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Abstract: The treatment of cancer has been slowly but steadily progressing during the last fifty
years. Some tumors with a high mortality in the past are curable nowadays. However, there is one
striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with
this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic
malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1)
and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons
recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change
to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic
perspective may introduce some urgently needed and integral novel treatments. Such a prospective
therapeutic approach for malignant brain tumors is developed here, either to be used alone or in
combination with more standard therapies.

Keywords: etiopathogenesis of gliomas; pH-centric anticancer paradigm; pH, NHE and proton
extruders; reverting proton reversal; cellular acidification in gliomas; treatment of glioblastoma
multiforme

1. Introduction

Our interest in the treatment of malignant gliomas (MG), mainly glioblastoma multiforme (GBM),
dates from more than thirty years ago [1], and interest in the relationship of pH and cancer dates even
further back to a decade earlier [2]. In order to describe the new pH-centric approach to malignant
diseases, the concept of “hydrogen ion dynamics of cancer” was introduced in the early 1980s [3],
a term that is increasingly used in publications in this growing field in cancer research and treatment [4].

In spite of all the efforts undertaken during the last few decades in clinical neuro-oncology and the
new drugs, therapeutic methodologies and protocols employed, the prognosis of brain cancer is still
dismal, with GBM showing the worst five-year survival rates among all cancers [5]. Very few patients
survive more than a year, and those that do usually suffer a deteriorated quality of life, particularly
in brain stem glioblastomas in children and young adults [6,7]. So far, only a few isolated cases of
long-term survivors have been reported following the orthodox and traditional therapeutic approaches
of maximal surgical resection, chemotherapy, immunotherapy and radiotherapy [8].

The cause of most brain tumors is unknown. Also, there are no environmental-associated
conditions that are known to cause these malignant brain tumors, with the exception of ionizing
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radiation. Therefore, prevention is not a possibility. Besides, the initially promising results of
intra-arterial chemotherapy have shown no real benefit in the long term, especially considering the
serious and even life-threatening side effects that these procedures can induce [9]. In order to improve
the regrettable therapeutic situation of MG, large multicenter studies have proposed the concerted use
of several drugs through combined therapeutic protocols [10]. An interesting combination of nine
different repurposed drugs have been tried recently, along with standard therapies, although they have
only resulted in marginal benefits [11].

2. Towards a New Perspective and Clinical Approach to Malignant Gliomas

The overall therapeutic failure in the treatment of MG makes it necessary that brand new ideas and
untrodden approaches and efforts are urgently developed in order to improve the therapeutic results.
The different areas of the pH-centered perspective of cancer, from etiopathogenesis to therapeutics,
have been recently summarized in a recent issue dedicated to this area of research and treatment.
However, MG were not considered in these publications of our group, this being the first contribution
in the literature dedicated to MG [12,13]. At the same time that these conceptual changes in oncology
were taking place, the interest raised by the abnormalities of the intracellular and the extracellular pH
(pHi and pHe) of both normal and brain cancer cells have shown a most beneficial “side effect” in the
understanding the many levels of the pH-related paradigm, and/or the hydrogen ion (H+) dynamics of
cancer [3,13–21].

2.1. Pathological Hydrogen Ion Dynamics and Acid-Base Homeostasis in the Etiopathogenesis of Brain Tumors
and Other Malignant Processes: Genetic and Epigenetic Factors

2.1.1. On Etiopathogenesis

Regarding the energetics of cellular acid-base homeostasis, different proton transporters (PTs) have
been implicated in the etiopathogenesis of MG. Several PTs, proton pumps (PPs) (Vacuolar-ATPases),
ion channels, ion exchangers and aquaporins have been reported to be involved in the pathophysiology
of brain malignancies, mainly because of their capacity to induce an intracellular alkalinization (IA),
which at the same time induces multidrug resistance (MDR) [12,22–25]. Specifically, an elevated pHi
mediates in the MDR resistance of MG [26], but also in other malignancies, such as cervical and
ovarian cancer, to different drugs like cisplatin, vinblastine and 5-fluorouracil [27]. Contrariwise,
the suppression of the activity of V-ATPase potentiates the cytotoxic effects of cisplatin by decreasing
pHi [28].

