therapists. A systematic review of clinical studies investigating
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autologous bilayered skin substitutes as epithelial stem cell niches
after grafting, identified 16 potential studies and nine types of
autologous skin substitutes over a 25-year period (10). Currently,
only a small number of these are still available for therapeutic use,
with no ideal substitute in the market. The current models have
distinct attributes, for the majority, the scaffold type is a source
or derivation of collagen (biologic) with autologous fibroblasts
and keratinocytes. Another novel synthetic scaffold utilising
a polyurethane (PUR) has also been used to generate a skin
composite (composite cultured skin, CCS) and has reported its
use for the treatment of a 95% total body surface area burn patient
(11). However, these all remain deficient in pigmentation, hair,
and other dermal appendages. The authors draw on combined
experiences from taking the research bench to bedside. This
review will describe the distinct models of bilayered tissue
engineered products that have been used therapeutically, which
there are few, but all address the same clinical challenges.

The Need for an Alternative to Skin
Autografts for Extensive Full-Thickness
Burns
Burns are a global health concern, especially for low to middle-
income countries, accounting for over 95% of burn deaths (12).
Burn injuries of all depths make up only a small proportion
(1%) of trauma hospitalisations in Australia (13), but are one
of the most costly, due to long hospital and rehabilitation
stays (14, 15). In the United States, hospitalised burns cost
over $1billion per year (16) and in high income countries
the mean cost per 1% TBSA is US$4159.00 (17). These costs
are significant, but the major indirect cost is the patient’s
lifelong scars and disfigurements. As the percentage of total
body surface area (TBSA) burn and burn depth increases,
the costs increase exponentially (14). Extensive, full-thickness
burn injuries (>50% TBSA) usually require intensive care,
multiple surgical procedures, physical and occupational therapy
and psycho-social interventions to recover. Patients with these
degrees of burn often die which obviates skin graft paucity
(18). However, advances in burn care have led to increased
survival rates due to early excision of eschar, temporary wound
closure, advanced nutritional support, infection prevention, and
improvements in critical care medicine (19–22). Although, burns
in the elderly and those with coincident trauma such as inhalation
injury, remain challenging.

In this patient population, temporary wound coverage
provides time for utilisation of donor sites from superficially
burned skin and re-harvesting to allow multiple procedures
of skin autografting (23). Maximising wound coverage with
available donor site involves thin, widely-meshed, or expanded
(Meek-Wall technique) (24) skin autografts, resulting in poor
functional and aesthetic outcomes. In addition, donor sites
generated by split-thickness skin graft harvesting are extremely
painful, may require opiate analgesia, limit mobilisation,
and discourage compliance with physical therapy (25). Skin
autografts, however, have properties that promote their
continued widespread use for the closure of large, deep skin

wounds (no rejection, vascular inosculation, high efficacy, long-
term stability), but their correlation with increased morbidity,
especially in the elderly, is a significant disadvantage, which
motivates the search for alternatives (26, 27).

An ideal skin substitute should adhere, vascularise,
and integrate quickly, contain both epidermal and dermal
components, provide permanent and definitive wound closure,
be autologous, resist infection, be easy to prepare, handle well,
easy to apply, cost-effective, and resist mechanical shear forces
(28). They should demonstrate high engraftment rates, restore
natural pigmentation, and provide all skin appendages and
sensory networks in uninjured skin. This list of qualities is
comprehensive, and to simultaneously replicate these features in
vivo requires complex engineering in the laboratory. Engineered
skin fabrication is a specialised professional field with many
aspects still to be elucidated and reduced to practise. A
standardised universal classification system for “skin substitutes”
was published by Davison-Kotler et al. in 2018 to encapsulate
all adaptations (research and clinical) using a factorial design
(29). Primary categories include acellular dermal substitutes,
temporary skin substitutes, and permanent skin substitutes,
further expanding into sub-categories (2). The many variations
have been tabulated in former reviews and will not be detailed
here (6, 7, 29–38). This review focuses on permanent, cellular,
and mainly autologous products with dermal and epidermal
components. It will explore a few commercially available
products and some clinically used in extensive wounds (Table 1).