Most importantly, cisplatin can significantly modify the intracellular pH of cancer cells inducing
cytoplasmatic acidification, seemingly through a cisplatin-mediated inhibition of proton extrusion
and down-regulation of NHE-1. Otherwise, the activity of NHE-1 and its effect on increasing pHi
also increases cisplatin resistance to treatment [29]. As a result of these findings, both NHE and
the cancer-specific pHi/pHe proton reversal can nowadays be considered to be the new and main
key actors in the etiopathogenesis of MG. Indeed, the main molecular, biochemical and metabolic
factor blamed for the onset of MG is the NHE exchanger isoform 1 (NHE1) and, secondarily, other
NHE isoforms like NHE5 and NHE9 [30]. In summary, during the last few years, the new hydrogen
ion (H+)-related perspective of a wide array of cancers, and of MG too, has progressed from the
original Warburg approach to glycolytic cancer metabolism to a post-Warburg pH-centered paradigm.
In the same line, and since the 1980s, the interest in cancer etiopathogenesis has shifted its main
emphasis from intermediary metabolism and glycolysis to the selective H+ abnormalities of cancer
cells and tissues and on its molecular relationships with H+-extruding transport systems and pHi/pHe
regulators [31,32].

Thus, NHE1 has become a specific and major factor in the etiopathogenesis of MG
regarding its etiology, migration, survival in hostile microenvironmental conditions and relentless
progression [33–35]. NHE 1 un-regulation maintains an intracellular alkaline pHi, which also prevents
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an intracellular acidification (IAc) as the main mediator of a selective apoptosis of MG cells. Thus,
an elevation of pHi also represents a key factor of multiple drug resistance (MDR) in MG, similar to
other malignancies [22,23,34,36,37].

In the same line of cancer etiopathogenesis, the extracellular and/or microenvironmental tumoral
acidification (↓pHi), induced as a consequence of the initial intracellular alkalotic deviation (↑pHi),
secondarily becomes a fundamental issue of a primary importance in cancer growth. In this
way, this acidic pHe becomes the ultimate mechanism to allow malignant tumors to escape
from the anti-tumor immunity of the parasitized human organism. The final result is that this
microenvironmental-intratumoral-extracellular (EC) low pHe situation creates a protective shield
around cancer with the onset of a state of energy and immunosuppression mediated by such EC
acidification-induced losses of function of T and NK cells [38–42].

It is worth recognizing that even in the case of a genetically-induced overexpression of NHE1 [43],
genes do not seem to exert a direct influence on cellular metabolism, but they do it through the
microenvironmental changes they induce. In this vein, F. Nijhout [44] integrated both ways, genetic
and epigenetic, by stating: “When a compound modified by a gene is needed, it is a signal from the
environment which activates the expression of the gene and never an intrinsic characteristic of the
gene”. From all the late results in the field it can be concluded that NHE1 also plays a fundamental role
in the local growth and activation of the metastatic process of many other malignant tumors besides
MG [22,35,37,45–48]. Most significantly, the overexpression of NHE1 can be considered a widespread
carcinogenic factor that is stimulated by myriad elements of different natures, all of which induce a
high pHi-mediated carcinogenic response in normal cells of many different origins and irrespective of
their genetic background and location (Table 1). It is most likely that at least some of these contributing
factors to the etiopathogenesis of cancer can also be involved in the pathogenesis of MG through their
effects on overexpressing and/or up-regulating NHE1 and the intracellular alkalinization induced by it.

Table 1. This Table (modified and updated from ref [49]) shows some carcinogenic factors that increase
cellular pH through up-regulation of NHE activity.

Carcinogenic Factors That Increase Cellular pH Through Up-Regulation of NHE Activity

Proton transporters-extruders (PTs) and proton pumps (PPs)
Virus (HPV E5 virus: human papiloma virus)

Oncogenes and viral proteins (v-mos, Ha-Ras, HPV16 E7))
Gene products (Bcl-2)

p53 deficiency
Genetic instability and mutations (BRCA1 and BRCA2?)