Large, Excised Wounds—Temporising the
Wound Bed for Definitive Closure
The loss of the epidermis, and sufficient dermis to ensure loss
of all the epidermal adnexa, requires rapid wound closure. The
primary focus is on reducing inflammation and granulation,
preventing infection and limiting contraction. The associated
mortality and morbidity rates decrease with the successful
implementation of the above and achieved by staged closure
(69). Acellular dermal substitutes comprising a dermal and a
pseudo-epidermal component have been widely used to achieve
physiological closure. Their implementation has produced
a paradigm shift in burn care (21, 70, 71). The dermal
components may originate from decellularised human skin,
biological polymers, or synthetic polymers. Their function is to
temporarily close the excised wound to decrease fluid loss, allow
integration and controlled granulation tissue invasion inducing
a vascularised wound bed. Commercial examples include
Integra R© Dermal Regeneration Template, Pelnac, Terudermis,
Hyalomatrix, and RenoSkin (69). These products and similar
ones have limitations, including a risk of transmissible disease,
loss from infection and high costs (5, 72). Despite regulatory
approval for specificmedical indications, most dermal substitutes
have not achieved worldwide consensus as market leaders for
large, deep dermal wounds. However, establishing a neo-dermis
enhances structural stability and provides the time required for
definitive epithelial wound closure, whether by serial grafting or
by generating and applying autologous engineered skin.
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TABLE 1 | Examples of clinically-available or investigative skin substitutes [adapted from Vig et al. (7), Boyce et al. (31)].

Product-country of origin Classification/components Proposed clinical

indication

Product limitations

Dermal-epidermal

substitutes

TISSUEtech Autograft system

(Hylomatrix + Laserskin)—Italy

(39, 40)

Cellular, autologous Ks, Fbs

with HA

Diabetic ulcers Small wounds, difficult to

use clinically

Tissue-cultured skin autograft

(TCSA’s)—Germany (41)

Cellular, autologous Ks, Fbs

with MatridermTM
Chronic ulcerations Small wounds

Engineered skin substitute

(ESS)—USA (42–50)

Cellular, autologous Ks, Fbs,

bovine collagen-GAG

Large burns and other skin

loss conditions

Xenogeneic scaffold, small

pieces, shrinkage of

product, cost

Composite cultured skin

(CCS)—Australia (51–57)

Cellular, autologous Ks, Fbs,

synthetic polymer

Full- thickness burns Scaffold porosity, complex

Self-assembled skin substitute

(SASSs)—Canada (58)

Cellular, autologous Ks and

Fbs

Burns Labour intensive

Autologous homologous skin

construct (AHSC)—USA (59–61)

Cellular, autologous skin

cells

Burns, acute trauma chronic

wounds

Cell suspension/aggregate

MyDerm—Malaysia (62–65) Cellular, autologous Ks and

Fbs, Fibrin

Burns, skin trauma and

chronic wounds

Clinical efficiency

StrataGraftTM–USA (66, 67) Cellular, allogeneic Ks and

Fbs, non-bovine collagen

Burns and skin conditions Allogeneic, temporary, size

denovoSkin—Switzerland (68) Cellular, autologous Ks and

Fbs, bovine collagen

Burns Xenogeneic scaffold

HA, Hyaluronic acid; Ks, Keratinocytes, Fbs, Fibroblasts.

The NovoSorbTM Biodegradable Temporising Matrix (BTM)
is a synthetic scaffold that is currently in routine use for burns and
complex wound repair (73–79). It is a scaffold that temporises
the wound and biodegrades after integration and establishment
of dermal elements (80). Furthermore, it resists infection, can be
made in large sheets, is inexpensive to produce, easy to handle,
and provides integration time (76–82). With the optimisation of
a dermal replacement template and a major limitation addressed,
i.e., acquisition of time for cellular growth, the prospective next
step is the specification of a definitive wound closure alternative.

The Current State of Bioengineered
Dermal-Epidermal Substitutes
Bioengineered skin substitutes involving dermal and epidermal
components are the focus of this paper; however, epidermal
replacements (cellular) require brief reference to appreciate
the desirability of both components. A skin substitute is yet
to be achieved that replaces the anatomy and physiology
of uninjured skin or completely replaces all skin autograft
properties- implying why an epidermal replacement alone will
not replicate a meshed, or sheet, autograft. Cultured Epithelial
Autografts (CEA’s) have been used since 1986 (83), and other
adaptations or iterations of keratinocyte suspensions [e.g., Epicel
(84, 85), Cell Spray, RECELL R© (86), BioSeed (87), Laserskin (39,
40)] have evolved. These are clinical adjuncts to therapies with
traditional treatments of burn care to expedite reepithelialisation
rate. Clinically applicable for small wounds (88), ulcers (87, 89–
92), superficial burns (93) and skin graft donor sites; they have
not been universally accepted by burns surgeons independently
for deep large burns due to their limited expansion rate,
mechanical fragility on handling, tendency to blister in vivo and