Chemical carcinogens (benzo(a)pyrene, polycyclic aromatic hydrocarbons, arsenic salts in groundwaters
Chronic hypoxia and HIF

Different mitogens
Hormones and cytokines (Insulin, Growth Hormone, Prolactin, Glucocorticoids, IGF-1, EGF, VEGF, PDGF, Il-1,

Il-8, GCSF, TGFß, Angiotensin II, PGE2, Bombesin, Diferric transferrin
Glucose overload

Ageing (“Time causes cancer”- Otto Warburg)

We are not aware that the possibility of a cause-effect relationship of genetic mutations of BRCA1
and BRCA2 with pHi and/or NHE1 expression has been made before. The intention of including BRCA1
and BRCA2 in Table 1 is to suggest that NHE1 and/other proton extruders, like carbonic anhydrases
(CAs), can mediate in the carcinogenic action of these gene mutations in a similar, or even the same,
way as happens with other gene products [44]. Table 1 also shows the many hormones, growth
and trophic factors, as well as certain cytokines that over-express NHE1 and induce its pH-related
pathological effects on cellular metabolism [13,21]. Human growth hormone (HGH) on its own is able
to stimulate the production of a wide array of growth factors, hormones and cytokines, such as IGF-1,
EGF and its receptor, VEGF, FGF, EPO, BDNF, PDGF, certain interleukins and sex steroids, some of
which up-regulate NHE1 [50]. (Also see Figure 1).
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During the life of Otto Warburg (Warburg died in 1970), proton extruders and all the other factors
shown in Table 1 were not known. Thus, Warburg could not know that cancer cells were not acidic,
as he always thought, but just the opposite [51,52]. Furthermore, we also know that Warburg was
wrong in defending the theory that aerobic glycolysis was the prime cause of cancer, but it can also be
said that the prime cause of cancer is the main, and perhaps universal, mediating cause of aerobic
glycolysis, namely, intracellular alkalinization [13]. Indeed, this and other recent publications have
also led to the conclusion that the famous Warburg Effect may be completely explained through the
elevation of pHi in cancer cells [53–55].

NHE1- and pH-related pathology are receiving increased levels of attention as fundamental factors
in other areas of carcinogenesis. In this vein, Hardonnière et al. have advanced a most provocative
and integral explanation of human environmental carcinogenesis [56]. Even more recently, the same
research group has correctly suggested that the oncogenic activity of many carcinogens of different
origins and natures (Table 1) can share the same and/or similar pathways and effects on cellular H+

dynamics, facilitating proton gradient reversal. This opens up the possibility that the overexpression
of either NHE1 and/or other proton extruders could be behind the existence of a universal mechanism
responsible for the induction of environmental carcinogenesis [4].

The findings of these researchers, but also of other groups, suggest that the final cancer-inducing
mechanisms of carcinogens like polycyclic aromatic hydrocarbons, as well as the activity of other
widespread carcinogenic environmental compounds ubiquitously present in low concentrations in
nature, even in groundwaters, like arsenic salts, are NHE-mediated [57]. These findings lead towards a
unitarian synthesis of environmental carcinogenesis and to the conclusion that there could well exist a
final and universal mediating acid-base mechanism, namely, a mechanism related to environmental H+

dynamics that can fully explain human carcinogenesis. Finally, Figure 1 graphically shows the growth
and trophic factors whose effects are mediated by the NHE1 antiporter as H+ extruder, some of them
also stimulating tumoral angiogenesis. For a more complete review of NHE-related proangiogenic and
antiangiogenic molecules, see ref. [58].
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Figure 1. Growth and trophic factors, and cytokines that are involved in the carcinogenic expression
and/or hyperactivity of NHE1 and the consequent increase in pH (modified and updated from ref [13]).

Although in Figure 1 the human growth hormone (GH) appears as a pro-oncogenic factor, it has
also been shown than this hormone can be a useful and safe treatment for many different pathologies,



Int. J. Mol. Sci. 2019, 20, 4278 5 of 19

even in some neurodegenerative processes [13,21,59,60]. However, even in patients with a past history
of neoplasia, GH replacement therapy does not appear to increase the chances of inducing a tumoral
process [61,62]. Contrariwise, GH has also been considered as a “one-step” oncogene able to promote
both proliferative and metastatic processes [63–65]. In this vein, since the existence of GH receptors
in MG has been demonstrated, it seems that GH could exert actions responsible for the induction,
or at least progression, of MG [66]. It can then be assumed that although systemic GH may lack a
direct effect on the induction and/or progression of these tumors, some growth factors induced by GH,
like IGF-1, EGF and VEGF, could negatively affect tumor growth through NHE stimulation and/or
cellular alkaline pH changes, an effect that was first described from seminal publications decades ago
(Figure 1) [67–69].

2.1.2. On Treatment

From the opposite point of view of cancer etiopathogenesis, namely, therapeutics, the pharmacological
targeting and inhibition of NHE1 and other ion transporters, pumps and voltage gated sodium channels,
is fundamental in inhibiting both local growth and the different stages of the metastatic process, either
in MG and/or in a variety of other extracranial malignant tumors [70–77].

The H+-related perspective, as applied to the treatment of MG, has been defended by different
research groups [49,78–81]. In this line, inhibiting NHE1 in MG acidifies tumor cells while normal
astrocytes are not affected, a finding that open the way towards a selective and non-toxic, or minimally
toxic, treatment of MG [35]. In a similar context, this therapeutic approach has been most correctly
called “the Achilles heel of cancer” [82], although it also appears not to be free from some therapeutic
limitations [83].

Furthermore, blocking Na+/H+ exchange decreases tumor growth and stimulates MG
immunogenicity, besides increasing the effect of temozolomide (TMZ) [34,84]. Most surprisingly, these
authors also reported that TMZ increases NHE1 protein levels in human glioblastoma cells, a feature
that not only could increase TMZ resistance, but raises serious doubts about a possible deleterious effect
of TMZ in the treatment of MG. On the other hand, the combination of TMZ and cariporide in a mouse
glioma xenograft model significantly prolonged the survival of the mice in the same report. Cariporide
(HOE642) has been used in human trials but only in a cardiological setting, and although it has been
repeatedly proposed as an anticancer drug in either brain cancer and/or in many other malignant
tumors because of its effect as a selective intracellular acidifier of cancer cells of many different lineages,
it has never reached any clinical or even preclinical trials in human oncology [37,49,85,86].

Other membrane-bound ion transporters and related mechanisms besides NHE overexpression/

inhibition are of fundamental importance in the acid-base regulation of MG, mainly lactate and
pH-related glucose transporters and glycolysis [55], MCTs (monocarboxylate transporters), mainly
MCT1 and MCT4, and carbonic anhydrase IX (CAIX) [87]. For an integral review on this subject,
see ref. [78]. Furthermore, targeting MCTs and CAIX concomitantly with NHE1 inhibition offers a
highly promising and integrated approach to the treatment of MG [88,89]. These concepts are the
scientific foundation of the treatments proposed in Table 1.

Inhibiting lactate extrusion in MG has also been hypothesized to increase sensitization to
radiotherapy by delivering small-molecule MCTs inhibitors to the tumor bed or to the postsurgical
resection area [90]. MCT has also been reported to inhibit the invasiveness of GBM while inducing
necrosis under different circumstances [70]. Last but not least, a drug like cisplatin, used in MG and
many other tumors, has been found to induce IA in vitro and in vivo, a feature that explains whether
or not an individual patient responds to treatment with this drug, and perhaps to many others as
well [28].

Some ion channels are significantly involved in both the regulation of pHi/pHe in cancer cells
and in the acquisition of their proliferative and pro-invasive capacities. Ion channels regulate several
cell processes, such as cell proliferation, resistance to apoptosis, cell adhesion, cancer cell motility
and extracellular matrix invasion. Consequently, an altered physiology of ion channels has also been
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proposed as a new hallmark of cancer cells and as a potential target for selective therapeutics, either in
glioma or in other malignancies [91–97].