vulnerability to shear after application (partly to deficiencies
in basement membrane formation) (94). In addition, they
are costly to produce, can take weeks to manufacture, and
are epidermal derived replacements (95–100). Incorporating
a substitute containing epidermal and dermal components is
a logical progression toward regenerating a tissue more like
uninjured skin (101).

A critical paracrine dialogue between fibroblasts and
keratinocytes is essential for basement membrane synthesis,
a beneficial feature for engineered skin substitutes (102–104).
The basement membrane protects against shear by establishing
a molecular bond that anchors the cellular epidermis to
the extracellular matrix of the dermis. The most analogous
to skin, and the most successful clinically to date, is an
Engineered Skin Substitute (ESS) developed in Cincinnati, Ohio
(105). Developed over the past 30 years, the ESS comprises
autologous keratinocytes and fibroblasts in a bovine collagen-
glycosaminoglycan (GAG) scaffold (42–50). The ESS model
was the first to demonstrate stable closure of full-thickness
burns by combination with Integra R© Dermal Regeneration
Template (106). In 2017, a report was published of ESS’ clinical
results in 16 subjects treated from 2007 to 2010. For patients
with >50%, TBSA full-thickness burns, ESS’s were able to
reduce the need for harvesting donor skin grafts and reduce
the mortality rate compared with data from similar patient
populations reported in the National Burn Repository of the
American Burn Association (107). The ESS results in a closed
wound that has structural and functional similarities to native
skin. However, this model also has limitations (lack of other cell
types and adnexal structures, contraction of the collagen scaffold
during ESS fabrication, relatively high cost and regulatory
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complexity); and is not commercially available. Pre-clinical
studies have recently demonstrated the successful incorporation
of melanocytes (108, 109), microvascular endothelial cells (110),
and hair follicles (111) into the ESS model.

Bovine collagen is also used in denovoSkinTM (Cutiss AG,
Zurich), which consists of a collagen hydrogel and human
dermal fibroblasts and keratinocytes. It has been classified as an
Advanced Therapy Medical Product (ATMP) and has received
FDA and EMA Orphan status to treat burns in the US and EU
(112, 113). It is currently undergoing clinical trial recruitment
for adult and children burns, with an estimated completion
date of 2023. However, the production of a dermal-epidermal
equivalent with xenogeneic (non-human)-derived biologicals,
such as bovine, rat, or porcine collagens or glycosaminoglycans
(42) raises the potential for immune recognition and rejection
and risk of prion transmission. A synthetic scaffold and
autologous cell approach may reduce these risks.

Several matrices using fibroblasts alone to provide the
biological extracellular matrix environment (114–117) have
shown the generated skin’s long-term stability in vitro
(118). Through the Special Access Program in Canada, a
Self-Assembled Skin Substitute (SASS) has shown clinical
effectiveness, reporting a case series of 14 severely burned
subjects (58). This substitute contains autologous fibroblasts and
keratinocytes, forming a human biopolymer fibroblast scaffold
with subsequent keratinocyte seeding. The constraining factor
for this type of substitute, like some others, is the production
time, with an average of 9 weeks from the initial biopsy (58).
In addition, the SASSs post-transplantation displayed visible
junctions between applications, re-iterating the need for a
sizeable sheet that can be generated and transplanted with
fewer anaesthetics.