Persistent NHE1 activity in glioma cells is also consistent with depolarized membrane potentials,
calcium loading, high pHi and increased cellular Na+ levels. While inhibition of NHE1 by cariporide
alone seems not to be toxic to glioma cells, its combination with the inhibition of the Na+/Ca2+

exchanger NCX1.1 selectively kills brain tumor cells [98]. This is consistent with the growing evidence
that Ca2+ homeostasis is importantly remodeled through the involvement of multiple Ca2+ channels
and transporters [97]. These molecular mechanisms, that take place at the plasma membrane or in
intracellular compartments, participate in enhanced proliferation, cancer cell survival and invasion.
As a retro-feedback, intracellular Ca2+ concentrations also modulate the activity of NHE1 [99]. Finally,
the inhibition of voltage-gated sodium channels, either on their own or through interaction with NHE1,
has been proposed in order to prevent cancer growth and progression as well as the metastatic process
in different experimental conditions and contexts [13,100].

2.2. General Principles of Low pHi-Dependent Cancer Cell Apoptosis as Applied to the Clinical Treatment of
Malignant Gliomas

From the point of view of metabolism, the therapeutic strategy to be recommended in human
cancer is mainly directed to achieve an apoptosis-inducing IA of malignant cells while sparing normal
cells. This IA must achieve a pHi low enough to induce a chain reaction that leads to selective
apoptosis [13,21,43,101,102]. During this apoptotic process the endonuclease DNAase I becomes
another fundamental mediating factor [103]. Similarly, a low pHi-induced apoptosis is also mediated
through other different mechanisms [21], while the Bcl-2 anti-apoptotic protein seems unable to
inhibit it [104]. This is why IA is the main and fundamental weapon of the pH-centered anticancer
treatment [102]. IA can be achieved through inhibition of NHE1 and/or H+-ATPase and/or CAs IX and
XII and/or successful chemotherapy. Most recently, a full issue has been published on the importance
of CAs in cancer and other non-oncological pathologies [76].

In all these cases, cells will go into an acid-mediated metabolic collapse and catastrophe which
is followed by apoptosis or necrosis [32,105,106]. Other mechanisms of successful cancer treatment
include overcoming blockades to cancer cell apoptosis by inhibiting the Bcl-2 anti-apoptotic family,
whose activity is, not surprisingly, mediated by intracellular (ic) alkalinization (IA) and inhibited by
intracellular (ic)acidification (IAc) [104,107–112]. Furthermore, it has been known for a number of years
that superoxide (SO) formation, as induced by hormonal or growth factor deprivation, also induces
apoptosis of brain cells [113,114], a phenomenon that is further increased after reacting SO with nitric
oxide (NO) to form peroxynitrite [115,116]. In contrast, low or physiological concentrations of NO
prevent apoptosis [117]. In summary, the different killing mechanisms in cancer cells all share one
single and key feature: that they induce a degree of ic acidification incompatible with cellular life.
This also contributes to reverse the cancer-specific and pathological hydrogen ion (H+) abnormal
dynamics of cancer cells and tissues.

2.2.1. An Integrated Approach to Treatment

In spite of all the intratumoral and microenvironmental odds, GBM cells manage to maintain
a normal to alkaline intracellular acid-base status in order to protect themselves from a threatening
pro-apoptotic IAc. This represents an important part of what we initially called “the neostrategy of
cancer cells and tissues” (Figure 2) [13,22,118,119].
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Figure 2. The main aim of the pH-centered treatment is to induce a selective low pHi-mediated
apoptosis of all cancer cells. This figure also shows the opposite pH ranges in cancer and in human
neurodegenerative diseases (HNNDs). The higher the cellular pH, the lower the hydrogen ion
concentrations, and vice versa. For further details, see [13,21].

IA may be useful as a diagnostic tool, since the potent NHE inhibitor cariporide (HOE642) helps
to localize GBM by inducing IA of brain tumors in mice [86]. In the same line, the determination
of the effects of different anticancer drugs on pHi is a new and most promising area of research,
not only in therapeutics but also in the diagnosis and degree of extension of MG, at least in GBM.
This new pH-centered tool allows us to test, even in individual tumors, the sensitivity to IA of different
pH-sensitive anticancer drugs such as topiramate, lonidamide, quercetin, dichloroacetate (DCA) and
cariporide [30,36,120–126]. Finally, increasingly sophisticated methodologies to determine pHi and
pHe in malignant tumors are being published, while recent and complete reviews on the subject are
also available [127].

2.2.2. Intracellular Acidifiers and Anti pH-Related Drugs with Potential Activity in the Treatment of
Malignant Gliomas

One of the reasons why most MG are currently incurable is the very high and rapid invasiveness
they show, at least in the case of GBM. Their extracellular acidity (EA) is a basic requirement for their
highly invasive capacity [127]. Importantly, a two-edged or even triple-edged treatment that addresses
simultaneously glucose availability and the pH alterations found in brain tumors may represent an
important step forward towards decreasing the migration/invasion process of GBM [102].

Table 2 shows the intracellular acidifiers that through different pHi-lowering mechanisms, mostly
related to inhibitory effects on one or more proton extruders (NHE1, CAs, MCTs, H+-vacuolar ATPases,
etc.), or as voltage gated sodium channels (VGSC) inhibitors, have shown activity against gliomas and
promise a potential benefit in the treatment of MG and/or GBM. However, it is most likely that the
utilization of only one of them would not be sufficient to regress or even control brain cancer. Thus,
a concerted utilization of several of these drugs in pharmacological doses, as has been repeatedly
suggested, is mandatory [48,100,128,129]. This should be accompanied by the implementation
of cooperative methods that, at least in the case of some of these new and/or repurposed drugs,
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can overcome the pharmacokinetic blockade imposed by the blood–brain barrier (BBB). To achieve this,
the use of polymers, liposomes and nanoparticles has been proposed as a useful method to increase
drug delivery to the brain in spite of the BBB [130,131]. In the same line, and in order to increase the
efficacy of targeted drug delivery systems with low toxicity, acridine orange, a photodynamic-related
acidophilic dye with a strong tumoricidal action in different malignancies, takes advantage of the low
extracellular pH of tumors [132,133]. Other photodynamic-oriented procedures have been recently
reported as selective and local intracellular acidifiers in cancer treatment [134].

Table 2. Drugs with a potential benefit in the treatment of malignant brain tumors that, to a large
extent, have not yet been clinically or even preclinically tested.

Drug Dose and Side Effects Objective

Topiramate

Starting dose, 50 mg twice
a day. The dose must be
increased 50 mg every
week until reaching 200 mg
twice a day.

Topiramate is a voltage gated sodium channel inhibitor
that acidifies glioma cells and reduces the risk of seizures
[120].

Acetazolamide
(AZM)

Starting dose, 125 mg twice
a day the first week. And
250 mg twice a day after
the first week.

Acetazolamide is a carbonic anhydrase (CA) pan-inhibitor
and cell acidifier [76,77].

Amiloride (and/
or liposomal
amiloride)

10–30 mg three times a day.
Hyperkaliemia can be an
occasional problem, more
with non-liposomal
amiloride.

Amiloride is a non-specific NHE inhibitor and the first one
that was developed and introduced in the clinic as a K+

sparing diuretic [135]. A positive clinical experience in an
occasional patient has been reported [136,137].
Non-liposomal amiloride barely crosses the blood–brain
barrier (BBB).

Quercetin

There is no established
dose for quercetin. Oral
doses of 3 g three times a
day are well tolerated in
the long term. Very poor
oral absorption.

Quercetin is a flavonoid sold over the counter as a
nutraceutical, a pan-monocarboxylate transporter (MCT)
inhibitor and intracelllular MG acidifier [123,125,138].
Liposomal quercetin is also available.

Fenofibrate 100 mg twice a day.