Improved scalability has now been reported using a
biodegradable polyurethane (PUR) as the scaffold for a dermal-
epidermal alternative, known as a composite cultured skin
(CCS) (51–57). The attributes for an “ideal engineered skin,”
as mentioned previously (119), formulated the premise of
combining an engineered-epidermis to a modified BTM dermal
substitute. Compared to bovine collagen (a biologic), a synthetic
biodegradable PUR showed lower toxicity and cytotoxicity,
reduced immunogenic reaction, and minimal inflammatory
response (51, 52, 120). The BTM-CCS provided a two-stage
strategy, with the CCS as a definitive second stage wound closure
material. The application of NovoSorbTM BTM, a temporising
matrix, addresses one of the major limitations of available skin
substitutes [i.e., time required for autologous cell expansion 3–
5 weeks (38)]. The integration period enables the time required
for cell isolation, expansion and bilayered construction (up to
7-weeks if needed) (11, 69). The CCS is a 1mm thick PUR
porous scaffold, populated with autologous fibroblasts in a fibrin
network and layered with autologous keratinocytes (53, 54).
Pre-clinical studies in a porcine model initially demonstrated
the efficacy of small CCS, and later large pieces, generated
in an automated bioreactor (54, 57). This custom-made novel
bioreactor device has taken this from research to clinic (11, 57).
The two-stage strategy of BTM-CCS has been used clinically
in a 95% TBSA burn injury (covering 40% TBSA of original

burn) (11). The patient not only survived but, at 1.5 years
post-injury, required minimal contracture release in areas where
autografts were applied and none to the CCS-applied areas. The
result for CCS was a smooth, supple aesthetic appearance with
varying pigmentation from primary epithelial engraftment. No
delineation between junctions of CCSs can be observed. ROM
and SOSS scores were comparable to sheet graft, but favourable
over 1:3 meshed STSG and Meek.

The subcutaneous layer (the deepest layer of skin) is absent
in many investigational and clinical substitutes. Polarity TE,
a US company, produces an Autologous Homologous Skin
Construct (AHSC). They claim that functional full-thickness
skin can be regenerated by obtaining a full-thickness biopsy
with immediate application (59). A retrospective, 15-patient
post-AHSC application review case series was reported (60)
for various wound types (burns, acute/traumatic injuries, and
chronic wounds). It differs from the conventional dermal-
epidermal substitute, in that it seems not to necessitate culture
and is returned to the patient within days. These wounds were
closed at 3 months post application; however, further studies are
required to investigate and substantiate the claims of efficacy,
especially in full-thickness, excised burns (61).

Several other dermal-epidermal constructs have been used
clinically or gone to clinical trial pending commercialisation
(Table 1). Some examples include, tissue cultured skin autograft
(TCSAs using MatridermTM, Germany) (41), TISSUEtech
Autograft systemTM (using Hylomatrix, Anika Therapeutics
Inc., Bedford) (121), and others using Allodermis (122, 123),
Human plasma (124, 125), and Fibrin (MyDerm, Japan) (62–65).
Another bi-layered product recently receiving (2021) FDA
approval for adult deep partial-thickness burns is StrataGraft R©

(Mallinckrodt, USA) (66, 67). Although it is not autologous,
this bilayered allogeneic product comprises murine collagen
and allogeneic fibroblasts and keratinocytes, this acts indirectly
on the autologous cells to assist with wound closure (66). This
type of treatment is limited for deep full-thickness burns as
it needs another source of autologous cells e.g., meshed graft
or other skin appendages, to close the wound. However, it
is readily available and “off-the-shelf ” ready for immediate
use, whereas typical bilayered autologous substitutes can take
weeks to fabricate. As with any graft, there is potential for loss
if there is no neovascularization. The majority of clinically
available engineered skins are avascular; however, this is under
investigation by researchers (126). The loss of graft can be due
to an accumulation of blood (haematoma), fluid (seroma),
contamination, or mechanical shear. The different skin models
mentioned have varying pore sizes and can contribute to
the success of the engraftment. The density of the dermal
component (i.e., too small or large pores) can inhibit or
promote vascularisation (57, 127). Shear of a substitute graft
or blistering will also occur if there is loss or no basement
membrane and reiterates the importance of cell-cell contact of
the epidermal-dermal component in vitro culture. When this
loss occurs, the wound heals by secondary reepithelialisation and
healing is delayed. Although, a systematic review of bilayered
skin substitutes showed wound healing rates for leg ulcers
were comparable with the standard of care (RR 1.51, 95%
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FIGURE 1 | Challenges and considerations in bioengineering of bilayered skin substitutes. Adapted from Al-Himdani et al. (133).

1.22–1.88) (128). A widely meshed STSG used for extensive
wound coverage results in a weave-like pattern, producing a
poor aesthetic result. In contrast, autologous engineered skin
provides immediate coverage with a stratified epidermis that
suppresses granulation tissue and arrests the scarring process.
Producing a favourable smooth, pliable, even skin, with a
reduction in pain and itch (55, 68, 107). Another major strength
and benefit over skin autografts is the reduction of autologous
donor skin and its associated morbidities. The diverse bilayered
approaches mentioned all have their strengths and weaknesses,
and in review, the ideal model may likely be combinations
of biopolymer scaffolds and stem cells that can produce a
functional, clinically safe and effective alternative (129, 130). Any
of these tissue engineered products will face regulatory reviews
and reimbursement requirements.

Clinical Challenges for Skin Substitutes
As cell-based therapeutic inventions, these products require
approval by regulatory authorities to ensure high quality, safety
and proven efficacy (131) (Therapeutic Goods Administration,
TGA in Australia; Food and Drug Administration, FDA in
the United States; European Medicines Agency (EMA), in the
European Union, etc.). Several pre-clinical substitutes are being
used through Special Access Programs (SAP) in designated
countries. This scheme is a way of using non-licenced products
to treat life-threatening injuries where other methods are not
suitable, or non-existent. In the United States, the passage of the
21st Century Cures Act, in 2016 (31) and new agency programs

will facilitate the clinical use of novel products and devices to treat
patients at severe medical risk.

The generation of highly manipulated tissue-engineered
products follows the standards for current Good Manufacturing
Practices (cGMP) (132). They should ideally be free of any
xenogeneic product (131) and include mandatory testing for
microbiological assessment [sterility assurance level (SAL) of
10−6] and transportation validation to ensure that product
integrity is maintained. Generating a clinically viable, and ethical,
product suitable for market is a lengthy and labour intensive
process, with high initial capital costs. These infrastructure
costs, process complexity, and stringent quality control result
in expensive products, making commercialisation less practical
(133, 134) and are translational challenges a therapeutic product
may encounter (Figure 1). The cost of such substitutes, however,
should not be assessed directly by the cost per unit of production
only (31, 135), but also indirectly by assessing overall hospital
cost reductions concerning length of stay, the number of
reconstructive surgeries post-major burn, patient outcome and
aesthetics. Although, an experienced highly trained medical
team, including specialised nurses and therapy protocols are
required during the intense early stages of treatment until they
become the prevailing standard of care.

The Future Opportunities of Skin
Substitutes
The generation of laboratory-generated “skin substitutes,”
irrespective of classification, have to date only partially
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addressed the requirements for achieving stable wound closure.
They currently produce inadequate pigmentation (hypo- or
hyperpigmentation), they lack vasculature, hair, glands, and
none have replicated the results of unmeshed autograft or
duplicated the anatomy and physiology of uninjured skin.
Due to cost, regulatory restraints, and the significant scientific
challenge to incorporate all skin features simultaneously (136–
139). Approaches to the refinement of fabrication systems for
skin substitutes will facilitate advanced models of engineered
skin to reach their markets with a consequent decrease in costs.
The requirement for scalability is a compelling demand for
large burn injuries and can be met by incorporating automated
bioreactors (57, 140). These may assist production and provide
complete automation and standardisation to improve product
quality. The robotic systems are engineering advances that will
move forward in parallel with medical advances. The 3D and 4D
bioprinting fields coupled with the latest compatible bioinks are
novel techniques that may rapidly advance the tissue engineering
field (141–145).

In time, these technologies and advances in tissue engineering
will at least reduce, and possibly replace, the need for skin
autografts and enable easier clinical translation of an acceptable
autologous engineered skin, suitable for patient use. The
significance of this is that patients with life-threatening burns will
no longer suffer the painful acute morbidity and later scarring
that donor sites generate. Time in ICU and total hospitalisation
will be reduced, the need for reconstructive surgery will decrease,

with overall costs reduced. The success will also have implications
for other dermatologic conditions, including but not limited to
giant congenital naevi excision and engraftment, epidermolysis
bullosa treatment, certain surgical reconstructions, and vitiligo.
It can also contribute to the investigation and requirement for
epidermal appendages, naturally matched skin pigmentation,
vascular plexus, and sensory nerves (2, 139, 146, 147). As
each of these advances is currently under investigation, there
can be high degrees of confidence that many, if not most
of these skin components (uniform skin colour, sweat glands,
and hair follicles) will be incorporated into future models of
skin substitutes and available clinically for the treatment of
full-thickness skin wounds, including burns.
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