Fenofibrate is a PPRα agonist that reduces the motility of
glioma cells [139], induces their apoptosis [140–144],
inhibits glycolytic metabolism [145] and reduces migration
[139,146,147]. Fenofibrate also targets glioma stem cells
[148,149]. For a further review on fenofibrate see [150], and
for a review on fenofibrate in glioma, see [151].

Celecoxib 400 mg twice a day.

Celecoxib inhibits growth and induces apoptosis [152–162].
It also increases the effectiveness of chemotherapeutic
drugs [163–171] and radiotherapy [172–176]. It attenuates
de Wnt/βcatenin pathway [177], reduces angiogenesis
[178–181] and inhibits myeloid derived suppressor cells
[182]. For a review on celecoxib in glioma, see [183]
and [184].

Cariporide
(HOE642)

(Unavailable in
oncology)

Cariporide (HOE 642) is a powerful NHE1 inhibitor but,
unfortunately, is not available for clinical use in oncology.
It is orally bioavailable [49]. It also induces non-apoptotic
cell death in malignant glioma [98].

Diclofenac
(Usual doses)

Diclofenac inhibits lactate formation and counteracts
immune suppression in a murine glioma [75].
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Table 2. Cont.

Drug Dose and Side Effects Objective

Dichloroacetate
(DCA)

25–40 mg/kg daily in 2–3
weeks cycles (plus
Vitamin B1).

DCA is orally available and has been used frequently for
GBM in the experimental context as a cell acidifier and
glycolytic inhibitor [185–188], as well as in phase I clinical
trials [189–191].

Betulinic acid
(clinical trials

are underway)
Different dosages.

It penetrates the BBB and is highly effective in
temozolomide-resistant glioblastoma cells [192,193]. It is
also effective against other tumors, like melanoma and
neuroectodermic tumors. Its antitumoral activity is also
related to its effect as a topoisomerase I inhibitor [194].

Cisplatin
(CDDP)

(Usual dosages)

Cisplatin induces pHi acidification and a metabolic shift
from glycolysis to oxidative metabolism in cervical cancer
cells. This is accompanied by the inhibition of cancer cell
growth. Cells either recover, maintaining an alkaline pHi
to survive and proliferate, although at reduced growth
rates, or undergo cell death [28]. CDDP also induces a
therapeutic intracellular acidification [29,30,126].

Compound 9t
(C9t)

(Unavailable)

C9t has been reported to be 500-fold more potent against
NHE1 than cariporide and to have a greater selectivity for
NHE1 over NHE2 (1400-fold). Besides, C9t is orally
bioavailable, has low side-effects in mice and shows a
significantly improved safety profile over other NHE1
inhibitors [195].

Finally, for a more complete exposure of pH-related acidifiers as anticancer and/or repurposed
drugs in preclinical and clinical oncology, see [13,128].

3. Conclusions

Glioblastoma multiforme and other malignant brain tumors have a very poor prognosis that
shortens both human life and severely worsens its quality in patients with these diseases. The results
of standard treatments have been dismal, with minimal and non-significant improvements over recent
decades. The treatment of glioblastoma multiforme is, perhaps, the major failure of modern oncological
practice. Thus, a different approach is urgently needed to treat this disease. This contribution tries to
offer a different approach to that of the orthodox treatments of conventional and mainstream oncological
practices in order to implement new therapeutic combinations through schemes that are aimed to
reverse the cancer-selective pH-related abnormalities of cancer cells and tissues. For the first time,
an integrated and advanced model is considered as a rational approach and alternative proposal for the
treatment of malignant brain tumors. Furthermore, the main aim of this pH-centric perspective is to
break through the therapeutic impasse and skepticism that dominates this important and disappointing
area of modern oncology. The measures proposed here should be tried as an integrated scheme, since its
partial utilization would not achieve an efficient glioma cell hyperacidification and selective apoptosis
of brain malignancies. This acid-base change, key to the selective energetics of the biochemistry and
metabolism of all cancer cells and tissues appears as the most promising target in the treatment of
brain cancer. Its full benefits still require further translational research and the activation of clinical
trials in bedside neurooncology. We hope that this original perspective may make a difference in the
treatment of malignant gliomas on a short-term basis.
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